
Using branching-property preserving Prüfer Code to

encode solutions for Particle Swarm Optimisation

Hanno Hildmann

Universidad Carlos III de Madrid (UC3M)

Av. Universidad, 30 - 28911 Leganés - Spain

Email: hanno@cypherpunx.org / hanno.hildmann@uc3m.es

Dymitr Ruta

Emirates ICT Innovation Centre (EBTIC)

P.O. 127788 Abu Dhabi, UAE

Email:dymitr.ruta@kustar.ac.ae

Dina Y. Atia

Khalifa University of Science and Technology

P.O. 127788 Abu Dhabi - UAE

Email: dina.atia@kustar.ac.ae

A. F. Isakovic

Khalifa Semiconductor Research Center (KSRC),

Khalifa University of Science and Technology

P.O. 127788 Abu Dhabi - UAE

Email: iregx137@gmail.com / abdel.isakovic@kustar.ac.ae

Abstract—In the area of applied optimisation, heuristics are
a popular means to address computational problems of high
complexity. Modelling the problem and mapping all variations of
its solution into a so-called solution space are integral parts of this
process. Representing solutions as graphs is common and, for a
special type of graph, Prüfer Code (PC) offers a computationally
efficient mapping (algorithms of Θ(n)-complexity are known) to
n−2 dimensional Euclidean space. However, this encoding does
not preserve properties such as e.g. locality and therefore PC has
been shown to be a bad choice for entire classes of problems.
We argue that PC does allow the preservation of some properties
(e.g. degree of branching and branching vertices) and that these
are sufficiently relevant for certain types of problems to motivate
encoding them in PC. We present our investigations and provide
an example where PC has been shown to be a useful encoding.

I. INTRODUCTION & OUTLINE

HEURISTICS (from the Greek ǫuσı́ρκω: “to find”, “to

discover”) are approaches that find or estimate good

solutions to problems, as opposed to reliably determining the

best one. For the more complex problems it is often impossible

to exhaustively check all possible solutions, motivating the

use of a heuristic. Furthermore, many problems require only

a certain quality of the solution, and investing resources in

improving a solution past this point does not add any benefit.

In one way or another, heuristics use some underlying

properties of the solution space to navigate it. This process

is iterative: heuristics identify acceptable solutions and then

continuously try to improve on them in some informed manner.

In order to be able to move from one solution to a better

one, there has to be some relation between them. Using this

relation enables the heuristic to estimate which alternatives to

consider (so as to avoid having to consider them all).

Modelling a problem and encoding its solutions (i.e.

the mapping into a domain) are important decisions in the

process. There are many ways to represent solutions and

we will only focus on one: graphs, and in our case, simple,

undirected, connected and acyclic graphs, commonly called

trees [5]. In §II we provide some background on trees

and discuss known complexity results as well as a specific

encoding that allows us to represent trees as unique sequences

of numbers: Prüfer Code [15].

There is evidence from the literature that mapping a tree to

Prüfer Code fails to preserve certain properties, which have

been shown to be important for a number of meta-heuristics

[10]. We take a closer look at which properties are indeed

preserved and then argue in §III that for a certain class of

problems the preserved properties are actually sufficient to

motivate the use of Prüfer Code. We support this in §IV by

referencing to our work, which successfully used Prüfer Code.

II. GRAPHS

A. Graphs and trees

A graph G is a pair G = (V,E) of two sets: the set

V = {v1, . . . , vn} of n vertices (which are also often referred

to as nodes or worlds) and the set E = {e1, . . . , em} of m

edges (often called lines or connections). Each edge ei is a

tuple of two vertices, representing the two vertices that this

edge connects (cf. [8], [3]). One sub-category of graphs are

connected graph without cycles (i.e. the number of edges is

n−1 for n vertices), commonly called trees [14]. Trees are

graphs in which any two vertices are connected to each other

by a finite path which can not contain cycles. Phrasing it

like this makes it intuitively clear why this type of graph can

represent a solution to e.g. decision trees or routing problems.

We distinguish vertices that are single end nodes (i.e. leafs

in the tree) and those that are not (i.e. branching points).

B. Complexities of graphs

Given a set of n vertices, [4] showed that the family of

different trees that can be constructed over this set has nn−2

members. This result is commonly known as Cayley’s Theorem

due to [5] (cf. [6]). The first combinatorial proof provided for

this theorem was provided by Prüfer [15] in 1918 [14] using

a mapping that represented trees with n vertices as strings of

length n − 2 (cf. §II-C). By showing that this set of strings

therefore had nn−2 members, Prüfer proved Cayley’s Theorem.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 429–432

DOI: 10.15439/2017F117

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 429

Algorithm 1 Encoding a tree-graph to Prüfer Code (cf. [13])

1: L← leaves of T
2: for i← 1 to (n− 2) do do:
3: v ← node removed from the head of L
4: PC [i]← neighbour of v
5: delete v from T
6: if deg(PC [i]) = 1 then
7: add PC [i] to L

If we restrict the branching factor for any vertex in the

tree to a constant k, we get k-ary trees, which have been

studied in the literature extensively [16], [9], [7]. The relation

between leafs (nl) and branching vertices nb in a k-ary tree

is nl = nb(k − 1) + 1 [16].

