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∗Andato GmbH & Co. KG, Ehrenbergstraße 11, 98693 Ilmenau, Germany. tommy.baumann@andato.com
†Toll Collect GmbH, Linkstraße 4, 10785 Berlin, Germany.

Abstract—Looking at the end-to-end processing, typical
software-intensive systems are built as a system-of-systems where
each sub-system specializes according to both the business and
technology perspective. One challenge is the integration of all
systems into a single system – crossing technological and organi-
zational boundaries as well as functional domains. To facilitate
the successful integration we propose the use of simulation models
in parallel to the existing software engineering procedures. As
an example we look at the German tolling system for heavy
goods vehicles (HGVs) – a liability-critical system consisting of
some 60 sub-systems including a fleet of more than 1 000 000 on-
board units deployed in the HGVs. Since its start in 2005 the
system regularly undergoes changes and updates. To mitigate the
associated costs and risks we developed a microscopic discrete
event simulation (DES) model of the tolling system and use it to
support both the design of planned changes and the monitoring
of the day-to-day operations. The model includes the dynamic
aspects of the tolling system and HGVs interacting with the
system. In the article we discuss the use of realistic simulation
models as part of the system design process. Since simulations
are heavily used by the design process it is called Simulation
Driven Development (SDD).

I. INTRODUCTION

Historically, software development focused on standalone

systems [1] and even there a projects’ success was far from

guaranteed [2]. Taking these approaches to build interacting

systems bears a high risk of inadequate integration of the

various systems into a coherent end-to-end system. Of course,

problems with the integration of systems tend to surface very

late in the software development process with a correspond-

ingly large impact on the schedule and the resources needed.

A. Complexity Challenge

Modern technical and socio-technical systems consist of a

large number of distributed components and are characterized

by architectural complexity, dynamic interactions and com-

plex interdisciplinary functionality. The continuing technical

advances – e.g. in the field of electronics, where a 50%

increase annually can be assumed – are one essential driver but

also the emerging systems-of-systems accelerate the growth

in complexity. In addition the requirements for these systems

evolve rapidly, driven by end-user demands and non-functional

aspects (e.g. in safety, accessibility and comfort). However,

the efficiency of the existing system design methodologies

evolves more slowly, e.g. [3] mentions increases of about

25% per year. This gap between the growth of the systems

under consideration and the design methodologies used in

their development has become a familiar terminology since

the mid-1990s – the ”system design gap” [4]. This effect has

been strengthened by shortened system life-cycles and time-

to-market periods necessitating novel and improved system

design methodologies and tools. In fact, an organizations’

capabilities to develop and maintain IT systems are both

a competitive advantage and a barrier that is difficult to

overcome for any competitor [5].

Regarding the challenges of the system design process most

of the critical system design problems originate in the early

design stages when specialists are specifying the system under

a high degree of variability and uncertainty. The European

Software Process Improvement Training Initiative (ESPITI)

in 1996 showed that the probability of critical problems due

to poor design decisions is over 60% in the specification

phase. The main reason for this high probability is that either

text-based or non-executable model based specifications are

utilized. These specifications cannot be validated in an inte-

grated manner at a system level where the overall architecture

and dynamic behavior are determined. The system design

uncertainty remains high and the probability of errors too.

In addition, crucial design steps are not fully automated e.g.

enforcing validation after a design change. Hence traditional

design processes are high risk and thereby highly expensive

development processes [6].

B. Facing the complexity challenge

To overcome the complexity and integration issues we

propose to introduce a holistic executable specification of the

overall system accompanying the complete system develop-

ment process. The executable specification can at any time

be validated and optimized against the requirements of the

integrated system. The validated specification of the integrated

system can in turn be passed on to specialist teams for

subsystem development and subsequent integration.

In this manner, integration problems surface in the early

design stages rather than in the final test stages. As a conse-

quence the development time and risk are reduced, specifica-

tion quality and speed increases – albeit at the added expen-

diture of maintaining an executable specification. However,

even after the completion of the product development such

executable specifications can be of use in day-to-day operation
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(e.g. to predict and monitor the dynamic system behavior) and

continued product development (e.g. validating architectural

changes in the operational context).

