
Abstract—The paper presents  a concept and the outline of

the implementation of a hybrid approach to modeling and solv-

ing constrained problems. Two environments of mathematical

programming  (MP)  and  logic  programming  (LP)  were  inte-

grated.  The  strengths of  integer programming  (IP)  and con-

straint  logic  programming  (CLP),  in  which  constraints  are

treated in  a  different  way  and different  methods  are imple-

mented, were combined to use the strengths of both. The pro-

posed approach is particularly important for the decision mod-

els with an objective function and many discrete decision vari-

ables added up in multiple constraints.

To validate the proposed approach, two illustrative examples

are presented and solved. The first example is the authors’ orig-

inal model of cost optimization in the supply chain with multi-

modal transportation. The second one is  the two-echelon vari-

ant of the well-known Capacitated Vehicle  Routing Problem,

2E-CVRP.

I. INTRODUCTION

HE vast majority of models [1]–[4] of decision support

and/or optimization in manufacturing, distribution, sup-

ply  chain  management,  etc.,  have  been  formulated  as  the

mixed integer  linear  programming (MILP) or integer  pro-

gramming (IP) problems and solved using the operations re-

search (OR) methods. Their structures are similar and pro-

ceed from the principles and requirements of mathematical

programming. The constraint-based environments have the

advantage over traditional methods of mathematical model-

ing in that they work with a much broader variety of interre-

lated constraints  (resource,  time,  technological,  and  finan-

cial)  and  allow  producing  “natural”  solutions  for  highly

combinatorial problems.

T

A. Constraint-based environments

We strongly believe that the constraint-based environment

[5]–[7]  offers  a very good framework for  representing the

knowledge and information needed for the decision support.

The  central  issue  for  a  constraint-based  environment  is  a

constraint satisfaction problem. Constraint satisfaction prob-

lems (CSPs) are the mathematical problems defined as a set

of  elements  whose  state  must  satisfy  a  number  of  con-

straints. CSPs represent the entities in a problem as a homo-

geneous collection of finite constraints over variables, which

are solved using constraint  satisfaction methods. CSPs are

the subject of intense study in both artificial intelligence and

operations research, since the regularity in their formulation

provides a common basis for analyzing and solving the prob-

lems of many unrelated families [5].  Formally, a constraint

satisfaction problem is defined as a triple (X,D,C), where X

is a set of variables, D is a domain of values, and C is a set

of constraints. Every constraint is in turn a pair (t,R) (usually

represented as a matrix), where  t is an n-tuple of variables

and  R is an  n-ary relation on  D. An evaluation of the vari-

ables is a function from the set of variables to the domain of

values,  v:X→D. An  evaluation  v satisfies  constraint  ((x1,

…,xn),R) if (v(x1),..v(xn))∈R. A solution is an evaluation that

satisfies all constraints.

Constraint  satisfaction  problems  on  finite  domains  are

typically solved using a form of search.  The most  widely

used techniques include variants of backtracking, constraint

propagation,  and  local  search.  Constraint  propagation  em-

beds any reasoning that consists in explicitly forbidding val-

ues or combinations of values for some variables of a prob-

lem because a given subset of its constraints cannot be satis-

fied otherwise [26].

CSPs  are  frequently  used  in constraint  programming.

Constraint programming is the use of constraints as a pro-

gramming language to encode and solve problems.

Constraint  logic  programming (CLP) is  a  form of  con-

straint  programming (CP),  in which logic  programming is

extended to include concepts from constraint satisfaction. A

constraint  logic  program is  a  logic  program  that  contains

constraints in the body of clauses.  Constraints can also be

present in the goal. These environments are declarative.

The declarative approach and the use of logic program-

ming provide incomparably greater possibilities for decision

problems modeling  than  the  pervasive  approach  based  on

mathematical programming. 

B. Paper contents 

In this paper we focus on the problem of modeling and

solving decision problems using the novel hybrid approach.

Having  combined  the  strengths  of  MILP  and  CP/CLP

(II, III), we developed the environment that ensures the bet-

ter and easier way of problem modeling and implementation

and that provides the more effective search solution (IV). In

A hybrid method for modeling and solving constrained search problems

Paweł Sitek
Kielce University of Technology

Al. 1000-lecia PP 7, 25-314

Kielce, Poland, Institute of Man-

agement and Control Systems

e-mail:sitek@tu.kielce.pl

Jarosław Wikarek
Kielce University of Technology

Al. 1000-lecia PP 7, 25-314

Kielce, Poland, Institute of Man-

agement and Control Systems

e-mail:j.wikarek@tu.kielce.pl

Proceedings of the 2013 Federated Conference on

Computer Science and Information Systems pp. 385–392

978-1-4673-4471-5/$25.00 c© 2013, IEEE 385



order to verify the proposed approach, two illustrative exam-

ples are presented (V). 