C. Encoding graphs as Prüfer Code (PC)

In addition to providing a proof to [5], Prüfer also provided

us with an efficient mechanism to encode trees into sequences

of n−2 integers (and back). Such n−2 dimensional Euclidean

spaces are known to work well with swarm and evolutionary

search algorithms and are therefore of potential interest to us.

Fig. 1. The Prüfer codes similar to [2,2,3,3]. All variations (b) to (i) differ
from the original string (a) in only one digit and the difference between that
digit and the original is |1|; the root vertex v3 is denoted by a double circle.

The specific way in which Prüfer Code (PC) is generated

can result in fundamentally different trees being represented

as very similar PCs [10] (see Figure 1, above). This is one of

the likely sources of problems in the context of using PCs for

heuristics, and we address this issue in in §III.

1) Algorithms: PC encoding and decoding follows a simple

linear algorithm (cf. Alg. 1, Alg. 2, respectively), details of

which can be found in [12]. From e.g. [13] we know that

there are Θ(n)-complexity algorithms (i.e. algorithms that can

perform the translation either way in linear time) to do this.

Note that Alg. 1, above, assumes that the leaves are stored

in a list (initially sorted in ascending order).

2) Solution space: Let’s consider trees with n nodes

(labelled 1 to n), resulting in PCs with n−2 positions. We use

PC = {pc1, . . . , pcn(n−2)} to denote the set of all possible PC

that meet this description. Clearly, any PC can be mapped into

Algorithm 2 Decoding Prüfer Code to a tree-graph (cf. [13])

1: L← nodes that do not appear in the Prüfer Code PC
2: for i← 1 to (n− 2) do do:
3: v ← node removed from the head of L
4: add edge {v, PC [i]} to T
5: if i is the rightmost position of v in PC then
6: add v to L
7: v ← node removed from the head of L
8: add edge {v, PC [n− 2]} to T

a subset of N+ by reading individual pci as a number (e.g. for

n = 7: this is {11111, . . . , 26416, 26417, 26421, . . . , 77777}).

We use a PC’s position in this set as the its ID (see example).

When exploring the solution space with heuristics we want

there to be some correlation between a solution’s location that

space and its performance value. If we require that similar PCs

represent trees encoding families of solutions (with regard to

certain properties), we have to consider how we define similar.

Example: Let’s consider encoding cooking recipes as trees

(representing the order and inter-dependency of individual

steps, started with step v1). For a recipe with 7 steps, this

can be represented as a tree with 7 nodes (of which there

are exactly 16807 unique variations), each corresponding

to exactly one PC with 5 positions. If the interpretation

of similar is numerical distance between two codes (e.g.

24617 is followed immediately by 26421, cf. Figure 2

bottom row) then very similar PCs encode substantially

different trees (see Figure 2). As pointed out in [10] this will

make PC a sub-optimal choice for interpretations of similarity.

While the variations shown in Fig. 2 differ, they do not

differ dramatically. This loose similarity was already enough

to produce results of sufficient quality when we used PC to

encode solutions representing cable diagrams [1], [2], [11].

III. NAVIGATING PRÜFER CODE

A. A property-preserving mapping of PC to a solution space

The way trees are constructed from PC (cf. Alg. 2) implies

that the connectivity of a vertex (the number of vertices it is

connected to) is equal to the number of its occurrences in the

PC + 1. This also means that not occurring vertices are leafs.

However, the positions of the integers matter, and exchang-

ing two integers can result in more than the exchange of the

corresponding vertices in the tree (see the example in Fig. 2).

1) Filtering PC: Using the above insight we look at certain

filters for PCs that characterise properties of interest to us.

These filters, are defined with respect to a specific pci ∈ PC:

• Ipci , the set of all different integers that occur in pci
• I+pci , the ordered list of all the occurring integers

Example: for trees with n = 5, PC = {[1, 1, 1], . . . , [5, 5, 5]};

for e.g. pci = [1, 2, 1]: I[1,2,1] = {1, 2} and I
+
[1,2,1] = {1, 1, 2}.