The remainder of this paper is split into four sections.

Section II introduces our system design approach where

the executable specification transports the knowledge along

the design process. Technically the executable specification

is implemented as a simulation model, which collects and

encompasses the known system requirements as explained

in section III. The interplay between the requirements, the

simulation model and the requirement management process is

discussed in section IV whereas section V gives an example of

a system where executable specifications have been applied.

II. THE SYSTEM DESIGN APPROACH SIMULATION DRIVEN

DEVELOPMENT (SDD)

Simulation Driven Development (SDD) is a system design

approach for complex distributed systems and processes. It is

characterized by applying modeling and simulation technolo-

gies during the whole system life-cycle (resp. product life-

cycle). At its core is an executable system specification that

exists during the whole system life-cycle encapsulating the

current knowledge of the system, starting with the systems’

conceptual design, followed by the design, implementation

and test stages up to the day-to-day operations of the system

and further development activities. At any time, the executable

system specification represents the virtual prototype of the

system to be built, the system under design or the system

operated. The executable specification is kept up-to-date even

after the real system or a real prototype is available. In that

way it is at any time possible to test the system – either under

construction or in operations – against its specification. In the

SDD approach testing is preventive [7] before the system in

constructed or the change is implemented. In a sense, SDD

extends the test-driven-development paradigm [8] to the level

of the systems’ requirements.

In particular SDD emphasizes the integrated system as a

whole and the dynamic coupling effects between the subsys-

tems. One consequence of the increased knowledge of the

integrated system as well as the system awareness, is a rapid

improvement of the specification quality particularly in the

very early design stages. This is in turn equivalent to a higher

accuracy of the specification, i.e. less errors are expected

in later test stages. Overall we expect SDD to increase the

design and implementation speed and to reduce the overall

development and operational risk considerably.

A. Executable system specification

In general an executable system specification defines the

functional and non-functional properties of a system in a

formal, consistent, and self-contained manner to enable pro-

cessing [9]. Functional properties define the tasks of the

system including information processing in relation to data,

operation (”what the system should do” [10]) and the systems’

behavior (”a behavior that a system will exhibit under specific

conditions” [11]). Non-functional properties are more difficult

System under design

Function

Architecture

Environment

Figure 1. An executable system specification encompasses functional, archi-
tectural and environmental components.

to pin down – there is not even a simple consensus on the

term and its use [12]. They are used to describe the circum-

stances necessary to render the required functionality, e.g. the

performance requirements, quality properties and constraints

(e.g. environmental and implementation constraints, platform

dependencies [13] or the typical properties summarized as de-

pendability [14]: availability, reliability, safety, confidentiality,

integrity and maintainability).

In contrast to a system specification as a natural language

text or non-executable models, executable system specifica-

tions are expressed by means of executable models [6]. These

models include three component types (see figure 1):

• Functional components: Realization of functional system

requirements (e.g. sending toll data at a certain time)

• Architectural components: Realization of non-functional

system requirements (e.g. communication protocols and

network topology of interacting subsystems, platform

limitations)

• Environmental components: Description of operational

scenarios with respect to mission objectives, and use

cases of the system (i.e. dependability as listed above).

B. The SDD design process

The SDD design process consists of the typical design

phases in system development: analysis/conception, design,

implementation and test (see figure 2). However, in the SDD

case all phases are accompanied by virtual and real prototypes

which in turn are connected to a central requirement repository.

This repository of all known system requirements enforces a

revision control environment to store and manage prototype

versions.

Each phase of the product development has different in-

teractions with the requirements repository: During the anal-

ysis phase specifications are derived on a conceptual level

concerning the systems’ operational scenarios or use cases.