II. MOTIVATION

Based on [1]–[4], and our previous work [6], [8]–[12], we

observed  some  advantages  and  disadvantages  of  these

environments. 

An integrated approach of constraint programming (CP)

and  mixed  integer  programming  (MIP)  can  help  to  solve

optimization problems that are intractable with either of the

two methods alone [13]–[16]. Although operations research

(OR) and constraint programming (CP) have different roots,

the links between the two environments have grown stronger

in recent years.

Both  MIP/MILP/IP  and  finite  domain  CP/CLP  involve

variables  and  constraints.  However,  the  types  of  the  vari-

ables  and  constraints  that  are  used,  and  the way the con-

straints are solved, are different in the two approaches [16].

MILP relies completely on linear equations and inequali-

ties in integer variables, i.e., there are only two types of con-

straints:  linear  arithmetic  (linear  equations  or  inequalities)

and integrity (stating that the variables have to take their val-

ues in the integer  numbers).  In  finite domain CP/CLP, the

constraint language is richer. In addition to linear equations

and  inequalities,  there  are  various  other  constraints:  dise-

qualities,  nonlinear,  symbolic  (alldifferent,  disjunctive,  cu-

mulative etc).

The motivation behind this work was to create a hybrid

approach  for  supply  chain  modeling  and  optimization

instead  of  using  integer  programming  or  constraint

programming  separately.  We  developed  the  hybrid

framework for modeling and optimization of supply chain

problems. In both MILP/MIP and CP/CLP, there is a group

of constraints that can be solved with ease and a group of

constraints  that  are  difficult  to  solve.  The  easily  solved

constraints  in  MILP/MIP  are  linear  equations  and

inequalities over rational numbers. 

Integrity  constraints  are  difficult  to  solve  using

mathematical  programming  methods  and  often  the  real

problems of MIP / MILP make them NP-hard.

In  CP/CLP,  domain  constraints  with  integers  and

equations  between  two  variables  are  easy  to  solve.  The

system  of  such  constraints  can  be  solved  over  integer

variables in polynomial time. The inequalities between two

variables,  general  linear  constraints  (more  than  two

variables), and  symbolic  constraints  are  difficult  to  solve,

which makes real problems in CP/CLP NP-hard. This type

of constraints reduces the strength of constraint propagation.

As a result,  CP/CLP is incapable of finding even the first

feasible solution.

It follows from the above that what is difficult to solve in

one environment can be easy to solve in the other.

The motivation was to offer the most effective tools for

model–specific constraints and solution efficiency.

III. STATE OF THE ART

As mentioned  in  Chapter  I,  the  vast  majority  of  deci-

sion-making models for the problems of production, logis-

tics, supply chain are formulated in the form of mathemati-

cal programming (MIP, MILP, IP).

Due to the structure of these models (summing of discrete

decision variables in the constraints and the objective func-

tion) and a large number of discrete decision variables (inte-

ger and binary) they can only be applied to small problems.

Another disadvantage is that only linear constraints can be

used. In practice, the issues related to the production, distri-

bution and supply chain constraints are often logical, nonlin-

ear, etc.  For these reasons the problem was formulated in a

new way,

In  our  approach  to  modeling  and  optimization  of con-

strained search problems we proposed the optimization envi-

ronment, where:

• knowledge related to the problem can be expressed as

linear and logical constraints (implementing all types of

constraints of the previous MILP/MIP models [10]–[14]

and introducing new types of constraints (logical, nonlin-

ear, symbolic etc.));

• the optimization model solved using the proposed frame-

work can be formulated as a pure model of MILP/MIP or

of CP/ CLP, or it can also be a hybrid model;

• the problem is modeled in CP/CLP, which is far  more

flexible than MIP/MILP/IP;

• the novel method of constraint propagation is introduced

(obtained by transforming the optimization model to ex-

plore its structure); 

• constrained  domains  of  decision  variables,  new  con-

straints  and  values  for  some  variables  are  transferred

from CP/CLP into MILP/MIP;

• the  efficiency  of  finding  solutions  to  the  problems  of

larger sizes is increased.

As a result, we obtained the more effective search solution

for a certain class of decision and optimization constrained

problems.

