
A review of NoSQL Databases and Performance

Testing of Cassandra over single and multiple nodes

Sanket Ghule

Department of Information Technology,

Pimpri Chinchwad College of Engineering

Pune, India

ghulesanket7@gmail.com

Ramkrishna Vadali

Department of Information Technology,

Pimpri Chinchwad College of Engineering

Pune, India

ramkrishna.vadali1@gmail.com

Abstract—Today in the era of Internet, there is a huge explo-

sion in the size of data. The traditional relational databases are

failing to handle the current increase size of the database effi-

ciently, leading to slow data access rate. NoSQL has thoroughly

overcome the challenges for handling big data, distributed clus-

ters and the scalability issues. Cassandra is one the leading

NoSQL database gaining its importance in various applications.

In this paper, Read and write performance tests are carried out

which describes that Cassandra improves its performance as the

number of cluster increases with increasing access speed.

Keywords—NoSQL; Cassandra; performance testing

I. INTRODUCTION

In the process of development of the data store, database
technologies have undergone drastic changes in order to fulfill
the user requirements. Therefore traditional relational database
has made a remarkable stand in the field of database storage.
Coming around the recent years, the increase in the use of In-
ternet Network technology, various modern changes have
emerged in applications. Accordingly, some changes were ex-
pected in order towards encountering the requirements using
the Distributed Data Models. Relational databases are not able
compete these requirements. NoSQL (Not Only SQL) is a non-
relational database methodology which approaches the increas-
ing changes required to fulfill the requirements.

This paper focuses on NoSQL databases conceptions and
technology along with read and writes performance testing on
Cassandra, a representative of NoSQL databases. This test is
performed for single as well as multi-node scenario.

II. LIMITATIONS OF SQL

1) Unstructured data:

Relational databases are not capable of managing unstruc-

tured data like multimedia files and documents effectively. Al-

though, it can be handled using various methods such as stor-

ing the file in file system and just passing a reference to the

database or storing the Binary Large Object File (BLOB) in

database. But it cannot be done efficiently as it does not have

indexes or problems of indexes, unreferenced data, unrecog-

nizable patterns of data, etc.

2) Volume of data:

The complexity in the system increases as the size of data-

base increases (such as in Terabytes and Petabytes), the com-

plexity in the system increases. There is a possibility that this

data can be structured, unstructured or both. Therefore Rela-

tional database consumes lot of time to process this huge

amount of data which hampers the overall efficiency and

throughput of the system.

3) Joins:

Relations among the databases are maintained with the

help of joins. With the growing size of the database, a complex

operation to maintain the joins which leads to slower database

access at times. Joins can even make the fastest hardware to

slow due to its complexity.

4) Lack of Efficiency and performance:

It is possible to manage large data with the help of rela-

tional databases, but cannot be managed in an efficient way.

When the database is designed, should be in normalized form;

consist of appropriate joins at the right place. It becomes diffi-

cult to manage the database while dealing with the large

datasets. As the size of the data increases, operations such as

data retrieval, searching, aggregations, etc. are increased thus

making the database slow that leads to the lack of efficiency.

5) Scalability and Management:

Relational database requires more management as the

complexity of databases grows. Database management is re-

quired if the database is to be implemented in a distributed ap-

proach. Management has to be involved when scalability

comes into picture. Administrators have to perform the scaling

operation manually which is a complex task to be carried out

as all properties of the database must remain intact.

6) Performance:

When the performance of the database falls, it therefore

leads to lack of efficiency. Performance degradation can be

due to various reasons such as complex batch operations, in-

dexing etc. The performance of the database degrades, as the

data size increases.

7) Stability issues:

Relational databases with respect to references and audit-

ing are less reliable. They have weak scalable replication and

Proceedings of the Second International Conference on Research in

Intelligent and Computing in Engineering pp. 33–38

DOI: 10.15439/2017R65

ACSIS, Vol. 10 ISSN 2300-5963

c©2017, PTI 33

distribution as they require more management when replicated

and/or distributed. It makes it difficult to process long and

complicated queries, making it to crash. Therefore in order to

run those, it has to be part by part with the stored procedures).

8) User and Query conflicts:

Transactional locks and deadlocks may lead to slow access

to database which may frustrate the users.

III. NOSQL (NOT ONLY SQL) DATABASES

NoSQL [1] is a schema less non-relational database. It is
quickly growing database over SQL due to factors such as
higher scalability, easy replication and distribution of database.
NoSQL databases are different from the traditional SQL data-
bases in many aspects such as tabular format, queries, etc.
NoSQL does not require pre-designed tabular format as in SQL
for storing the data. It is therefore known as unstructured data-
base.

