

Abstract — Contemporary tools aimed at information system
(IS) development often use models to generate system
implementation. Starting from an IS model, these tools
commonly generate database implementation schema as well as
code for generic CRUD operations of business applications. On
the other hand, at the level of platform-independent models
(PIMs) there is a lack of support for specification of more
complex functionalities associated with events. In this paper,
we present an approach aimed at specification of events at the
level of PIMs. We introduce new concepts to describe context
in which an event may occur, while we use our IIS*CFuncLang
language to define event business logic. We also developed
adequate transformations to generate executable program code
from these specifications.

I. INTRODUCTION

IGNIFICANT efforts have been invested into the
research of approaches and tools, aimed to completely,

or partially, automate the IS development process. In these
approaches, models play a key role in the IS development
process [1]. Usually, a model is transformed into (i) a
database implementation schema and (ii) program code of
business applications performing simple CRUD (create,
retrieve, update, and delete) operations over the generated
database [2]. Beside these typical functionalities, business
applications usually include more complex functionalities,
i.e., business logic, that is specific for the application
domain. For example, such application-specific
functionalities include complex calculation and validation
tasks, series of database operations triggered by an event,
etc.

S

A similar classification of application functionalities may
be found in [3], where authors classify application program
code as: (i) generic; (ii) schematic; and (iii) individual.
Generic and schematic program code is common for various
applications domains and has patternable structure.
Individual program code is specific for an application, and it
is hard to generate it from such a model [3]. The approaches
and tools aimed at the IS development, support modeling of
typical functionalities as well as generation of program code
for these functionalities. Unfortunately, modeling of
application-specific functionalities associated with events,

The research presented in this paper was partly supported by Ministry of
Education, Science and Technological Development of Republic of Serbia,
Grant III-44010.

and the generation of appropriate program code often is not
supported by these approaches and tools. Manual
customization of generated program code is used for
implementation of these functionalities. In order to formally
specify business logic of application-specific functionalities
at the level of platform-independent models (PIMs) we have
developed a domain-specific language (DSL) named
IIS*CFuncLang [2]. Research efforts presented in this paper
are extension of our previous work devoted to a formal
specification of application-specific functionalities ([4]).

In the paper we will present an approach for modeling
application-specific functionalities associated with IS
events. This approach is aimed at specifying IS events at the
abstraction level of PIMs. An event specification consists of
two parts: (i) business logic that has to be executed upon
event occurrence, and (ii) context in which the event may
occur. For the specification of business logic we use the
IIS*CFuncLang language. In order to formally specify an
event context we introduce a new PIM concept named
Event. Using this concept a designer may specify event
properties such as event source, an action that trigger the
event execution, and level that the event is handled at. Also,
we have developed algorithms aimed at transformation of
event specifications into executable program code. In this
way we generate complete program that implements
application-specific functionalities associated with events.

II.FUNDAMENTALS

Commonly, the application-specific business logic is
executed upon the occurrence of an event. Therefore,
specification of events is an important part of an IS model.
We analysed several approaches and tools aimed at IS
modeling and code generation, and in the most cases,
specification of events is only partially allowed at the PIM
level. Business logic for an event is specified at the lower
abstraction level by amending the generated program code.
This approach may raise several concerns such as
portability, operational maintenance, and synchronization
between generated and hand-written program code [2]. Also,
a developer must possess expertise in the target programing
language and platform services. In our approach IS events
are completely specified at the abstraction level of PIMs,
and complete program code is generated using the

An Approach for Modeling Events in Information Systems

Aleksandar Popović
University of Montenegro, Faculty

of Science, Podgorica,
Montenegro

Email: aleksandarp@rc.pmf.ac.me

Ivan Luković, Vladimir Dimitrieski
University of Novi Sad, Faculty of

Technical Sciences, Novi Sad, Serbia
Email: {ivan, dimitrieski}@uns.ac.rs

Verislav Đukić
Djukic Software GmbH,

Nürnberg, Germany
Email: info@djukic-soft.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 707–710

DOI: 10.15439/2017F120

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 707

transformation algorithms. In this way, generated program
code does not require additional customization, which may
help in overcoming aforementioned problems caused by
amending generated program code. A designer does not
need to be familiar with a target language nor target
platform services. Also, it is easier to achieve portability
since emergence of a new platform or a target language does
not require customization of the generated program code.
Only new transformation algorithms for the platform need to
be implemented. Furthermore, usage of DSLs instead of
manual writing of code in a general-purpose programing
language (GPL) brings additional benefits as it is discussed
in [5].