IV. HYBRID SOLUTION ENVIRONMENT

Both  environments  have  advantages  and  disadvantages.

Environments  based  on  the  constraints  such  as  CLPs  are

declarative and ensure a very simple modeling of decision

problems, even those with poor structures if any. The prob-

lem is  described  by a  set  of  logical  predicates.  The con-

straints can be of different types (linear, non-linear, logical,

binary,  etc.).  The  CLP does  not  require  any  search  algo-

rithms. This feature is characteristic of all declarative back-

grounds, in which modeling of the problem is also a solu-

tion, just as it is in Prolog, SQL, etc. The CLP seems perfect

for modeling and solving any decision problem. 

In  OR numerous models of  decision-making have been

developed and tested, particularly in the area of decision op-

timization. Constantly improved methods and mathematical

programming  algorithms,  such  as  the  simplex  algorithm,
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branch and bound, branch-and-cost [20] etc., have become

classics now.

The proposed method’s strength lies in high efficiency of

optimization algorithms and a substantial number of tested

models. The decision problems we deal with in this paper,

very common in manufacturing, logistics, supply chain, etc.,

have a number of decision variables,  including binary and

integer ones, which are aggregated in the constraints. 

Traditional  methods when used alone  to  solve  complex

problems provide unsatisfactory results. This is  related di-

rectly to different treatment of variables and constraints in

those approaches (II). The proposed hybrid approach, a com-

position of methods as described in Chapter III offers the op-

timal system for specific contexts.

A. Architecture and Implementation of Hybrid Solu-

tion Environment

This  Hybrid  Solution  Environment  (HSE)  consists  of

MIP/MILP/CLP/Hybrid models and Hybrid Solution Frame-

work  (FSE)  to  solve  them  (Fig.  1).  The  concept  of  this

framework with its phases (P1 .. P5, G1 .. G3) is presented

in Fig. 2.

Fig.  1 Scheme of the hybrid solution environment (HSE)

Fig.  2 Detailed scheme of the hybrid solution framework (HSF)

A detailed description of the phases in the order of execu-

tion is shown in Table I. 

From  a  variety  of  tools  for  the  implementation  of  the

CP/CLP  in  HSE,  ECLiPSe software  [21]  was  selected.

ECLiPSe is an open-source software system for the cost-effe-

ctive development  and deployment  of  constraint  program-

ming applications.  Environment  for  the implementation of

MILP/MIP/IP  in  HSE  was  LINGO  by  LINDO  Systems.

LINGO Optimization Modeling Software is a powerful tool

for building  and solving mathematical optimization  mod-

els [22].

TABLE I

DESCRIPTION OF PHASES

Phase P1

Name Implementation of decision model

Description
The  implementation  of  the  model  in  CLP,  the  term

representation of the problem in the form of predicates.

Phase P2

Name
Transformation  of  implemented  model  for  better

constraint propagation (optional)

Description

The  transformation  of  the  original  problem  aimed  at

extending  the  scope  of  constraint  propagation.  The

transformation  uses  the  structure  of  the  problem.  The

most common effect is a change in the representation of

the  problem  by  reducing  the  number  of  decision

variables, and the introduction of additional constraints

and variables, changing the nature of the variables, etc.

Phase P3

Name Constraint propagation

Description

Constraint  propagation  for  the  model.  Constraint

propagation is one of the basic methods of CLP. As a

result, the variable domains are narrowed, and in some

cases, the values of variables are set, or even the solution

can be found.

Phase G1

Name Generation of MILP/MIP/IP model

Description

Generation of the model for mathematical programming.

Generation  performed  automatically  using  CLP

predicate. The resulting model is in a format accepted by

the system LINGO.

Phase G2

Name Generation of additional constraints (optional)

Description
Generation of additional constraints on the basis of the

results obtained in step P3

Phase G3

Name
Generation  domains  of  decision  variables  and  other

values

Description

Generation  of  domains  for different  decision  variables

and  other  parameters  based  on  the  propagation  of

constraints. Transmission of this information in the form

of  fixed  value  of  certain  variables  and/or  additional

constraints to the MP.

Phase P4

Name Merging MILP/MIP/IP model

Description
Merging files generated during the phases G1, G2, G3

into one file. It is a model file format in LINGO system.

Phase P5

Name Solving MILP/MIP/IP model

Description

The solution model from the previous stage by LINGO.

Generation of the report with the results and parameters

of the solution.
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ECLiPSe software  is  the  environmental  leader  in  HSE.