430 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig. 2. Variations on pc4269. An original graph (middle) is flanked by
variations: (first row) differing in one position and just by 1 from the original
integer (solution space (n−2)-dimensional) or (second row) the previous and
the next ID (solution space: N+); the root vertex is assumed to be v1.

2) Similarity classes: We use these filters to define the

similarity classes PCI and PCI+ , i.e. the subsets of PC where

all members pcj have the same Ipcj or I+pcj , respectively:

• PCIpci
, the subset of PC in which members are con-

structed using only the integers found in pci, and

• PC
I
+
pci

, where all members have exactly the same integers

as pci, but not necessarily in the same order.

∀pcj ∈ PCIpci
: Ipci = Ipcj and ∀pck ∈ PC

I
+
pci

: I+pci = I+pck

with pci ∈ PCIpci
, pci ∈ PC

I
+
pci

and PC
I
+
pci

⊂ PCIpci
.

Example: for I[1,2,1] = {1, 2} and I
+
[1,2,1] = {1, 1, 2} we

get: PCI[1,2,1]
= {[1, 1, 2], [1, 2, 1], [1, 2, 2], [2, 1, 1], [2, 1, 2],

[2, 2, 1], [2, 2, 2]} and PC
I
+
[1,2,1]

= {[1, 1, 2], [1, 2, 1], [2, 1, 1]}.

3) Distance: To create - individually for each pci - relative

pci-solution spaces based on Ipci or I
+
pci

we need to define

a distance between pci and any pcj in PCIpci
and PC

I
+
pci

.

Clearly the distance to itself (pcj = pci) is zero.

We may either want a to define a single neighbour, a certain

number of neighbours or sets of neighbours (potentially of

varying sizes). This will directly impact the dimensionality

of our solutions space: with a single neighbour we can

use N
+ as solution space, otherwise our solution space is

n-dimensional or, in case of sets, of varying dimensionality.

After defining a function to determine either a fixed number

or a set of immediate neighbours of pci we can calculate the

distance δ(i, j) between any two pci and pcj as the shortest

path connecting these two through their neighbours.

Example: for both PCIpci
and PC

I
+
pci

neighbourhood could

(the choice is problem specific) be defined as, e.g.:

• the element in the respective set that is numerically the

closest to pci (reading e.g. [1, 3, 2, 4] as 1324), or

• all those elements that are created by exchanging two

neighbouring digits of the pc, e.g. for pci = [1, 2, 3, 4]
this would be [2, 1, 3, 4], [1, 3, 2, 4] and [1, 2, 4, 3].

B. Motivation

When optimising cabling structures for e.g. distributed

antenna systems or routing network trees, the number of used

splitters or routers (corresponding to branches in the tree) is

an important factor as hardware plays a major role in the

overall cost. In problems of this type constraints are commonly

imposed on all paths from the root to the leaf nodes of the

trees (e.g. power attenuation due to cable length which must

not exceed a certain value); due to this variations over a fixed

set of routers or splitters need to be explored.

On the other hand, having identified nodes in the network

that exhibit high potential to become branches we want to

consider changing their branching factors (i.e. the equivalent

of replacing a splitter with a larger or a smaller one).

Specifically, our subsets of PC allow us the following:

1) ∀pci ∈ PC
I
+
pcoriginal

: pci preservers the number of

branching nodes, their branching degree as well as

which node has how many branches. Only the specific

allocation of leafs to these branches changes, as well as

how these branching nodes are connected to each other.

2) ∀pcj ∈ PCIpcoriginal
: contrary to the above, pcj does not

ensure that the number of nodes with a certain branching

degree stays the same, i.e. while the branching nodes do

not change, their degree might, as does (as above) which

leafs / other branching nodes they connect to.

3) In addition to the two above, we can explore variations

on PCIpcoriginal
and PC

I
+
pcoriginal

by replacing all oc-

currences of an integer with one that does not occur in

the original, or by simply adding or removing integers.

As shown in Figure 1, these are more dramatic changes.

HANNO HILDMANN ET AL.: USING BRANCHING-PROPERTY PRESERVING PRUEFER CODE TO ENCODE SOLUTIONS 431

IV. PROOF OF CONCEPT APPLICATION

Despite the claims made in [10] we successfully used Prüfer

Code encoding to optimise cabling to power indoor antenna

systems for large buildings [1], where small instances of

n = 20 already have 2020−2 = 2.62×1022 possible connection

trees, (cf. Figure 3). Our work, tested for problems of up to

100 floors, showed that using Particle Swarm Optimisation

obtained good solutions in short time (minutes)1. We also

used Genetic Algorithms (GA) which, although inferior to

PSO, performed well, indicating that using PC was a feasible

approach. Cf. [2] for an overview over the results.