Both functional and non-functional requirements are derived

from the specification and entered into the repository. This

set of requirements is the starting point to implement an
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Figure 2. Design process of Simulation Driven Development: The requirements repository (center) provides the baselines for the virtual and real prototypes
as well as the real system.

executable specification – a virtual prototype of the system

to be developed. The simulation (i.e. running the executable

specification with a given set of parameters) aims at validating

the specification already at the level of the whole integrated

system during this initial phase. In addition, the transition from

natural language specifications to executable ones will auto-

matically generate more detailed and rigorous specifications.

The design phase enhances the knowledge of the system

under consideration in two directions: The solution space is

explored through different virtual prototypes, e.g. to scope

varying architectures or behavioral aspects. At the same time,

each virtual prototype becomes in itself more specific by

adding the necessary behavior and parameters to allow mea-

suring its performance. Depending on the complexity and

runtime the optimization can be delegated to an automatic

optimization algorithm [15] – in that case properties of the

simulation environment become themselves requirements, e.g.

the execution performance. At the same time real prototypes

are introduced to validate the design resulting in a feedback-

loop: the requirements from both sides, the virtual and real

prototype, are related and affect each other. The design phase

ends when the variability of the potential solutions is reduced

to a single solution specification – the starting point for

developing the real system.

In the subsequent implementation phase the emphasis shifts

from the virtual prototype to the real system under construc-

tion. However, the executable specification is kept up-to-date

and mirrors the known requirements. In that way simulations

are part of the decision making process: Implementation

variants can be explored and compared through simulations.

Each design decision is transported to the real prototype via

the requirements repository and the executable specification

– the latter being a representative of the whole integrated

system which itself is still under construction [9]. Similarly

design changes from the real prototype are transferred to the

virtual prototype via the requirements repository to keep both

prototypes consistent.

Finally the test phase is characterized by applying the

refined virtual prototype to component tests, i.e. the validation

and verification of the components through their defined

interfaces [10]. To that end the soft- and hardware components

implemented in the real prototype are integrated into a whole

working system via the virtual prototype rather than the real

world components (or artificial models thereof): So called

Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL)

tests. In addition the virtual prototype is kept to support for

the future system development, e.g. when new operational

scenarios or new system architectures emerge. In any step,

changes to the requirements can automatically invalidate parts

of the virtual prototype and are the trigger to adapt and repeat

the simulation runs.

III. HANDLING REQUIREMENTS IN THE SDD APPROACH

Requirements are descriptions of how a system should be-

have, or of a system property or attribute [10], [16]. However,

gathering the right set of requirements is a non-trivial task: In

the early design phases the requirements will still be rather

abstract and the impact on the real-world system is difficult

to gauge. This is a particular problem for non-functional
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requirements, e.g. the behavioral aspects of the system [11]

or its underlying architecture. Yet it is well-known from

software cost models, that the initial investment in choosing

the right architecture is important: A NASA recommendation

[17] suggests a sweet-spot from the COCOMO II cost-model

of dedicating up to 20 % of the software budget to the early

analysis and to developing the right architecture.

Addressing the large amount of requirements generated

in typical software-intensive systems, requirements are doc-

umented at different levels (or layers) of abstraction: The top

layer defines why the system is build and what the owning

organization hopes to achieve. This type is termed as business

or stakeholder requirements [11] – an example would be to

cut costs by reducing manual steps in a business process.

Already at this level-of-abstraction the requirements need to

be validated as soon as possible – is the requirement really

necessary at the documented level? Seemingly inconsequential

numerical targets can have profound effects on the technical

solutions, [17] gives the example of 99% data completeness

for scientific observations necessitating additional redundan-

cies. The translation of the requirements into an executable

specification allows exploring the effects of the requirements

on the solution space early on. Vice versa, the virtual prototype

transports operational properties of the real-world system back

to the solution space potentially modifying or restricting the

requirements.

The subsequent levels of detail produce additional layers of

requirements where the whole system is defined in terms of an

implementable solution. Each layer provides precise means of

qualifying the solution and the requirements of a given layer

are linked upwards to the next higher layer [18]. To that extend

requirements are modeled as uniquely identifiable entities in

the same way as all other elements of the prototype model. The

resulting links from the different layers of abstraction form an

important prerequisite for establishing formal traceability [19].