ECLiPSe was used to implement the following phases of the

framework: P1, P2, P3, G1, G2, G3 (Fig. 2, Table I.). The

transformed  files  of  the  model  were  transferred  from

ECLiPSe to LINGO where they were merged (P4). Then the

complete model was solved using LINGO efficient solvers

(P5). Constraint propagation (phase–P3) greatly affected the

efficiency  of  the  solution.  Therefore  phase  P2  was  intro-

duced. During this phase, the transformation was performed

using the structure and properties of the model. This is an

optional phase that  depends on the modeled problem. The

details of this phase will be presented in one of the illustra-

tive  examples  in  Chapter  V (cost  optimization  of  supply

chain).

V. ILLUSTRATIVE EXAMPLES

The proposed HSE environment was verified and tested

for two illustrative examples.  The first  example is the au-

thors’ original  model  of cost  optimization of  supply chain

with  multimodal  transport  (section  A).  The  second  is  a

2E-CVRP model (section B). It is the known benchmark of a

very large number of sets/instances of data and their solu-

tions.

A. Cost optimization of supply chain with multimodal 

transport

A detailed description of the cost optimization of supply

chain  models,  their  constraints,  parameters  and  decision

variables etc. are presented in [17] and Table II.

During  the  first  stage,  the  model  was  formulated  as  a

MILP problem [9], [10], [17] in order to test the proposed

environment (Fig. 1,2) against the classical integer-program-

ming environment [22]. The next step involved the imple-

mentation and solving of the hybrid model. Indices, parame-

ters and decision variables in the models together with their

descriptions are provided in Table II.  The simplified struc-

ture of the supply chain network for this model, composed of

producers, distributors and customers is presented in Fig.3.

Fig.  3 The simplified structure of the supply chain network

The proposed models are the cost models that take into

account three other types of parameters, i.e., the spatial pa-

rameters (area/volume occupied by the product, distributor

capacity and capacity of transport unit), time (duration of de-

TABLE II

SUMMARY INDICES, PARAMETERS AND DECISION VARIABLES

Symbol Description

Indices

k product type (k=1..O)

j delivery point/customer/city (j=1..M)

i manufacturer/factory (i=1..N)

s distributor /distribution center (s=1..E)

d mode of transport (d=1..L)

N number of manufacturers/factories

M number of delivery points/customers

E number of distributors

O number of product types

L number of mode of transport

Input parameters

Fs the fixed cost of distributor/distribution center s 

Pk the area/volume occupied by product k 

Vs distributor s maximum capacity/volume 

Wi,k production capacity at factory i for product k 

Ci,k the cost of product k at factory i 

Rs,k

if distributor  s can deliver product  k then Rsk=1, otherwise

Rsk=0

Tps,k

the time needed for distributor  s to prepare the shipment of

product k 

Tcj,k

the cut-off time of delivery to the delivery point/customer  j

of product k 

Zj,k customer demand/order j for product k 

Ztd the number of transport units using mode of transport d 

Ptd the capacity of transport unit using mode of transport d 

Tfi,s,d

the  time  of  delivery  from  manufacturer  i to  distributor  s

using mode of transport d 

K1i,s,k,d

the variable cost of delivery of product k from manufacturer

i to distributor s using mode of transport d 

R1i,s,d

if manufacturer  i can deliver to distributor  s using mode of

transport d then R1i,s,d=1, otherwise R1i,s,d=0 

Ai,s,d

the fixed cost of delivery from manufacturer i to distributor s

using mode of transport d 

Koai,s,d

the total cost of delivery from  manufacturer i to distributor s

using mode of transport d 

Tms,j,d

the time of delivery from distributor  s to customer  j using

mode of transport d 

K2s,j,k,d

the variable cost of delivery of  product  k from distributor  s

to customer j using mode of transport d 

R2s.jd

if  distributor  s can  deliver  to  customer  j using  mode  of

transport d then R2s,j,d=1, otherwise R2s,,j,d=0 

Gs,j,d

the fixed cost  of  delivery from distributor  s to  customer  j

using mode of transport d 

Kogs,j,d

the  total  cost  of  delivery from distributor  s to  customer  j

using mode of transport d 

Odd the environmental cost of using mode of transport d 

Decision variables

Xi,s,k,d

delivery  quantity  of  product  k from  manufacturer  i to

distributor s using mode of transport d

Xai,s,d

if delivery is from manufacturer i to distributor s using mode

of transport d then Xai,s,d=1, otherwise Xai,s,d=0 

Xbi,s,d

the number of courses from manufacturer  i to distributor  s

using mode of transport d

Ys,j,k,d

delivery quantity of product k from distributor s to customer

j using mode of transport d

Yas,j,d

if delivery is from distributor s to customer j using mode of

transport d then Yas,j,d =1, otherwise Yas,j,d =0 

Ybs,j,d

the number of courses from distributor s to customer j using

mode of transport d 

Tcs

if  distributor  s participates  in  deliveries,  then  Tcs=1,

otherwise Tcs=0

CW Arbitrarily large constant
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livery  and  service  by  distributor,  etc.)  and  the  transport

mode. 

