
Program analysis for Clustering Programmers’

Profile

Daniel José Ferreira Novais

Dpt. Informática, Centro Algoritmi

Universidade do Minho

Braga, Portugal

danielnovais92@gmail.com

Maria João Varanda Pereira

Dpt. Informática e Comunicações, IPB

Centro Algoritmi, Universidade do Minho

Bragança, Portugal

mjoao@ipb.pt

Pedro Rangel Henriques

Dpt. Informática, Centro Algoritmi

Universidade do Minho

Braga, Portugal

pedrorangelhenriques@gmail.com

Abstract—Each programmer has his own way of programming
but some criteria can be applied when analysing code: there
are a set of best practices that can be checked, or ”not so
common” instructions that are mainly used by experts that can
be found. Considering that all programs that are going to be
compared are correct, it’s possible to infer the experience level
of the programmer or the proficiency level of the solution. The
approach presented in this paper has as main goal to compare
sets of solutions to the same problem and infer the programmers
profile. This can be used to evaluate the programmer skills,
the proficiency on a given language or evaluate programming
students. A tool to automatically profiling Java programmers
called PP (Programmer Profiler) is presented in this paper as a
proof of concept.

I. INTRODUCTION

TWO given solutions that solve the same problem can be

very different. The style of programming, the proficiency

on the programming language, the conciseness of the solution,

the use of comments and so on, allow to compare programmers

through static analysis of their code. It is possible to measure

the proficiency on a programming language in the same way

that we measure the proficiency on a natural language [Pos14].

Using, for example, the Common European Framework of

Reference for Languages: Learning, Teaching, Assessment

(CEFR) method1 it is possible to classify individuals based

on their proficiency on a given foreign language. Statically

analysing code, it should be possible to extract a set of metrics

and using a set of best practices to infer the proficiency

and style of programming. The main idea is to evaluate the

programmers’ profiles, comparing code, without the need to

construct a standard solution to perform that comparison.

When facing a class of students or when evaluating a group

of candidates to a programmer position at a company, we only

need to compare them to each other to find the best one or to

create a rank. Of course we can include a best solution in the

group in order to perform an absolute evaluation, especially

needed in non-academic environments. The attributes or met-

rics that will allow to infer a profile can be defined a-priori

by hand (using intuition) or can be extracted through data-

mining techniques as can be seen in [KCM07]. However this

last approach requires the availability of huge collections of

programs assigned to each class.

1http://www.coe.int/t/dg4/linguistic/cadre1 en.asp

Pietrikova in [PC15] also explores techniques aiming the

evaluation of Java programmers’ abilities through the static

analysis of their source code. Static code analysis may be

defined as the act of analysing source-code without actually

executing it, as opposed to dynamic code analysis which is

done on executing programs. The latter is usually performed

with the goal of finding bugs or ensure conformance to coding

guidelines. In our approach the goal is to further explore

the discussed techniques and introduce new ones to improve

that evaluation, with the ultimate goal of creating a tool that

automatically profiles a programmer only using static analyse

of code. Notice that in our work we do not cope at all with

automatic code assessment or program verification; we only

focus on the programmers’ ability to master a programming

language.

Concerning the knowledge about a language or the capa-

bility to write ’naive/expressive’ sentences on that language,

a possible set of profiles would be: novice, advanced and

expert. Moreover, other relevant information is expected to

be extracted, such as the classification of a programmer on

his code readability (indentation, use of comments, descriptive

identifiers), hid defensive programming style, among others.

There are some source-code elements that can be analysed

to extract the relevant metrics to appraise the code writer’s

proficiency such as: number of statements and declarations,

existence of some repetitive patterns, number of lines (code

lines, empty lines, comment lines), use of indentation, quality

of the identifiers, use of not so common instructions and

other characteristics considered as good practices. In this work

code with errors will not be taken into consideration for the

profiling. This is, only correct programs producing the desired

output will be used for profiling.

