On the Use of Nature Inspired Metaheuristic in Computer Game
Piotr Andrzej Kowalski, Szymon Łukasik, Małgorzata Charytanowicz, Piotr Kulczycki
DOI: http://dx.doi.org/10.15439/2017F385
Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 29–37 (2017)
Abstract. This paper describes a new, metaheuristic-based approach of swarm intelligence techniques as applied in computer gaming: utilizing the Krill Herd Algorithm (KHA). In this work, KHA is employed to find a bots movement strategy in a computer racing game. The complete algorithm is implemented using a Unity Engine in C# language. Herein, the triggering of the metaheuristic optimization task was conducted by the way of a KHA internal parameter investigation. In this approach, the goal of the race (the KHA evaluation function) for both the human and computer player is to finish a lap in the shortest time possible.
References
- J. van Waveren, “The quake iii arena bot,” University of Technology Delft, 2001.
- X. Yang, Nature-Inspired Optimization Algorithms. London: Elsevier, 2014.
- D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989. ISBN 0201157675
- E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “Gsa: A gravitational search algorithm,” Information Sciences, vol. 179, no. 13, pp. 2232 – 2248, 2009. https://doi.org/10.1016/j.ins.2009.03.004 Special Section on High Order Fuzzy Sets. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0020025509001200
- X. S. Yang and S. Deb, “Cuckoo search via levy flights,” in 2009 World Congress on Nature Biologically Inspired Computing (NaBIC), Dec 2009. http://dx.doi.org/10.1109/NABIC.2009.5393690 pp. 210–214.
- G.-G. Wang, S. Deb, and L. Coelho, “Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems,” International Journal of Bio-Inspired Computation, 2015.
- Z. W. Geem, J. H. Kim, and G. Loganathan, “A new heuristic optimization algorithm: Harmony search,” SIMULATION, vol. 76, no. 2, pp. 60–68, 2001. http://dx.doi.org/10.1177/003754970107600201
- X. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, Mar. 2010. http://dx.doi.org/10.1504/IJBIC.2010.032124. [Online]. Available: http://dx.doi.org/10.1504/IJBIC.2010.032124
- S. Łukasik and P. A. Kowalski, “Fully informed swarm optimization algorithms: Basic concepts, variants and experimental evaluation,” in 2014 Federated Conference on Computer Science and Information Systems, Sept 2014. http://dx.doi.org/10.15439/2014F377 pp. 155–161.
- S. K. Panigrahi, A. Sahu, and S. Pattnaik, “Structure optimization using adaptive particle swarm optimization,” Procedia Computer Science, vol. 48, pp. 802 – 808, 2015. http://dx.doi.org/10.1016/j.procs.2015.04.218. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1877050915007279
- M. Dorigo and C. Blum, “Ant colony optimization theory: A survey,” Theoretical Computer Science, vol. 344, no. 2, pp. 243 – 278, 2005. http://dx.doi.org/10.1016/j.tcs.2005.05.020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0304397505003798
- X.-S. Yang and X. He, “Bat algorithm: Literature review and applications,” Int. J. Bio-Inspired Comput., vol. 5, no. 3, pp. 141–149, Jul. 2013. http://dx.doi.org/10.1504/IJBIC.2013.055093. [Online]. Available: http://dx.doi.org/10.1504/IJBIC.2013.055093
- D. Zou, J. Wu, L. Gao, and S. Li, “A modified differential evolution algorithm for unconstrained optimization problems,” Neurocomputing, vol. 120, pp. 469 – 481, 2013. https://doi.org/10.1016/j.neucom.2013.04.036 Image Feature Detection and Description. [Online]. Available: http://www.sciencedirect.com/ science/article/pii/S0925231213005717