The main assumptions made for the construction of these

models were as follows:

• the shared information process in the supply chain con-

sists of resources (capacity, versatility, costs),  inventory

(capacity,  versatility, costs,  time),  production (capacity,

versatility, costs),  product  (volume),  transport  (cost,

mode, time), demand, etc;

• a part of the supply chain has the structure as in Fig. 3.;

• the transport is multimodal (several modes of transport, a

limited number of means of transport for each mode);

• the environmental aspects of use of transport modes are

taken into account;

• different  products are combined  in one batch of trans-

port;

• the cost of supplies is presented in the form of a function

(in this approach,  linear  function of fixed and variable

costs);

• models have linear or linear and logical (hybrid model)

constraints;

• logical constraints of hybrid model allow the distribution

of exclusively one of two selected products in the distri-

bution  center  and  allow the  production  of  exclusively

one of two selected products in the factory.

Details of both mathematical models for cost optimization of

supply chain are presented in [17].

Objective function

The objective function defines the aggregate costs of the
entire chain and consists of five elements. The first element
comprises the fixed costs associated with the operation of
the  distributor  involved  in  the  delivery  (e.g.  distribution
centre, warehouse, etc.). The second element corresponds to
environmental  costs  of  using  various  means  of  transport.
Those costs are dependent on the number of courses of the
given  means  of  transport,  and  on  the  other  hand,  on  the
environmental levy, which in turn may depend on the use of
fossil fuels and carbon-dioxide emissions.

The third component determines the cost of the delivery

from the manufacturer to the distributor. Another component

is  responsible  for  the  costs  of  the  delivery from  the

distributor to the end user (the store, the individual client,

etc.).  The  last  component  of  the  objective  function

determines  the  cost  of  manufacturing  the  product  by  the

given manufacturer.

Formulating the objective function in this manner allows

comprehensive  cost  optimization  of  various  aspects  of

supply  chain  management.  Each  subset  of  the  objective

function with the same constrains provides a subset of the

optimization area and makes it much easier to search for a

solution.

Constraints

The model was based on constraints (2) .. (24) Constraint

(2) specifies that all deliveries of product k produced by the

manufacturer i and delivered to all distributors s using mode

of transport  d do not exceed the manufacturer’s production

capacity. 

Constraint (3) covers all customer j demands for product k

(Zj,k) through the implementation of delivery by distributors

s (the values of decision variables  Yi,s,k,d). The flow balance

of  each  distributor  s corresponds  to  constraint  (4).  The

possibility  of  delivery  is  dependent  on  the  distributor’s

technical capabilities - constraint (5). Time constraint (6) en-

sures the terms of delivery are met.  Constraints (7a), (7b),

(8) guarantee deliveries with available transport taken into

account.  

The hybrid model was additionally enriched with logical

constraints.

First  logical  constraint  allows the  distribution of  exclu-

sively one of the two selected products in the distribution

center  s. Second logical constraint allows the production of

exclusively one of the two selected products in the factory i.

These  constraints  stem  from  technological,  marketing,

sales or safety restrictions. Therefore, some products cannot

be distributed and/or produced together. The constraint can

be re-used for different pairs of product k and for some or all

of the distribution centers  s  and factories i.  A logical  con-

straint  like  this  cannot  be  easily  implemented  in  a  MILP

model. 

Model transformation

Due  to  the  nature  of  the  decision  problem  (adding  up

decision  variables  and  constraints  involving  a  lot  of

variables),  the  constraint  propagation  efficiency  decreases

dramatically.  Constraint  propagation  is  one  of  the  most

important  methods  in  CLP  affecting  the  efficiency  and

effectiveness  of  the  CLP  and  hybrid  optimization

environment (Fig. 1, Table I). For that reason, research into

more  efficient  and  more  effective  methods  of  constraint

propagation  was  conducted.  The results  included  different

representation  of  the  problem  and  the  manner  of  its

implementation. 

