Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 11

Proceedings of the 2017 Federated Conference on Computer Science and Information Systems

An algorithm for Gaussian Recursive Filters in a Multicore Architecture

, , ,

DOI: http://dx.doi.org/10.15439/2017F428

Citation: Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 11, pages 507511 ()

Full text

Abstract. Recursive Filters (RFs) are a well known way to approximate the Gaussian convolution and, due to their computational efficiency, are intensively used in several technical and scientific fields. The accuracy of the RFs can be improved by means of the repeated application of the filter, which gives rise to the so-called K-iterated Gaussian recursive filter. In this work we propose a parallel algorithm for the implementation of the Kiterated first-order Gaussian RF for multicore architectures. This algorithm is based on a domain decomposition with overlapping strategy. The presented implementation is tailored for multicore architectures and makes use of the Pthread library. We will show through extensive numerical test that our parallel implementation is very efficient for large one-dimensional signals and guarantees the same accuracy level of the sequential K-iterated first-order Gaussian RF.

References

  1. van Vliet, L.J., Young, I.T., Verbeek, P.W.. - Recursive Gaussian derivative filters. The 14 th International Conference on Pattern Recognition, pp. 509-514, http://dx.doi.org/10.1109/ICPR.1998.711192, 1998.
  2. Young, I.T., van Vliet L.J.. - Recursive implementation of the Gaussian filter. Signal Processing 44, pp 139-151, 1995.
  3. Cuomo, S., Farina, R., Galletti, A., Marcellino, L.. -An error estimate of Gaussian recursive filter in 3Dvar problem Federated Conference on Computer Science and Information Systems, FedCSIS 2014, art. no. 6933068, pp. 587-595, 2014. http://dx.doi.org/10.15439/2014F279
  4. Cuomo, S., Galletti, A., Giunta, G., Marcellino, L. . -Numerical Effects of the Gaussian Recursive Filters in Solving Linear Systems in the 3Dvar Case Study (2017) Numerical Mathematics, 10 (3), pp. 520-540. http://dx.doi.org/10.4208/nmtma.2017.m1528
  5. Galletti, A., Giunta, G.. -Error analysis for the first-order Gaussian recursive filter operator, 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), Gdansk, 2016, pp. 673-678. http://dx.doi.org/10.15439/2016F455
  6. Cuomo, S., De Pietro, G., Farina, R., Galletti, A., Sannino, G.. - A novel O(n) numerical scheme for ECG signal denoising Procedia Computer Science, 51 (1), pp. 775-784, 2015. http://dx.doi.org/10.1016/j.procs.2015.05.198
  7. Cuomo, S., De Pietro, G., Farina, R., Galletti, A., Sannino, G.. - A framework for ECG denoising for mobile devices PETRA 2015 ACM. ISBN 978-1-4503-3452-5/15/07, http://dx.doi.org/10.1145/2769493.2769560, 2015.
  8. Cuomo, S., De Pietro, G., Farina, R., Galletti, A., Sannino, G.. - A revised scheme for real time ECG Signal denoising based on recursive filtering, Biomedical Signal Processing and Control, 27, pp. 134-144, 2016. http://dx.doi.org/10.1016/j.bspc.2016.02.007
  9. Cuomo, S., Farina, R., Galletti, A., Marcellino, L.. - A K-iterated scheme for the first-order Gaussian Recursive Filter with boundary conditions Federated Conference on Computer Science and Information Systems, FedCSIS 2015, pp.641-647, 2015. http://dx.doi.org/10.15439/2015F286
  10. Triggs, B., Sdika M.. - Boundary conditions for Young-van Vliet recursive filtering. IEEE Transactions on Signal Processing, 54 (6 I), pp. 2365-2367, 2006.
  11. Chaurasia, G., Kelley, J.R., Paris, S., Drettakis, G., Durand, F., - Compiling High Performance Recursive Filters. Proceedings of the 7th Conference on High-Performance Graphics, pp 8594, 2015.
  12. Montella, R., Agrillo, G., Mastrangelo, D., Menna, M. A globus toolkit 4 based instrument service for environmental data acquisition and distribution (2008) High Performance Distributed Computing - Proceedings of the 3rd International Workshop on Use of P2P, Grid and Agents for the Development of Content Networks 2008, UPGRADE’08, pp. 21-27. http://dx.doi.org/10.1145/1384209.1384214
  13. Galletti, A., Giunta G., and Schmid G., A mathematical model of collaborative reputation systems International Journal of Computer Mathematics 89.17 (2012): 2315-2332.
  14. Cuomo, S., Michele, P.D., Piccialli, F., Galletti, A., Jung, J.E. IoT-based collaborative reputation system for associating visitors and artworks in a cultural scenario (2017) Expert Systems with Applications, 79, pp. 101-111. http://dx.doi.org/10.1016/j.eswa.2017.02.034
  15. S. Cuomo, A. Galletti, G. Giunta, L. Marcellino. A class of piecewise interpolating functions based on barycentric coordinates. Ricerche di Matematica, Springer, (2014).
  16. S. Cuomo, A. Galletti, G. Giunta, L. Marcellino. Piecewise Hermite interpolation via barycentric coordinates: In memory of Prof. Carlo Ciliberto. Ricerche di Matematica, Springer, (2015).
  17. S. Cuomo, A. Galletti, G. Giunta, A. Starace - Surface Reconstruction from Scattered Point via RBF Interpolation on GPU In Federated Conference on Computer Science and Information Systems, FedCSIS 2013, pp. 433–440 (2013)
  18. S. Cuomo, A. Galletti, G. Giunta, L. Marcellino - Reconstruction of implicit curves and surfaces via RBF interpolation In Appl. Numer. Math. (2016), http://dx.doi.org/10.1016/j.apnum.2016.10.016
  19. S. Cuomo, A. Galletti, G. Giunta, L. Marcellino. A novel triangle-based method for scattered data interpolation. Applied Mathematical Sciences,8 (133-136), pp. 6717-6724 (2014).
  20. Wells, William M. Efficient synthesis of Gaussian filters by cascaded uniform filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1986): 234-239.