For the practical verification of our approach we have
chosen the IIS*Case tool ([6]). Starting from PIMs,
IIS*Case provides generation of a database implementation
schema for various relational database management systems
(RDBMSs) as well as executable business applications and
transaction programs. However, until now this tool did not
provide modeling of application-specific functionalities
associated with events. IIS*Case is an open source tool, and
the authors of the paper are actively involved in its
development.

A.IIS*CASE PRELIMINARIES

At the abstraction level of PIMs, IIS*Case currently
provides conceptual modeling of database schemas and
business applications of an IS. Starting from such PIM
models as a source, a chain of transformations is performed
so as to obtain executable program code of business
applications and database SQL/DDL scripts for a selected
target platform ([7], [8]).

The form type is a central concept for design and
integration of database schemas in the IIS*Case tool. It
generalizes document types, i.e. screen forms used for
communication with an IS. Each form type is a named tree
structure, whose nodes are called component types. In the
transformation process a component type will be used as a
starting point for generation of both screen forms and
database tables. Analogously, attributes in component types
are mainly used as a source for generation of columns in
database tables, as well as input and output fields in screen
forms. The component type and attribute are amended with
new concepts in order to formally specify events. These new
concepts are described in detail in Section 3

B.IIS*CFUNCLANG

The IIS*CFuncLang language is a textual DSL aimed at
specification of an application-specific business logic [2]. In
our approach we use this language to define business logic
associated with events. In this section we present the main
concepts of IIS*CFuncLang that are important for
specification of events.

IIS*CFuncLang includes commands specific for the
domain of database applications, such as commands for
performing operations over database records, commands for
updating properties of screen forms, etc. In addition to the
commands from the concrete domain of business

applications, the language includes concepts from GPLs,
such as control-flow statements, variable and array
declarations, various operators etc. In this way, when some
application-specific functionality cannot be described with
domain concepts a designer may use less abstract concepts
from GPLs. In Listing 1, an example of an IIS*CFuncLang
function is presented. The function checks if the input
parameter is an empty string, and in that case reports an
error and aborts the transaction.

FUNCTION ValidateName(In1 STRING)
RETURNS BOOLEAN
VAR
i INT;

END_VAR
BEGIN
IF (Len(In1) = 0) THEN
i := ShowErrorMessage('Error!!!');
signal(abort_trigger);
RETURN FALSE;

ELSE
RETURN TRUE;

ELSE;
END

Listing 1 An example of IIS*CFuncLang function

The IIS*CFuncLang execution semantics is based on the
interpreter approach. The compiler transforms
IIS*CFuncLang specifications into intermediate code. The
intermediate code is similar to Java byte-code, and it is
prepared for interpretation. Also we have developed
transformation from IIS*CFuncLang specifications to SQL
program code for database triggers. This approach is
suitable when some application-specific functionality has to
be implemented at the level of a RDBMS.

Each event is associated with one IIS*CFuncLang
function. When event is handled at the level of business
applications, then the compiler generates intermediate code
for the function. The interpreter is embedded into the
business application. Upon the event occurrence within
system, business application starts interpreter that executes
intermediate code for the event function. The interpreter
returns control to the business application after code
execution. If event is handled at the level of database server
then appropriate database triggers are generated and
deployed to the target server.

III. EVENTS

Frequently, an application-specific functionality is
executed when an event occurs within a system. In order to
formally describe such a scenario, we introduce a concept
named Event. Each event has the following attributes: (i)
source, (ii) IIS*CFuncLang function defining business logic,
(iii) event handling level, and (iv) type.

An event source may be exactly one instance of the
following concepts: form type, component type, or attribute
in a component type. Let’s suppose that a form type or a
component type is selected as an event source. Staring from
a form type or a component type specification, the code
generator creates screen forms and database tables. The

708 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

event business logic will be executed when appropriate
action is performed over the generated screen form (e.g.,
mouse clicked), or over the database table (e.g., a record is
inserted).

There are three levels of event handling: (i) the database
server level, (ii) the application server level, and (iii) the
client application level. If an event is handled at the level of
a database server, then a function associated with the event
will be transformed into the PL/SQL program code of
database triggers. Currently, we provide generation of
program code aimed to be executed by Oracle RDBMS. A
generation of program code for other RDBMSs is a matter
of further research. If an event is handled at the level of an
application server or a client application, then intermediate
code will be generated as described in the previous section.