The classical problem modeling in the CLP environment

consists in building a set of predicates with parameters.

 Each  CLP predicate  has  a  corresponding  multi-dimen-

sional vector representation. While modeling both problems,

quantities  i, s, k, d and decision variable  Xi,s,k,d were vector

parameters (Fig. 4a). As shown in Fig. 4b, for each vector

there were 5 values to be determined, defining the size of the

delivery, factories, distributors involved in the delivery and

the mode of transport.

[Z_n,P,M,D,F,Tu,Tu,Oq,X,T]

Fig.  4a Representation of the problem in the classical approach-defini-

tion

[[z_1,p1,m1,_,_,_,_,10,_,8],

[z_2,p1,m2,_,_,_,_,20,_,6],…]

Fig.  4b Representation of the problem in the classical approach- the

process of finding a solution

The process of finding the solution may consist in using

the constraint propagation methods, variable labeling and the
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backtracking  mechanism.  The numbers  of  parameters  that

must be specified/labeled in the given predicate/vector criti-

cally  affect  the  quality  of  constraint  propagation  and  the

number of backtracks. In both models presented above, the

classical problem representation included five parameters: i,

s, k, d and Xi,s,k,d. Considering the domain size of each param-

eter, the process was complex and time-consuming. In addi-

tion, the above representation (Fig. 4a, Fig. 4b) arising from

the structure of the problem is the cause of many backtracks.

Our idea involved the transformation of the problem by

changing its representation without changing the very prob-

lem. All permissible routes were first generated based on the

fixed data and a set of orders, then the specific values of pa-

rameters i, s, k, d were assigned to each of the routes. In this

way,  only  decision  variables  Xi,s,k,d (deliveries)  had  to  be

specified  (Fig.  5).  This  transformation  fundamentally  im-

proved the efficiency of the constraint propagation and re-

duced the number of backtracks.  A route model is a name

adopted for the models that underwent the transformation.

[[name_1,f1,p1,c1,m1,s1,s1,5,12,100,_],

[name_2,f1,p1,c1,m1,s1,s2,6,14,100,_],

[name_3,f1,p1,c1,m1,s2,s1,6,22,100,_],...]

Fig.  5 Representation of the problem in the novel approach- set of fea-

sible routes

Symbols necessary to understand both the representation

of the problem and their descriptions are presented in Ta-

ble III.

TABLE III

SYMBOLS USED IN THE REPRESENTATION OF THE PROBLEM

Symbol Description

Z_n order number

P products, P∈ {p1,p2, ... ,po}

M customers, M∈{m1,m2, … mm}

D distributors, D∈{c1,c2, … ce}

F factories, F∈{f1,f2, … fn}

Tu transport unit, Tu∈{s1,s2, … sl}

T delivery time/period

Oq order quantity

X delivery quantity

Name_ routes name-number

B. Two-Echelon Capacitated Vehicle Routing Problem

The 2E-CVRP is proposed as a benchmark verifying the

presented approach.  The Two-Echelon Capacitated Vehicle

Routing Problem (2E-CVRP) is an extension of the classical

Capacitated Vehicle Routing Problem (CVRP) where the de-

livery  depot-customers  pass  through  intermediate  depots

(called satellites). As in CVRP, the goal is to deliver goods to

customers with known demands, minimizing the total deliv-

ery  cost  in  the  respect  of  vehicle  capacity  constraints.

Multi-echelon systems presented in the literature usually ex-

plicitly consider the routing problem at the last level of the

transportation system, while a simplified routing problem is

considered at higher levels [18], [19], [23]. 

In  2E-CVRP, the freight  delivery from the depot to the

customers is managed by shipping the freight through inter-

mediate depots. Thus, the transportation network is decom-

posed into two levels (Fig. 6): the 1st level connecting the

depot (d) to intermediate depots (s) and the 2nd one connect-

ing the intermediate depots (s) to the customers (c). The ob-

jective is to minimize the total transportation cost of the ve-

hicles involved in both levels. Constraints on the maximum

capacity of the vehicles and the intermediate depots are con-

sidered, while the timing of the deliveries is ignored.

From a practical point of view, a 2E-CVRP system oper-

ates as follows (Fig. 6):

• freight arrives at an external zone, the depot, where it is

consolidated into the 1st-level  vehicles,  unless it  is  al-

ready carried into a fully-loaded 1st-level vehicles;

• each 1st-level vehicle travels to a subset of satellites that

will be determined by the model and then it will return to

the depot;

• at a satellite, freight is transferred from 1st-level vehicles

to 2nd-level vehicles;

The mathematical model (MILP) was taken from [17]. It

required some adjustments and error  corrections.  Table IV

shows the parameters  and decision variables  of 2E-CVRP.