In SDD, like in the classic V-Model [20], the different types

of requirements appear in the distinct development phases:

In the analysis stage very few high-level business require-

ments exist. They express the overall visions, goals and

uses cases of the system under consideration. This initial

specification is used to derive executable virtual prototypes for

simulations of the system behavior. In light of the cost/benefit

discussion above the virtual prototype aims in this stage at

clarifying the overall requirements and system architecture –

i.e. to identify the essential functionality and to avoid acciden-

tal complexity [21] in the overall system and its subsystem.

In the design stage the system architecture becomes more

detailed, components emerge and their requirements are for-

mulated. The executable specification helps in drafting ac-

curate requirements and simulation runs yield the resulting

dynamic behavior prior to the implementation of the system.

The implementation stage shifts the focus to the real pro-

totype and the system under construction. In this stage the

requirements are supposed to remain fixed and only minor

adjustments need to be returned to the repository. The sim-

ulation model is an executable representation of the state-

of-knowledge and is technically able to integrate a given

component into the overall system – especially as long as the

whole system is not yet available.

In the test stage, the high-level requirements are used for

acceptance tests of the whole system. Usually the development

of the virtual prototype precedes the development of the real

system. In that case the already implemented components of

the real systems are tested using Hardware-in-the-Loop tests.

The simulation model provides the still missing ones and

allows to test dynamic coupling effects even when not all

components of the real system are available. Additionally all

requirements in the central repository, which only apply to the

real prototype are tested.

The emphasis on introducing an executable specification –

e.g. as a simulation model – at the very beginning of the

development process is important to connect the abstract re-

quirements to the operational context. In the words of [17] the

recommendations are to “raise [the] awareness of downstream

complexity” and to “involve operations engineers early and

often”. The discussion necessary to bring the initial set of

abstract requirements to a set of executable specifications will

automatically involve subject matter experts from all fields

concerned and yield numerous reviews of requirements, design

decisions and the architectural choices taken.

During the whole process all requirements are stored in a

central repository. Initially, the repository is populated either

manually or by importing them from external resources. As it

is the case in any repository, additional meta-data is available

to support the development and maintenance process, e.g. by

providing information on authors, priorities, costs or autho-

rization.

IV. COUPLING THE REQUIREMENTS TO THE SYSTEM

SPECIFICATION

Where the prior sections focused on the overall SDD

process, this section explains the coupling between the require-

ments repository and the various systems supposedly imple-

menting these requirements: The virtual and real prototypes,

the simulation model and the real system under consideration.

At the core of the SDD process is the availability of an

executable system at any time during the whole development

life-cycle. Together with the links between the executable

specification and the requirements at any level-of-detail the

validity and correctness of the executable specification is

constantly assured by the attached requirements (see section

IV-A). To that extent the current system state needs to be

captured and compared with the requirements as detailed in

section IV-B. In the end, validating the requirements necessi-

tates a dedicated work-flow (see section IV-C) and the creation

of dedicated test-functions (see section IV-D).

A. Requirements validation

“Treat English as Just Another Programming Language”

[22] – requirements start with those people that are responsible

for the system: product owners, marketing experts and domain

experts whose domain is typically not the software industry.
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The requirements may be gathered by specialists but start as

a natural language document – fuzzy and open to multiple

interpretations [23] – before they are translated into more

formal notations.

Many well-documented methods exist to refine and to

formalize requirements:

• Formal notations, e.g. the Z-Notation [24], Vienna Def-

inition Language [25], Language of Temporal Ordering

Specification (LOTOS) [26] and the B-Method [27].

• Cause-effect graphs [28] provide the relationship between

input (causes) and expected output (effect) specified by

the requirement [29]. Generators are able to derive test

vectors from this model that are fed into the requirements

model and into the system under test to compare the

results. However, as the number of requirements grows,

the size of the cause effect graphs becomes hard to

handle.