It solves many problems over the traditional relational ap-
proach such as distributed, open source, scalable etc. Today
there are more than thirty five different NoSQL databases avail-
able for different purposes, developed for different scenarios.

A. Advantages of NoSQL Databases

NoSQL databases ensures following benefits compared to
the traditional ones:

 a) Schema Independent: At present, there are few prevalent
types of NoSQL databases: Column Store, Document Store,
Key Value Store, Graph Store and some other modes. These
modes don’t require creation of the data fields before usage.
Plus, these NoSQL databases do not require fixed table struc-
ture which can store custom data formats at any instant of time.

b) Scaling Horizontally: Conventional relational database
use scaling up approach to improve performance, while
NoSQL databases are utilized to enhance the performance lev-
els by horizontal scaling mode, results in distributing the load
equally to each of the host system.

c) Less Management and Low cost: NoSQL databases are
open source databases exclusive of expensive licensing
charges. This requires less management as most of the opera-
tions are carried out through the databases itself. It does not re-
quire management as the data goes beyond threshold limit of
the data, load is distributed automatically.

e) Easy replication: Easy replication of databases is done in
NoSQL thus helping the database to be cooperative in distrib-
uted approach.

B. Disadvantages of NoSQL Databases

Evaluated with the conventional relational databases,
NoSQL databases even though ensure several benefits, there
are various drawbacks too:

 a) Complex for beginners: Every NoSQL database has its
own query programming, which makes it faster. But users have
to be trained in order to work on NoSQL databases as they
query differently than traditional SQL, which users are used to
be with.

b) Not Reliable: ACID (Atomicity, Consistency, Isolation,
and Durability) properties are supported by relational data-
bases; while NoSQL databases won't therefore they do not
reach the reliability level that ACID properties provide. If the
users require NoSQL databases to employ ACID properties for
a dataset, they should perform extra programming.

c) Eventual Consistent: ACID transactions cannot be main-
tained by NoSQL databases, therefore there are limita-
tions to maintain consistency. Although it supports bet-
ter performance and scalability still there are complica-
tions for specific applications and transactions, for ex-
ample those comprised with banking. NoSQL databases
use this type of consistency which is known as Eventual
consistency.

C. Why NoSQL database be choosen

Though NoSQL overcomes traditional SQL databases, but

there are several reasons why any user should choose for

NoSQL databases:

 NoSQL Databases helps in improving programmer’s

productivity by using appropriate NoSQL database to

match the needs of the application.

 NoSQL databases improve the performance of data

access. This is because NoSQL relies on de-

normalization and is optimized due to the de-

normalized case. For example, if there is blog

containing comments, then comments are stored with

blog in NoSQL data stores. This makes the data

access faster as the data can be retrieved all together

from single location.

 It can handle large data quantity efficiently by not

executing any joins or indexing such as in SQL.

 It can helps in reducing the latency period therefore

enhancing the overall throughput of the application.

IV. TYPES OF NOSQL DATABASES

D. Key Value Database

The key-value store or key-value database is constructed
for storing, retrieving, and supervising hash or dictionary i.e.
the data structure. A collection of objects or records are en-
closed in these dictionaries, which contains data in many dif-
ferent fields within them. A key is used to store and retrieve
these objects or records which uniquely identifies the record,
and can be used immediately to locate the data present in the
database. [2][3]

Fig. 1. Key Value Pair

34 PROCEEDINGS OF RICE. GOPESHWAR, 2017

Key Value Database is generally useful for warehousing,

client reports, session data, shopping cart information,

inclinations, etc. It should be avoided as soon as there is a

necessity for data quering which have relations within the data

i.e. stored actually or want to function at the same time over

multiple keys.

Examples of Key Value Pair Database are: Redis,

CouchDB, Riak, Memcached, Berkeley DB, Upscale DB,

DynamoDB, Voldemort, etc.

B. Document oriented Database

A document store or document-oriented database is defined
as a computer software package intended for warehousing,
retrieving, and handling document-oriented data. It can be
called as semi-structured data. The fame of the term ‘document
store database’ has developed the utilization of idiom NoSQL
procedure. XML documents are being adjusted to work with
XML documents which are subclass of document-oriented
databases. [2][4] Documents may comprise of collections,
maps and scalar values which can be self-illustrating,
categorized, tree data structures.

Document Databases can be useful for blogging programs,
web analytics, content management techniques, real time
analytics, and ecommerce systems. It should be avoided for
applications that require composite transactions concerning
several queries or operations in contradiction to variable
aggregates in structures.

Examples of Document oriented Database are: MongoDB,
CouchDB, Terrastore, OrientDB, RavenDB, etc.