Figure 6 shows an example of the 2E-CVRP - transportation

network.

Fig.  6 Example of 2E-CVRP transportation network 

The transformation of this model in the hybrid approach fo-

cused on the resizing of Yk,i,j decision variable by introducing

additional  imaginary  volume  of  freight  shipped  from  the

satellite and re-delivered to it. Such transformation resulted

in two facts. First of all, it forced the vehicle to return to the

satellite from which it started its trip. Secondly, it reduced

decision variable Yk,i,j to variable Yi,j which decreased the size

of the combinatorial problem.

VI. NUMERICAL EXPERIMENTS

A. Cost optimization of supply chain with multimodal 

transport

In  order  to  verify  and  evaluate  the  proposed  approach,

many  numerical  experiments  were  performed.  All  the

examples relate to the supply chain with two manufacturers
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(i=1..2), three distributors (s=1..3), five customers (j=1..5),

three modes of transport (d=1..3), and ten types of products

(k=1..10). Other  parameter  values  are  shown in Appendix

A1 [17].

The first series of experiments was designed to show the

advantages of the hybrid approach used.

The experiments  began with six examples:  E1, E2, E3,

E4, E5, E6 for the problem formulated in MILP (V) [17].

Two  approaches  were  used  to  implement  the  proposed

model: mathematical programming (LINGO) and the hybrid

approach (LINGO,  Eclipse,  transformation).  The examples

E1 .. E6 varied in terms of the number of orders (No). The

set  of  all  orders  for  calculation  examples  are  given  in

Appendix A.

The  experiments  were  conducted  to  optimize  examples

E7,  E8,  which  are  implementations  of  the  hybrid  model

(with logical constraints) in the hybrid approach. 

The  implementation  of  logic  constraints  for  the  hybrid

model was as follows: product  k = 5 cannot be distributed

with product k= 6; product k = 2 cannot be distributed with

product  k =  8,  and  these  products  cannot  be  produced

together. The results in the form of the objective function,

the  computation  time,  the  number  of  discrete  decision

variables and constraints are shown in Table V.

The  analysis  of  the  outcome  indicates  that  the  hybrid

approach provided better results in terms of the time needed

to find the solution in each case, and to obtain the optimal

solution in some cases, which was impossible to do within

the acceptable time limits using the traditional approaches.

B. Two-Echelon Capacitated Vehicle Routing Problem

For the final validation of the proposed hybrid approach,

the benchmark (2E-CVRP) was selected. 2E-CVRP, a well

described  and  widely  discussed  problem,  corresponded  to

the issues to which our hybrid approach was applied. 

The instances for computational examples were built from

the existing instances for CVRP [24] denoted as E-n13-k4.

All the instance sets can be downloaded from the website

[25].  The  instance  set  was  composed  of  5  small-sized

instances with 1 depot,  12 customers and 2 satellites.  The

full instance consisted of 66 small-sized instances because

the two satellites were placed over twelve customers in all

66 possible ways (number of combinations: 2 out of 12).

All the instances had the same position for depot and cus-

tomers,  whose  coordinates  were  the  same  as  those  of  in-

stance E-n13-k4. Small-sized instances differed in the choice

of two customers who were also satellites (En13-k4-2 (1,3),

En13-k4-6 (1,6), En13-k4-61 (9,10) etc.).

The analysis  of the results  for  the benchmark  instances

demonstrates that the hybrid approach may be a superior ap-

proach to the classical  mathematical programming. For all

examples,  the solutions were found 2-16 times faster  than

they are in the classical approach.

As the presented benchmark was formulated as a MILP

problem, the HSF was tested for the solution efficiency. Ow-

ing to the hybrid approach the 2E-CVRP models can be ex-

tended over logical, nonlinear, and other constraints.