• Computation tree logic (CTL) or linear temporal logic

(LTL) are yet other ways to formalize requirements [30].

Naturally these methods rely on the manual task of translating

the natural language into the formal notation chosen. A

rigorous approach is rarely taken since the cost is typically

only justified for critical systems i.e. ones in which potential

financial or human loss would be catastrophic [18]. In addition,

these methods are difficult to apply in the very early design

stages when the requirements are at a very high level and still a

subject to change. Therefore a different approach is necessary.

To address the size of the solution space in the early stages,

SDD introduces configurable scenarios, called missions. Each

mission is driving the virtual prototypes – the specification

becomes executable via a set of parameters or even archi-

tectural choices. The dynamic system behavior – at the yet

considerable level-of-abstraction – is obtained for a particular

scenario by executing the mission as a simulation run. The set

of all missions describes the solution space that is considered

to adhere to the known requirements. At this point, detailed

requirements for the initial subsystems and components are

not yet settled or completely absent. Yet the simulations will

already give boundaries for the subsystem behavior and the

discussions with the subject matter experts will quickly refine

the requirements – already within the context of the integrated

system.

To validate the requirements, the authors have chosen a

method similar to test oracles [31]. A test oracle is a predicate

that determines whether a given test activity sequence is an

acceptable behavior of the system under test [32]. In this

context, a testing activity can be seen as a sequence of stimuli

and response observations. To that extent the virtual prototypes

are enhanced by dedicated test-function blocks representing

test oracles: These functions are used to check if the model

state matches the expected as defined by the requirements.

Links between the requirements, the virtual prototype and the

test-functions provide the traceability in the SDD approach.

test-functionRequirement

sampling point

Figure 3. Sampling points are embedded into the simulation model to capture
event streams

B. Capturing the system state

One advantage of the virtual prototype running as a sim-

ulation is the access to the whole system state – which is

not feasible in many distributed systems in the real world.

To capture the system state in a simulation run we embed

sampling points in the model (see figure 3).

Depending on the placement of the sampling points, differ-

ent information is recored: If placed on a connection between

two or more components, the event flow of the discrete event

simulation model is recorded along the chosen connection.

Additionally, each component can be extended so that its local

internal state can be sampled. In both cases, every sampling

point produces a stream of data as the simulation run produces

and processes events over the execution time. Data extraction

is read-only, i.e. the semantic of the virtual prototype remains

unchanged albeit at a minor performance hit.

The sampling data stream adds the event time and the

component to the data sampled at the sampling point. Of

course, the interpretation of a given sample value is model

and domain specific. The tuples sampled in a simulation run

form the stimuli or the responses of the test-functions used

to validate the requirements. Any combination is conceivable:

A test-function may use a single tuple, i.e. one value at a

given simulation time, several tuples at the same or even at

different times – opening the possibility to correlate infor-

mation along the flow of a business process over time. The

data processing can itself be performed either synchronously

or asynchronously to the simulation run.

C. Validation work-flow

The SDD approach explores the solution space by main-

taining different missions (see section IV-A) corresponding to

different virtual prototypes. To validate the requirements all

missions are executed as simulation runs, each run produces

its sampling data stream to feed the test-functions embedded

in the virtual prototype. For each mission the result is a simple

boolean “pass” or “not-passed”, a detailed look at an individual

simulation run of a given mission will in turn show the boolean

result for each embedded test-function (see figure 3). The

traceability of all requirements results from the links between

various levels-of-abstraction and to the virtual prototype and

its test-functions. As a result of executing all missions, it

is possible to determine those missions that implement the
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func0

func1 func2

sampling

points

false true
true false

true true
Boolean result sets

Model

Scenario(s)

Figure 4. Requirement validation: Different scenarios are used to run the
model. The test-functions create an output value for each simulation run,
which alltogether build the boolean result sets.

requirements successfully. If some requirements in the central

repository are not validated – either explicitly as “not-passed”

or implicitly when no test-function is available, the traceability

allows the automatic high-lighting of these requirements in the

repository.