C. Column Family Database

A NoSQL object that contains columns of related data is a

column family. A key-value pair is a tuple (pair) where the

key exemplifies a value which can be a set of columns. A

column family is a table where each key-value pair can be

represented in the row, like in relational databases. A column

name, a value, and a timestamp are the tuples comprised in

each column. Within a table along with other non related data,

this data could be fabricated collectively, in a relational

database table.[2][5]

Comparison of the container of rows in table where the key

recognizes the row and the row comprises of multiple columns

in every column family. A name and a value which can be

used for mapping of the column are included in the Super

Column which is the container of columns.

Column Family Database are convenient for blogging

platforms, preserving counters, content management systems,

terminating procedures, intensive write levels for example Log

Aggregation. It should be avoided for systems that are in early

development and have changing query patterns.
Examples of Column Family Database are: Cassandra,

HBase, HyperTable, DynamoDB, etc.

D. Graph Database

A NoSQL database which uses graph structures for

interpretation queries together with edges, nodes and

properties to denote and warehouse the data, is known as

graph database. The main hypothesis in this system is the

graph along with relationship or the edge, which can precisely

relate to the store data items. The relations permit store data to

be correlated in sync unambiguously, to be retrieved in

numerous cases with a single process.[2][6] Traversing the

relationships and the joins are boosted by the Graph databases.

Graph databases are appropriate for problems which have

data connected like social networks, routing data for money

and goods, spatial statistics and for the recommendation

engines.
Examples of Graph database are: Neo4j, Infinitegraph,

OrientDB, FlockDB, etc.

TABLE I. COMPARISON OF VARIOUS NOSQL DATABASES

Name API Langu
age

Concurrency Replica
tion

Misc.

KEY VALUE STORES

Redis Several
Languag

es

C Asynchronous
saves in
memory

Master/
Slave

Rich Set
of Data
types

CouchDB HTTP Erlang Eventual
Consistency(A
vailability and

Partition
Tolerance)

Selecta
ble

Replicat
ion

Factor

Built for
offline
devices

COLUMN STORE

Cassandra
(Facebook,

Twitter)

Many
Thrift

Languag
es

Java Eventual
Consistency(A
vailability and

Partition
Tolerance)

Multi-
version
Concurr

ency
Control
(MVCC

)

Combinat
ion of

Dynamo
and

BigTable

Hypertable
(Rediff)

Thrift
(Java,
PHP,
Perl,

Python,
Ruby,
etc.)

C++/
HQL

(Hyper
table

Query
Langu
age)

Strong
Consistency
(Consistency
and Partition
Tolerance)

Multi-
version
Concurr

ency
Control
(MVCC

)

High
performa
nce with

C++
implemen
tation of
Google’s
BigTable,
Commerc

ial
support

DOCUMENT ORIENTED

Couch DB Represen
tational
State

Transfer

Er-
Lang/
JSON

Eventual
Consistency(A
vailability and

Partition
Tolerance)

Multi-
version
Concurr

ency
Control
(MVCC

)

JSON
object

queries,
Better

durability

MongoDB Variety
of

dynamic
object
APIs

available

BSON Eventual
Consistency(A
vailability and

Partition
Tolerance)

Master
and

Slave
appr-
oach

Query
builder

including
a

Javascript
Map

reduce
implemen

tation,
GridFS

specificat
ion

NAMES: A REVIEW OF NOSQL DATABASES AND PERFORMANCE TESTING 35

V. CASSANDRA

Apache Cassandra [7][8] is an open-source and a distributed
database management system which can manage servers with
data of huge amounts, delivering no single point of failure with
high availability. Robust backing can be supported by
Cassandra for clusters which comprise multiple datacenters.

To dominate the Facebook inbox search feature, Cassandra was
invented at Facebook. On July 2008, Cassandra was launched
by Facebook as an open-source project over Google code.

Cassandra is highly scalable, fault tolerant, consistent, and
reliable, delivering high performance in distributed database. It
has flexible data storage which can suit all possible data
formats including structured, semi- structured and unstructured
data. It has fast write speed without sacrificing the read
efficiency. Users can access Cassandra via its nodes using
Cassandra Query Language (CQL).

A. Cassandra overall structure

1) Data Model:
Table can be described using a key which is used to index

multi-dimensional map. Column families are made by
grouping columns. Simple and Super are the two types of
Column Families. Every Column consists of Name, Value and
Timestamp.

Fig. 2. Cassandra Data Model

1) System Architecture:

a) Partitioning: Ring topology is used for structuring

nodes logically. The node in the ring is being assigned by

hashed value of key related to the data partition. For backing

the ring composition hashing rounds off after specific value.