Fig. 3. An example solution for the Distributed Antenna Cabling Problem
[1], [2], [11]. The objective is to connect all floors (and antennas on each
floor) using splitters and cables, subject to power constraints imposed in the
splitters and the antennas. The choice of branching nodes (and their degree)
is a primary factor in this problem, making Prüfer Code a useful encoding.

A performance analysis of the algorithm showed that PSO

converges towards good solutions. This is suggested by the

fact that stagnating improvement over previous generations

indicates approaching the best expectable solution (cf. Fig. 4).

The argument is straight forward: if our exploration through

PC-space were entirely random (and thus void of beneficial

similarities) we would expect that the potential for finding

improved solutions increased with additional searches, while

the graph plotted in Figure 4 indicates the opposite.

V. CONCLUSION

Our investigations and the suggestions put forward in this

paper do not refute the claims made in [10]. Instead, they are

to be understood as an addition, in the sense that the we have

identified a class of problems for which the encoding of trees

in PC is beneficial. Specifically, when using trees to represent

(a) variations on the branching of a tree (both in identifying the

branching nodes we well as their degree of branching) and (b)

the allocation of leaf nodes to branching nodes, Prüfer Code

has proven to be a useful encoding. We intend to investigate

this further by applying PC to other problems in the future.

1For comparison, a brute force search for n = 8 required 15 minutes of
CPU time; our approach returned the same optimal result after 15 seconds.

Fig. 4. The probability of finding a better solution plotted against the number
of PSO generations resulting in unchanged best solution quality.

There have been other investigations into locality properties

of PC (e.g. [14]) suggesting that the general results of [10]

may not be all there is to PC. We have additional conjectures

about this, which would require more space here and further

investigations, and are outside the scope of this short paper.

REFERENCES

[1] D. Y. Atia. Indoor distributed antenna systems deployment optimization
with particle swarm optimization. M.Sc. thesis, Khalifa University of
Science, Technology and Research, 2015.

[2] D. Y. Atia, D. Ruta, K. Poon, A. Ouali, and A. F. Isakovic. Cost effective,
scalable design of indoor distributed antenna systems based on particle
swarm optimization and prufer strings. In IEEE 2016 IEEE Congress

on Evolutionary Computation, Vancouver, Canada, July 2016.
[3] P. Blackburn, M. deRijke, and Y. Venema. Modal Logic. Cambridge

University Press, 2001.
[4] C. W. Borchardt. Über eine Interpolationsformel für eine Art sym-

metrischer Funktionen und über deren Anwendung. In Math. Abh. Akad.

Wiss. zu Berlin, pages 1–20. Berlin, 1860.
[5] A. Cayley. On the theory of the analytical forms called trees. Philo-

sophical Magazine, 13:172–6, 1857.
[6] A. Cayley. A theorem on trees, volume 13 of Cambridge Library

Collection - Mathematics, pages 26–28. Camb. Univ. Press, July 2009.
[7] S.-H. Cha. On complete and size balanced k-ary tree integer sequences.

Int. J. of Applied Mathematics and Informatics, 6(2):67–75, 2012.
[8] R. Diestel. Graph Theory. Elect. library of mathematics. Springer, 2006.
[9] S. K. Ghosh, J. Ghosh, and R. K. Pal. A new algorithm to represent

a given k-ary tree into its equivalent binary tree structure. Journal of

Physical Sciences, 12:253–264, 2008.
[10] J. Gottlieb, B. A. Julstrom, G. R. Raidl, and F. Rothlauf. Prüfer

numbers: A poor representation of spanning trees for evolutionary
search. In Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2001), pages 343–350, San Francisco, California,
2001. Morgan Kaufmann Publishers.

[11] H. Hildmann, D. Y. Atia, D. Ruta, K. Poon, and A. F. Isakovic. Nature-

Inspired Optimization in the Era of IoT: Particle Swarm Optimization

(PSO) applied to Indoor Distributed Antenna Systems (I-DAS), chapter
tbd, page tbd. Springer, 2018 (forthcoming).

[12] B. A. Julstrom. Quick decoding and encoding of Prüfer strings:
Exercises in data structures, 2005.

[13] P. Micikevičius, S. Caminiti, and N. Deo. Linear-time algorithms for
encoding trees as sequences of node labels, 2007.

[14] T. Paulden and D. K. Smith. Developing new locality results for the
Prüfer Code using a remarkable linear-time decoding algorithm. The

Electronic Journal of Combinatorics, 14(1), August 2007.
[15] H. Prüfer. Neuer Beweis eines Satzes über Permutationen. Archiv der

Mathematik und Physik, 27:742–744, 1918.
[16] P. V. Ramanan and C.L. Liu. Permutation representation of k-ary trees.

Theoretical Computer Science, 38:83 – 98, 1985.

432 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