TABLE V

THE RESULTS OF NUMERICAL EXAMPLES FOR BOTH APPROACHES

E(No)
MILP-LINGO MILP-Hybrid

Fc T V C Fc T V C

E1(5) 6680 7 1389 1351 6680 2 117 172

E2(10) 20439 28 1389 1621 20439 3 173 172

E3(15) 29107 55 1389 1891 29107 9 245 172

E4(20) 45710* 600** 1389 2161 45654 18 301 172

E5(25) 46660* 600** 1389 2431 46150 235 376 172

E6(30) 48946* 600** 1389 2701 48006 375 429 172

P(No)
Hybrid-Hybrid

Fc T V C

E7(10) 21143 194 193 202

E8(20) 46069 366 321 202

Fc the optimal value of the objective function

T Solution finding time

V/C the number of integer variables/constraints

* the feasible value of the objective function after the time T

** calculation was stopped after 600s

TABLE IV

SUMMARY INDICES, PARAMETERS AND DECISION VARIABLES

Symbol Description

Indices

ns Number of satelites

nc Number of customers

V0 = {vo} Deport

Vs = {vs1, …, vsns} Set of satellites

Vc = {vc1, …, vcnc} Set of customers

Input parameters

m1 Number of the 1st-level satelites

M2 Number of the 2nd-level satelites

k1 Capacity of the vehicles for the 1st level

k2 Capacity of the vehicles for the 2nd level

di Demand required by customer i

ci,j Cost of the arc (i,j)

sk

Cost of loading/unloading operations of a unit of

freight in satelite k 

Decision variables

Xi,j

Is an integer variable of the 1st-level routing and

is equal to the number of 1st-level vehicles using

arc (i, j).

Yk,i,j

Is a binary variable of the 2nd-level routing and is

equal  to 1 if  a  2nd-level  vehicle  makes a route

starting from satellite k and goes from node i to

node j and 0 otherwise

Q1i,j freight flow arc ij for the 1st-level 

Q2k,i,j

freight  arc  ij  where  k  represents  the  satellite

where the freight is passing through.

zk,j

Binary variable that is equal to 1 if the freight to

be delivered to customer j is consolidated in satel-

lite k and 0 otherwise
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VII. CONCLUSION AND DISCUSSION ON POSSIBLE

EXTENSION

The efficiency of the proposed approach is based on the

reduction of the combinatorial problem and using the best

properties of both environments. The hybrid approach (Table

V, Table VI) makes it possible to find solutions better solu-

tions in the shorter time. 

In addition to solving larger problems faster, the proposed

approach provides virtually unlimited modeling options.

Therefore,  the  proposed  solution  is  recommended  for

decision-making  problems  in  the  supply  chain  that  has  a

similar structure to the presented model (V). This structure is

characterized  by  the  constraints  and  objective  function  in

which  the  decision  variables  are  added  together.  Further

work will  focus  on running the optimization models  with

non-linear  and  logical  constraints,  multi-objective,  uncer-

tainty etc. in the hybrid optimization framework. 
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APPENDIX A
TABLE I

THE SET OF ORDERS FOR COMPUTATIONAL EXAMPLES E1-E8

Name k j Tk,j Zj,k Name k j Tk,j Zj,k

z_01 p1 m1 8 10 z_11 p1 m3 8 15

z_02 p2 m2 12 10 z_12 p2 m4 12 20

z_03 p3 m3 10 25 z_13 p3 m5 10 25

z_04 p4 m4 8 30 z_14 p4 m1 8 30

z_05 p5 m5 12 10 z_15 p5 m2 12 30

z_06 p6 m1 8 15 z_16 p6 m3 8 15

z_07 p7 m2 12 20 z_17 p7 m4 12 20

z_08 p8 m3 10 25 z_18 p8 m5 10 25

z_09 p9 m4 8 30 z_19 p9 m1 8 30

z_10 p10 m5 12 30 z_20 p10 m2 12 35

z_21 p1 m5 8 2 z_26 p6 m5 8 3

z_22 p2 m1 12 1 z_27 p7 m3 12 2

z_23 p3 m4 10 2 z_28 p8 m4 10 2

z_24 p4 m5 8 1 z_29 p9 m2 8 2

z_25 p5 m3 12 1 z_30 p10 m1 12 2

TABLE VI

THE RESULTS OF NUMERICAL EXAMPLES FOR BOTH APPROACHES

E-n13-k4
MILP-LINGO MILP-Hybrid

Fc T V C Fc T V C

En13-k4-2 286 40371 368 1262 286 8720 186 1024

En13-k4-6 230 125 368 1262 230 55 186 1024

En13-k4-9 244 153 368 1262 244 44 186 1024

En13-k4-20 276  535 368 1262 276 32 186 1024

En13-k4-61 338 6648 368 1262 338 407 186 1024

Fc the optimal value of the objective function

T time of finding solution

V/C the number of integer variables/constraints

* the feasible value of the objective function after the time T
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