And to alleviate the highly loaded nodes it moves its position.

b) Replication: How the data is reproduced through the

nodes is expressed using replication factor. At N (replication

factor) nodes, each data item is being replicated.

i) Rack Unaware: The data at being replicated at N-1

successive nodes following its coordinator in this approach.

ii) Rack Aware: Zookeeper service is used which elects

the leader to rectify nodes their range for replication in this

approach.

iii) Datacenter Aware: This is analogous to Rack

Aware however the leader is being elected at Datacenter level

as a replacement for Rack level.

c) Cluster Management: Cluster Membership describes

how nodes are added and deleted to the cluster nodes. It also

describes how the communication between cluster nodes will

take place.

Gossip Protocols are used for periodic, pairwise and

inter node communication. Motivated from actual life rumours

these are network communication protocols are being

developed. Low cost factor is ensured by them delivering low

frequency communication. Nodes are selected randomly for

communication.

For e.g. – Node A requests to explore for a data pattern
Round 1 – Node A locally searches first, then

gossips with node B.
Round 2 – Node A and B then gossip with C and

D.
Round 3 – Nodes A, B, C and D then gossip with

4 other nodes and so on and so forth.

Round by round doubling makes protocol very robust.

Fig. 3. Typical Gossip between nodes

Scuttle Back, a gossip protocol is used for managing

the nodes in cluster. Variable ‘phi’ provides distinctive node

fail state which expresses by what means a node could fail

(suspicion level) instead of the simple binary values

(up/down).

There are two ways to add new node:

i) A random token is being allotted to the new

node which provides its ring position. To the

rest of the ring its location is gossiped.

ii) New ring node reads its configuration file to

contact its initial contact point.

36 PROCEEDINGS OF RICE. GOPESHWAR, 2017

New nodes are included manually by administrator via

CLI or Web interface provided by Cassandra.

VI. CASSANDRA PERFORMANCE TESTING

The test environment is as below. A Linux machine

illustrates Cassandra representation. Four machines are used to

fabricate the Cassandra cluster.

1) The Column Family Test:

The objective behind this experiment is to inspect and

understand the relativity of the column families and their

performance. In this experiment, 1000 queries are fired on

every column family. Results are recorded in Table II and III.

The result demonstrates that large memory column

family is backed by Cassandra, where speed of writing is

considerably enhanced compared to speed of reading.

Processing is slow for the input provided in case of single

node for single database. The processing of provided input

improves significantly in the multi-node environment for the

same single database in distributed environment.

TABLE II. SINGLE SERVER SCENARIO

 Single Server Scenario

No. of queries 1 10 100 500 1000

Reads/sec 10 94 156 147 170

Writes/sec 18 189 344 420 596

TABLE III. MULTI SERVER SCENARIO

 Four Server Scenario

No. of queries 1 10 100 500 1000

Reads/sec 25 111 139 143 155

Writes/sec 6 29 170 368 489

0

Fig. 4. Graphical representation for Cassandra Read Test in Single Server

Scenario

Fig. 5. Graphical representation for Cassandra Write Test in Single Server

Scenario

Fig. 6. Graphical representation for Cassandra Write Test in Multi Server

Scenario

Fig. 7. Graphical representation for Cassandra Read Test in Multi Server

Scenario

As per the graphs shown in Fig. 4 and Fig. 6, by using

Cassandra in multi-node environment over single node

environment, the timing to retrieve the outcomes from the

queries are less than any other existing NoSQL databases. In

this case only four servers are used.

In the case of write also as shown in Fig. 5 and Fig. 7,

the graph shows that Cassandra surpasses other databases for

insert operation in the case of multi-node for the identical

single database over distributed environment.

NAMES: A REVIEW OF NOSQL DATABASES AND PERFORMANCE TESTING 37

VI. CONCLUSION

As the data size in internet is increasing extensively,
NoSQL databases are used thus confirming to be a substitute
for the traditional relational databases to a definite limit. The
test result show that Cassandra improves its performance as the
number of cluster increases with increasing access speed.

Many applications today use both relational and NoSQL
database in combined format for resolving the problems in both
the approaches.

REFERENCES

[1] http://nosql-database.org/ [Online]

[2] Pragati Prakash Srivastava, Saumya Goyal, Anil Kumar, “Analysis of
Various NoSql Database”, 2015 International Conference on Green
Computing and Internet of Things (ICGCIoT)

[3] https://en.wikipedia.org/wiki/Key-value_database [Online]

[4] https://en.wikipedia.org/wiki/Document-oriented_database [Online]

38 PROCEEDINGS OF RICE. GOPESHWAR, 2017