In order to build the PP tool to automatically extract metrics

from programs and to profile the owners of those programs,

language processing techniques will be used. This process will

be complemented with the use of a tool, called PMD2, to get

information on the use of good Java programming practices.

PMD is also a source code analyser that finds common

programming flaws like unused variables, empty catch-blocks,

2https://pmd.github.io/

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 701–705

DOI: 10.15439/2017F147

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 701

unnecessary object creation, and so forth. For these reasons

this tool proved to be very useful.

The paper will follow with Section II where related work

will be reviewed in order to identify techniques and tools

commonly used to deal with this problem. Section III is

devoted to present our proposal for an automatic programmer

profiling system based on source code analysis. The analyser

implemented and the set of metrics extracted are presented

in Section IV. In Section V we will discuss the correlation

between metric values and profiles. A complete case study

will be described in Section VI in order to show all the

PP functionalities. The paper is closed at Section VII with

conclusions and future work.

II. RELATED WORK

As it was said, the main motivation for the work described

in this paper came from the study [PC15] of Pietriková and

Chodarev. These authors propose a method for profiling pro-

grammers through the static analysis of their source code. They

classify knowledge profiles in two types: subject and object

profile. The subject profile represents the capacity that a pro-

grammer has to solve some programming task, and it’s related

with his general knowledge on a given language. The object

profile refers to the actual knowledge necessary to handle those

tasks. It can be viewed as a target or a model to follow. The

profile is generated by counting language constructs and then

comparing the numbers to the ones of previously developed

optimal solutions for the given tasks. Through that comparison

it’s possible to find gaps in language knowledge.

In [TRB04], Truong et al. suggest a different approach.

Their goal is the development of a tool, to be used throughout

a Java course, that helps students learning the language. Their

tool provides two types of analysis: software engineering

metrics analysis and structural similarity analysis. The former

checks the students programs for common poor programming

practices and logic errors. The latter provides a tool for

comparing students’ solutions to simple problems with model

solutions (usually created by the course teacher).

Flowers et al. [FCJ+04] and Jackson et al. [JCC05] present

a tool, Gauntlet, that allows beginner students understanding

Java syntax errors committed while taking their Java courses.

This tool identifies the most common errors and displays them

to students in a friendlier way than the Java compiler. Expresso

tool [HMRM03] is also a reference on Java syntax, semantic

and logic error identification. Both tools have been proven to

be very useful to novice Java learners but they focus mainly

on error handling.

Hanam et al. explain [HTHL14] how static analysis tools

(e.g. FindBugs) can output a lot of false positives (called

unactionable alerts) and they discuss ways to, using machine

learning techniques, reduce the amount of those false positive

so a programmer can concentrate more on the real bugs

(called actionable alerts). We are not considering the use of

machine learning and data mining techniques in our approach.

Our idea is to use a set of pre−defined criteria to evaluate

programs and infer profiles.

III. PROFILE DETECTION: OUR PROPOSED SOLUTION

Programmer profiling is an attempt to place a programmer

on a scale by inferring his profile. The first step towards

achieving this profiling is to define what will be the profiles.

A classification that could encapsulate a broad range of

programming knowledge was developed.

The Novice is someone who’s not familiar with all the

language constructs, does not show language readability con-

cerns and does not follow the good programming practices.

The Advanced Beginner starts to shows variety in the use

of instructions and data-structures. He also begins to show

readability concerns by writing programs in a safely manner.

The Proficient is a programmer who is familiar with all the

language constructs, follows the good programming practices

and shows readability and code-quality concerns. Finally, the

Expert is someone that masters all the language constructs and

focuses on producing effective code, sacrificing on readability.

The example seen in Listing 1 could be a bit exaggerated

but may help shed some light on what is meant by the

previous scale. Each one of the following methods has the

same objective: calculating the sum of the values of an integer

array, in Java. Each method has features of what may be

expected from each profile previously defined. It’s hard to

represent all 4 classifications on such a small example, so the

Advanced Beginner profile was left out.