The event type determines the type of action that triggers
the event. It includes typical software event types common
for various programming environments, such as mouse
events, keyboard events, and events over database tables and
columns. The set of allowed event types has more that forty
elements and it will be presented in detail in the rest of the
section.

A.EVENTS IN COMPONENT TYPE ATTRIBUTES

Each attribute in a component type may be associated
with a set of events. There are events, such as Mouse

Clicked, Key Pressed, and Focus gained, that are only
handled at the client application level. They are activated
when a user performs appropriate operations mouse over the
screen form fields generated for the attribute that the event is
associated to. Events such as After Update Record and
Before Update Record are activated before and after the
update operation is performed over the database column
generated for the attribute to which the event is associated.
These types of events are only handled at the database
server level.

B.EVENTS IN COMPONENT TYPES

Component type specifications are used as a starting point
for the generation of screen forms and database tables. We
extended this concept so a designer may associate set of
events to each component type. These events may be
divided into two categories.

Events such as After Update Record and Before Update

Record belong to the first category. They may be handled at
the database server, client application or application server
level. If event is handled at the database server level then the
generated trigger will be activated when appropriate
operation is performed over the database table generated for
the component type to which the event is associated. When
the event is handled at the client application level, then it
will be activated when a user presses the Save button in the
screen form generated for component type to which the
event is associated.

The second category includes events related to the typical
software events performed over screen forms, e.g., mouse
clicked, focus gained, the Save button pressed, etc. These
events are only handled at the client application level.

C.EVENTS IN FORM TYPES

We amended the form type concept with list of events.
These events are related to the screen forms generated for
the form type. There are two events that belong to this
category: On Open Form, and On Close Form. These types
of events are only handled at the client application level.
Events are activated when the screen form generated for the
form type is opened or closed.

IV. USE CASE

In this section we will describe a use case from the
application subsystem for university administration that we
have developed using IIS*Case. In order to specify the
application subsystem, we defined two form types with the
following component types: (i) DEPARTMENT(DeptId,
DepName), and (ii) STUDENT(Sid, Name, DateOfBirth,
Status). Beside typical functionalities, the user requirements
also included the following: (i) department name must be
non-empty string, and (ii) if a student status is changed to
part-time, i.e., value of the Status attribute is set to 'PT', all
statuses of his or her enrolments must be changed
accordingly.

In order to realize these requirements, two new events
are defined. The first one is associated with the Department

component type, and it is activated before a new record is
inserted into the database table generated for the component
type. The second is defined for the Status attribute in the
STUDENT component type, and it is activated before an
update operation is performed over the database column
generated for the Status attribute. Business logic of events is
defined by the functions presented in Listing 1, and Listing
2. If the event is handled at the database server level, then
PL/SQL program code will be generated. Generated code
consists of two parts. The first part is a package
implementation containing a function generated from the
function defining business logic. The second part contains a
database trigger. In the trigger header it is specified that is
the trigger is activated before each update of a row, or
before each update of the appropriate attribute. The trigger
body is rather simple, including only invocation of the
generated function from the package.

Let's assume that the event should be handled at the client
application level. In this case, generated intermediate code
and the interpreter are embedded into the generated business
application. Also, the business application is extended in
order to include an event handler listening the specified
event, i.e., a record is updated when a user presses the Save

button. When the event occurs within system the event
handler invokes the interpreter to execute the intermediate
code. The interpreter returns result and various execution
statuses to the business application. Based on the result and
statuses, the business application determines whether the
operation will be aborted or committed. For example,
IIS*CFuncLang provides SIGNAL command that informs
the execution environment about specific state of the
execution. If this command is executed with the
abort_trigger argument, then the business application
should abort the current operation.