The validation work-flow starts with executing – probably

in parallel – all available missions of the virtual prototypes

and the subsequent collection of the test results. During the

simulation runs, the embedded test-functions are constantly

triggered by the events passing through the simulation model

resulting in a sampling data stream that is captured and

evaluated to return the boolean result set of the used test-

functions (see figure 4). Eventually when all simulation runs

are finished, all result sets are aggregated allowing to identify

valid virtual prototypes and potential problems and their origin

by following the traceable links from the test results via the

test-functions and the simulation model components back to

the individual requirements.

Table I summarizes the possible outcomes at a global level:

All test-functions of all missions could return a positive result,

some might return a negative result or all of them fail. This

global overview concerns the overall solution space since the

various missions are equivalent to different possible solutions

– it is expected that as the knowledge about the system under

consideration progresses more and more potential solutions

will fail the added requirements and constraints. The design

stage therefore aims at retaining at least one valid virtual

prototype where all requirements are successfully verified by

test-functions. This approach naturally leads to a iterative

spiral-model [33] where the negative test-results will start

the search for an incrementally improved solution and the

refinement or alteration of the requirements responsible for

the negative test result.

The validations work-flow can of course be automated in

large parts: New simulation runs are automatically created

and executed, the results of the test-functions are mirrored

Table I
INTERPRETING THE RESULTS OF THE REQUIREMENTS VALIDATION

WORK-FLOW

Test-Function Results Overall Rating

All






test-functions in every
mission are evaluated to







true






fulfilled

Some true partially fulfilled

All false violated

to the requirements repository. The search for better virtual

prototypes or adjusted requirements remains a human task

involving the domain experts as well as the technical experts.

Once a change to the existing requirements is identified

and submitted, the traceability automatically yields all virtual

prototypes and test-functions impacted by the change.

D. Implementing a test-function

The SDD approach takes the ideas of test-driven develop-

ment (TDD) to the very early design stages: The requirements

undergo testing prior and in parallel to the system implemen-

tation using test oracles as test-functions [34]. As in the TDD

case, testing is not the aim of the SDD rather the “driven [...]

focuses on how TDD leads analysis, design, and programming

decisions” [35]. Of course, technically test-functions need to

be implemented to verify the requirements through the correct

behavior of the virtual prototype: An obvious implementation

is to compare the input events (stimuli) of a particular compo-

nent in the simulation model with output created (responses)

– basically a simple unit test of a component. However, often

a single deterministic outcome is not sufficient to determine

the success of a test-function. Rather the test-function is used

to explore the boundaries of the specification, the statistical

distribution of events or correlates information from different

components of the virtual prototype at the same time or over

time periods.

To that extent, test-functions are again source code poten-

tially with (read-only) access to the whole simulation run and

a private data store to retain and correlate data over the run-

time. As the complexity of the test-function increases, the risk

of program errors increases as well. To mitigate this risk as

set of predefined, configurable and proven test-functions is

provided ready-for-use. The set may consist of functions, to

test whether a value is bound to a specific interval as well as

functions to express boolean conditions in the form if . . . then

. . . else. With this staring point mathematical relationships are

straightforward to implement.

Test-functions are implemented like the other model com-

ponents using the same levels of abstractions such as nested

sub-components, if necessary. The only difference is, that they

cannot influence the model semantics or impose any side

effects.

V. APPLICATION: SIMULATING THE GERMAN AUTOMATIC

TOLL SYSTEM

We have applied the SDD approach – in parts – to the on-

going development of the German automatic toll system, a
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large-scale autonomous toll system [36] operated by Toll Col-

lect GmbH. The toll system collects the tolls for heavy-goods

vehicles (HGVs) driving on federal motorways – at present it is

the largest system of its kind in operation, collecting more than

4.6 bne annually predominantly automatically using the more

than 1 000 000 on-board-units (OBUs) deployed at present.