Listing 1. ”Examples of programs corresponding to different Profile Levels”
i n t n o v i c e (i n t [] l i s t) {

i n t a= l i s t . l e n g t h ;
i n t b ; i n t c= 0 ;
f o r (b =0; b<a ; b ++) {

c=c+ l i s t [b] ; }
re turn c ;

}

/ / Sums a l l t h e e l e m e n t s o f an a r r a y

i n t p r o f i c i e n t (i n t [] l i s t) {
i n t l e n = l i s t . l e n g t h ;
i n t i , sum = 0 ;
f o r (i = 0 ; i < l e n ; i ++) {

sum += l i s t [i] ;
}
re turn sum ;

}

i n t e x p e r t (i n t [] l i s t) {
i n t s = 0 ;
f o r (i n t i : l i s t) s += i ;
re turn s ;

}

The Novice has little or no concern with code readability.

He will also show lack of knowledge of language features. In

the example we can see that by the way he spaces his code,

writes several statements in one line or gives no meaning in

variable naming. He also shows lack of advanced knowledge

on assignment operators (he could have used the add and

assignment operator, +=).

The Expert, much like the Novice, shows no concern for lan-

guage readability, but unlike the latter, he has more language

knowledge. That means that the Expert has a different kind of

bad readability. The code can be well organized but the pro-

gramming style is usually more compact and not so explicit.

702 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

As an example of language knowledge, the Expert uses the

extended for loop, making his method smaller in lines of code.

Finally, the Proficient will display skills and knowledge,

much like the Expert programmer, while keeping concern with

code readability and appearance. The code will feature ad-

vanced language constructs while maintaining readability. His

code will be clear and organized, variable naming has meaning

and code will have comments for better understanding.

Since the goal is to classify programmers automatically, that

classification can only be carried through the analysis of the

programmers’ source code. Since the interest is in language

usage, in various aspects, static code analysis was the selected

technique to perform the extraction of the data to be analysed.

The two main aspects of code that were of interest to this

project are the language knowledge and the readability of

code. To classify the abilities of a programmer regarding his

knowledge about a language and the way he uses it, we con-

sidered two profiling perspectives, or group of characteristics:

language Skill and language Readability.

• Skill is defined as the language knowledge acquired and

the ability to apply that knowledge in an efficient manner.

• Readability is defined as the aesthetics, clarity and

general concern with the understandability of the code

written.

We believe that these two groups contain enough informa-

tion to obtain a profile of a programmer, regarding his ability

to write proper language sentences to solve problems. Then,

for each group, and according to the score obtained by the

programmer, Table I gives a general idea of how programmers

can be profiled. Notice that (+) means a positive score, while

(-) means a negative one.

TABLE I
PROPOSED CORRELATION

Profile Skill Readability

Novice - -
Advanced Beginner - +
Expert + -
Proficient + +

What constitutes a lower and a higher score for each group

must be defined. For every programmer, the goal is to compare

each metric value among all solutions to identify those who

performed better or worse on that metric, and then, assemble

a mathematical formula which allows to combine the metrics’

results into a grade for each of the two groups. Taking those

two grades and resorting to Table I we can easily infer the

programmer’s profile in regards to the subject problem.

IV. SOURCE CODE ANALYSIS: METRICS EXTRACTED

After some testing and experimenting, we’ve created a set of

metrics that we consider appropriate for programmer profiling.