ALEKSANDAR POPOVIĆ ET AL.: AN APPROACH FOR MODELING EVENTS IN INFORMATION SYSTEMS 709

FUNCTION UpdateStatuses(Sid INT, Status
String)
RETURNS INT
VAR
RES INT;

END_VAR
BEGIN
IF Status == 'PT' THEN
RES := Execute_NonQuery('update ENROLLMENT

set Status=\'PT\' where Sid=' ||
To_String(Sid));
return RES;

END_IF;
END

Listing 2 An example of IIS*CFuncLang function

V.RELATED WORK

Nowadays, many commercial tools allow PIM modeling
of database schemas and ISs. We analysed tools that also
provide modeling of application-specific functionalities
associated with events. Usually, these tools, such as
IntegraNova Modeler ([8]) and SOLoist ([10]), provide only
partial specification of events is at a level of PIMs, while
business logic is implemented by customizing generated
program code by means of a target language. Potential
problems with this approach are already discussed in the
Section 1, such as synchronization of generated and hand-
written program code. However, we propose a specialized
language and concepts to fully specify events at the level of
PIMs. Also, we provide adequate transformations for
generating a complete program that implement business
logic for events. Such a generated program code does not
require additional customization.

Executable UML (xUML) is an approach aimed at
creating models detailed enough to enable generation of
complete system implementation [11]. Object Management
Group (OMG) introduced an action language in order to
allow specification of system procedural behaviour using
algorithmic concepts. This language includes concepts for
specification of system events, such as event, signal, input
and output pins etc. In our approach, we provide number of
high-level commands from the domain of business
applications, such as commands for aborting transactions,
executing queries, and updating GUI properties.

VI. CONCLUSION

In this paper we presented an approach aimed at complete
specification of IS events at the level of PIMs. During the

research we have also identified several directions for future
research. We plan to extend the set of allowed event types.
For example, introduction of the Value Change event type
will allow a designer to specify actions that will be executed
after each change of input fields in generated screen forms.
A future research will encompass the development of a new
group of commands that will act as a query language over
PIM concepts, such as form type and component type.
Additionally, we intend to transform such commands into
SQL program code aimed to be executed over various
RDBMs.

REFERENCES

[1] D.S. Frankel, “Model Driven Architecture: Applying MDA to
Enterprise Computing”, Wiley Publishing Inc., 2003.

[2] A. Popović, V. Dimitrieski, I. Luković, V. Đukić, “A DSL for
modeling application-specific functionalities of business
applications”, Computer Languages, Systems & Structures
(COMLAN), Elsevier Science Publishers B. V., DOI:
10.1016/j.cl.2015.03.003, 2015 .

[3] T. Stahl, M. Völter, “Model-Driven Software Development:
technology, engineering, management”, John Wiley & Sons Inc,
Hoboken, USA, ISBN: 0-470-02570-0, 2006.

[4] I. Luković, A. Popović, J. Mostić, S. Ristić, “A Tool for Modeling
Form Type Check Constraints and Complex Functionalities of
Business Applications“, Computer Science and Information Systems
(ComSIS), Consortium of Faculties of Serbia and Montenegro,
Belgrade, Serbia and Montenegro, ISSN: 1820-0214, Vol. 7, No. 2,
2010, pp. 359-385.

[5] M. Mernik , J. Heering, M.A. Sloane, “When and How to Develop
Domain-Specific Languages“, ACM Computing Surveys (CSUR),
Association for Computing Machinery, USA, Vol. 37, No. 4, 316-344.
2005

[6] I. Luković, P. Mogin, J. Pavicević, S. Ristić, “An Approach to
Developing Complex Database Schemas Using Form Types”,
Software: Practice and Experience, John Wiley & Sons Inc,
Hoboken, USA, ISSN: 0038-0644, Published Online, May 29, 2007,
DOI: 10.1002/spe.820

[7] S. Aleksić, I. Luković, P. Mogin, M. Govedarica, “A Generator of
SQL Schema Specifications”, Computer Science and Information
Systems (ComSIS), Consortium of Faculties of Serbia and
Montenegro, Belgrade, Serbia, ISSN: 1820-0214,
DOI:10.2298/CSIS0702081A, Vol. 4, No. 2, 2007, pp. 79-98.

[8] I. Luković, V. Ivančević, M. Čeliković, S. Aleksić, “DSLs in Action
with Model Based Approaches to Information System Development”,
in the book: Formal and Practical Aspects of Domain-Specific
Languages: Recent Developments, IGI Global, USA, 2013, ISBN:
978-1-4666-2092-6, DOI: 10.4018/978-1-4666-2092-6, pp. 502-532.

[9] IntegraNova Modeler, Available on: http://www.integranova.com/
[10] SOList4UML documentation, available at

http://www.soloist4uml.com/soloist-tutorial
[11] Milićev D., Model-Driven Development with Executable UML, John

Wiley and Sons, July 2009, ISBN 9780470481639

710 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

