Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

On end-to-end approach for slice isolation in 5G networks. Fundamental challenges

, , , , , , ,

DOI: http://dx.doi.org/10.15439/2017F228

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 783792 ()

Full text

Abstract. There are several reports and white papers which attempt to precise 5G architectural requirements presenting them from different points of view, including techno-socio-economic impacts and technological constraints. Most of them deal with network slicing aspects as a central point, often strengthening slices with slice isolation. The goal of this paper is to present and examine the isolation capabilities and selected approaches for its realization in network slicing context. As the 5G architecture is still evolving, the specification of isolated slices operation and management brings new requirements that need to be addressed, especially in a context of End-to-End (E2E) security. Thus, an outline of recent trends in slice isolation and a set of challenges are proposed, which (if properly addressed) could be a step to E2E user's security based on slices isolation.


  1. CORDIS web page, http://cordis.europa.eu/
  2. Dynamic end-to-end network slicing for 5G, Nokia White Paper, 2016.
  3. Shimojo, T. et.al., “Future mobile core network for efficient service operation”, Proc. 1st IEEE Conf. on Network Softwarization (NetSoft), pp.1-6, 2015, http://dx.doi.org/10.1109/NETSOFT.2015.7116190.
  4. Herzog, U. et.al., “Quality of service provision and capacity expansion through extended-DSA for 5G”, Trans. Emerging Telecommunications Technologies, 27(9), pp.1250-1261, 2016, http://dx.doi.org/10.1109/Eu-CNC.2016.7561032.
  5. Nakao, A. et.al., “End-to-end Network Slicing for 5G Mobile Networks”, J. Inf. Processing, vol.25, pp.153-163, 2017, http://dx.doi.org/10.2197/ip-sjjip.25.153.
  6. View on 5G Architecture, 5G PPP Arch. Working Group, 2016.
  7. Bulakci, O., “Towards sustainable 5G Networks. Vision & Design Principles for New Horizons”, IEEE Vehicular Technology Conf., Boston 2015.
  8. Richart, M. et.al., “Resource Slicing in Virtual Wireless Networks: A Survey”, IEEE Trans. Network and Service Management, 13(3), pp. 462-476, 2016, http://dx.doi.org/10.1109/TNSM.2016.2597295.
  9. Abdulla, P.A., Cedergerg, J., Kaati, L., “Analyzing the Security in the GSM Radio Network Using Attack Jungles”, Proc. 4th Int. Symp. Leveraging Applications, ISoLA 2010, pp.60-74, Greece 2010, http://dx.doi.org/10.1007/978-3-642-16558-0 8.
  10. Yoo, T., “Network Slicing Architecture for 5G Network”, 7th Int. Conf. Information and Communication Technology Convergence, pp.1010-1014, IEEE, Korea 2016, http://dx.doi.org/10.1109/ICTC.2016.7763354.
  11. Ma, Z. et.al., “Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives”, Science China Information Sciences, 58(4), 2015, http://dx.doi.org/10.1007/s11432-015-5293-y.
  12. Peterson, L. et.al., “A blueprint for introducing disruptive technology into the Internet”, ACM SIGCOMM Computer Communication Review, 33(1), pp.59-64, 2003, http://dx.doi.org/10.1145/774763.774772.
  13. Chapman, C., Ward, S., Description of Network Slicing Concept, NGMN Alliance 2016.
  14. Li, Q. et.al., “End-to-end Network Slicing in 5G Wireless Communication Systems”, Proc. ETSI Workshop on Future Radio Technologies and Air Interfaces, pp.1-4, 2016.
  15. Li, Q. et.al., “An end-to-end network slicing framework for 5G wireless communication systems”, https://arxiv.org/abs/1608.00572 [cs.NI], 2016.
  16. 5G Americas White Paper: Network Slicing for 5G and Beyond, 2016.
  17. A vision of the 5G core, Ericsson 2016.
  18. Harel, R., Babbage, S., 5G security recommendations Package 2: Network Slicing, NGMN Alliance 2016.
  19. Viswanathan, A., Neuman, B.C., “A survey of isolation techniques”, Univ. Southern California, Inf. Sc. Ins., 2009.
  20. Applying SDN Architecture to 5G Slicing, Open Networking Foundation 2016.
  21. Del Piccolo, V. et.al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers”, IEEE Comm. Surveys and Tutorials, 18(4), pp. 2787-2821, 2016, http://dx.doi.org/10.1109/COMST.2016.2556979
  22. SDN security project, http://sdnsecurity.org/index.html.
  23. Yoon, Ch., Lee, S., “Attacking SDN Infrastructure: Are We Ready for the Next-Gen Networking?” BlackHat 2016.
  24. DELTA: A Penetration Testing Framework for Software-Defined Networks, Open Networking Foundation 2016.
  25. Lee, S. et.al, “Athena: The Network Anomaly Detection Framework for SDN”, IEEE/IFIP Int. Conf. Dependable Systems andNetworks, 2017, http://dx.doi.org/10.1109/DSN.2017.42