A. Challenges of the development process

As a typical system-of-systems the toll system consists of

a multitude of sub-systems for the various domain-specific

tasks. Wherever possible, sub-systems are designed around

existing commercial off-the-shelf applications and very few

are custom-developed (the most notable one is the hard-

and software of the OBU). Most often the development and

operations of the sub-systems is outsourced to technology

partners – at least the system specification and later on the

system integration remain as a core competency [37].

The common software or system development practices

suffice to address most aspects of the liability-critical system:

Following a V-Model approach, requirements are documented

prior to the system design and implementation, all of which

create test cases for the subsequent verification in different

stages. However, the more than 1 000 000 OBUs deployed in

HGVs pose a particular challenge. They form a ‘distributed

system”, i.e. “one in which the failure of a computer you didn’t

even know existed can render your own computer unusable”

[38]. In addition the OBU behavior depends on the user

interaction which is in large parts not known due to technical

restrictions and data privacy protection.

To address these challenges posed by the OBU-fleet, ad-

ditional test stages are added using tens of OBUs in a lab

environment, hundreds and up to a few thousand OBUs in

dedicated test fleets. Yet these tests are still at a scale below

1:100 and occur only at the end of the development once the

software change has been implemented and tested in unit and

component tests. Scaling based on past experience from the

real-world system is of course possible when the changes are

minor and the operational context remains unchanged.

Major changes to the software of the toll system cannot

rely on past experience: Even recourse to expert advice is

known to be problematic – experts tend to be over-confident

[39], a well-known cognitive bias that needs to be mitigated

by the system design process. Besides, given time, the cost-

of-operations dominates over the initial system development

costs. I.e. the validation of the requirements – did we build

the right system? – can only be answered in the context of

the daily operations of the whole system at a scale of 1:1.

B. Adding simulations to the development process

To overcome the challenges mentioned above we developed

a simulation model of the automatic toll system that incor-

porates the most important processes – collecting tolls and

providing updates to the fleet – at a scale of 1:1 (figure 5,

upper part) and a model for the temporal behavior of the user

interaction (figure 5, lower part, for details see [40], [41] and

references therein). Having this executable specification of the

user in-

teraction

HGV fleet
mobile data

network

central

system

system model

Figure 5. The simulation model includes a model of the technical system
(above, dashed) and a model of the user interaction (below).

automatic toll system we derive missions corresponding to the

system in operations either at present or in the near future.

Simulation runs based on these missions predict the dynamic

operational behavior over weeks or months, e.g. the propa-

gation of software updates across the fleet. Where possible,

the predictions of the simulation runs are compared with data

observed in the real-world system and the parameterization is

calibrated accordingly.

This realistic, microscopic simulation model of the real-

world toll system is the starting point to change the software

development process to simulation driven: As the software

development starts, the virtual prototype of the existing toll

system is forked to reflect the proposed changes. In that way

the proposed system is accompanied from the very beginning

with a simulation model: The very early design stages start

with an executable specification that transports much of the

existing operational context to the newly drafted requirements.

Design decisions are from the start driven by the simulation

results where the simulation takes into account the system

operations at a 1:1 scale. Consequently the initial draft of

the new requirements – typically a document using natural

language descriptions – quickly becomes more precise and the

discussions are anchored in the real-world operational context.

VI. CONCLUSION

A realistic simulation model of a software-intensive system-

of-systems is the natural extension of the test-driven devel-

opment approach: The development process is at any time

driven by the results as observed in the real-world operational

context. The core of this idea is to create an executable

specification of the known requirements in every development

phase and to trace changed requirements from the beginning

with a focus on the real-world effects. In this article we

have outlined our approach – Simulation Driven Design –

and briefly mentioned the case of the automatic German toll

system. There the effects of proposed changes are from the

beginning measured against the (simulated) effects in the in-

tegrated system at a scale of 1:1. The effect of SDD is twofold:

Simulation runs predict the effects of a proposed change and

creating the virtual prototype drives the development process

with the focus on the systems’ operational context.
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