  26. Bhanage, G. et.al., “Virtual basestation: architecture for an open shared WiMax framework”, Proc. 2nd ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures, pp.1-8, ACM 2010, http://dx.doi.org/10.1145/1851399.1851401
  27. Kokku, R. et.al., “Cellslice: Cellular wireless resource slicing for active RAN sharing”, 5th Int. Conf. Communication Systems and Networks (COMSNETS), pp.1-10, IEEE 2013, http://dx.doi.org/10.1109/COMSNETS.2013.6465548
  28. Zaki, Y. et.al., “LTE wireless virtualization and spectrum management”, 3rd Joint IFIP Wireless and Mobile Networking Conf. (WMNC), pp.1-6, IEEE 2010, http://dx.doi.org/10.1109/WMNC.2010.5678740
  29. Zaki, Y. et.al., “LTE mobile network virtualization”, Mobile Networks and Applications, 16(4), pp.424-432, 2011, http://dx.doi.org/10.1007/s11036-011-0321-7
  30. Xia, L. et.al., “Virtual wifi: bring virtualization from wired to wireless”, ACM SIGPLAN Notices, 46(7), pp.181-192, 2011, http://dx.doi.org/10.1145/1952682.1952706
  31. Network Functions Virtualisation (NFV). Network Operator Perspectives on Industry Progress, ETSI NFV Whitepaper 3, 2014.
  32. Son, H.J., Yoo, Ch., “E2E Network Slicing Key 5G technology : What is it? Why do we need it? How do we implement it?”, Netmanias web page, 2015.
  33. The 5G Infrastructure Public Private Partnership web page, https://5g-ppp.eu/.
  34. ETSI GS NFV-IFA 009 V1.1.1 (2016-07) Network Functions Virtualisation (NFV); Management and Orchestration; Report on Architectural Options.
  35. ETSI NFV standards web page http://www.etsi.org/technologies-clusters/technologies/nfv/.
  36. Nejabati, R. et.al., “SDN and NFV Convergence a Technology Enabler for Abstracting and Virtualising Hardware and Control of Optical Networks”, Optical Fiber Comm. Conf. and Exhib. (OFC), 2015, http://dx.doi.org/10.1364/ofc.2015.w4j.6.
  37. Munoz, R. et.al., “Integrated SDN/NFV Management and Orchestration Architecture for Dynamic Deployment of Virtual SDN Control Instances for Virtual Tenant Networks”, J. Optical Comm. and Networking, 7(11), pp.B62-B70, 2015, http://dx.doi.org/10.1364/jocn.7.000b62.
  38. Contreras, L.M. et.al., “Orchestration of Crosshaul Slices From Federated Administrative Domains”, Eur. Conf. Networks and Comm. (EUCNC), pp.220-224, Athens 2016, http://dx.doi.org/10.1109/eucnc.2016.7561036.
  39. Zhou, X. et.al., “Network Slicing as a Service: Enabling Enterprises’ Own Software-Defined Cellular Networks”, IEEE Comm. Mag., 54(7), pp.146-153, 2016, http://dx.doi.org/10.1109/mcom.2016.7509393.
  40. Rost, P. et.al., “Mobile Network Architecture Evolution toward 5G”, IEEE Comm. Mag., 54(5), pp.84-91, 2016, http://dx.doi.org/10.1109/mcom.2016.7470940.
  41. Moens, H., De Turck, F., “Customizable Function Chains: Managing Service Chain Variability in Hybrid NFV Networks”, IEEE Trans. Network and Service Management, 13(4), pp.711-724, 2016, http://dx.doi.org/10.1109/tnsm.2016.2580668.
  42. Halpern, J., Pignataro, C., “Service Function Chaining (SFC) Architecture”, RFC 7665, IETF 2015, http://dx.doi.org/10.17487/rfc7665.
  43. Bari, Md.F. et.al., “Orchestrating Virtualized Network Functions”, IEEE Trans. Network and Service Management, 13(4), pp.725-739, 2016, http://dx.doi.org/10.1109/tnsm.2016.2569020.
  44. Stanik, A., Koerner, M., Kao, O., “Service-level agreement aggregation for quality of service-aware federated cloud networking”, IET Networks, 4(5), pp.264-269, 2015, http://dx.doi.org/10.1049/iet-net.2014.0104.
  45. Cherrier, S. et.al., “Fault-recovery and Coherence in Internet of Things Choreographies”, IEEE World Forum on Internet of Things (WF-IoT), pp.532-537, Seoul 2014, http://dx.doi.org/10.1109/wf-iot.2014.6803224.
  46. Mamatas, L., Clayman, S., Galis, A., “Information Exchange Management as a Service for Network Function Virtualization Environments”, IEEE Trans. Network and Service Management, 13(3), pp.564-577, 2016, http://dx.doi.org/10.1109/TNSM.2016.2587664.
  47. “Functional Network Architecture and Security Requirements”, 5G-NORMA Deliverable D3.1.
  48. Manzalini, A. et.al., “Towards 5G Software-Defined Ecosystems. Technical Challenges, Business Sustainability and Policy Issues,” IEEE SDN White Paper.
  49. 3GPP TR 23.799 V14.0.0 Study on Architecture for Next Generation System, 2016.
  50. An, X. et.al., “On end to end network slicing for 5G communication systems”, Trans. Emerging Tel. Tech., 28:e3058, http://dx.doi.org/10.1002/ett.3058.
  51. 5G systems - Enabling industry and society transformation, Ericsson White Paper, UEN 284 23-3244, 2015.
  52. Gutz, S. et.al., “Splendid Isolation: A Slice Abstraction for Software-Defined Networks”, Proc. 1st Workshop on Hot Topics in Software Defined Networks, pp.79-84, 2012, http://dx.doi.org/10.1145/2342441.2342458.