The range of metrics extracted is quite large, and it’s obvious

that not all metrics should have the same weight towards

inferring the profile of programmers. Considering that, each

metric has an associated priority (or weight) that directly

relates to the impact that metric will have towards inferring

TABLE II
METRICS EXTRACTED AND RULES WITH THEIR PRIORITIES

Metric Rule Priority

Number of Classes + =>+R +S 2

Number of Methods + =>+R +S 2

Number of Statements - =>+S 8

Number of LOC + =>+R 5

Percentage of LOC - =>+R 5

Number of LOCom + =>+R 3

Percentage of LOCom + =>+R 3

Number of Empty Lines + =>+R 3

Percentage of Empty Lines + =>+R 3

Control Flow Statements - =>+S & + =>+R 5

Variety of Control Flow Statements + =>+S 4

Not So Common CFSs + =>+S 6

Variety of Not So Common Operators + =>+S 5

Declarations - =>+S -R 5

of Types + =>+S 4

Readability Relevant Expressions + =>+R 3

the profiles. Table II formally specify the following rules that

we are extracting for each solution to a given exercise. For

instance, the first rule, should be read as: More classes imply

more Skill points and more Readability points.

Code Size Metrics

• These metrics are related with code size. We be-

lieve code size is mainly related with readability

concerns.

Control Flow Statements Metrics

• Control flow statements (CFS) are the heart of

the algorithms. Knowing how to properly use

them says a lot about programming knowledge.

Not So Common Operators Metrics

• Java is a vast language with numerous opera-

tors. Some of them are very specific and most

programmers don’t know about them. When

correctly applied these can reduce the code size

and even improve the program’s performance.

Variable Declaration Metrics

• Similarly to the case of the Control Flow State-

ments, the usage of Declarations could be an

indication of a programmer’s capabilities.

Other Relevant Expressions Metrics

• This metric was created to hold other important

language features that fore some reason or an-

other didn’t fit in the other descriptions.

PMD Violations Metrics

• The PMD Violations Metrics are very important

because they allow us to detect problems in code

that otherwise would be very hard to catch. PMD

rules have their own priorities.

V. RELATING METRICS WITH PROFILES

As time progressed, our idea of the profiles shifted a bit

from the original idea that we saw in Table I. We decided that

the Experts should be the ones with maximum focus on Skill,

DANIEL JOSÉ FERREIRA NOVAIS ET AL.: PROGRAM ANALYSIS FOR CLUSTERING PROGRAMMERS’ PROFILE 703

the Proficients on Readability and the Advanced Beginners

should more precisely divided. A new profile was also created.

The final version of the profiles is the following:

• Novice (N): Low Skill and Low Readability

• Advanced Beginner (AB): Low-to-Average (LtA) Skill

and Readability

• Proficient (P): LtA Skill and High Readability

• Expert (E): High Skill and LtA Readability

• Master (M): High Skill and High Readability

Keep in mind that the definition of the groups (Readability

and Skill) is not the common meaning of the word. Saying

that an Expert has low Readability means only that he scored

a low value on our axis of Readability (based on the metrics

we’ve seen in the previous section) when comparing to other

solutions to the same problem.

VI. CASE STUDY

Taking, for instance, two students solutions for the following

Java exercise: Write a Java program that reads positive

integers (number 0 will terminate the input). Compute and

print the amount of even numbers, odd numbers, and the

average (real number) of the even numbers.

Listing 2. ”Solution to P1 made by S”
i m p o r t s t a t i c j a v a . l a n g . System . o u t ;

i m p o r t j a v a . u t i l . Scanne r ;

p u b l i c c l a s s P1 S {

p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {
i n t nEven = 0 , nOdd = 0 , sum = 0 ;

w h i l e (t r u e){
o u t . p r i n t l n (” I n s e r t a number : ”) ;

Scanne r i p t = new Scanne r (System . i n) ;

i n t num = i p t . n e x t I n t () ;

i f (num == 0) b r e a k ;

i f (num%2 == 0) {
nEven ++;

soma += num ;

}
e l s e nOdd ++;

}

do ub l e a v e r a g e = 0 ;

i f (nEven != 0) a v e r a g e = sum / nEven ;

o u t . p r i n t l n (” Even : ” + nEven) ;

o u t . p r i n t l n (” Odd : ” + nOdd) ;

o u t . p r i n t l n (” Even Avrg : ” + a v e r a g e) ;

}
}

Listing 3. ”Solution to P1 made by Z”
i m p o r t j a v a . u t i l . Scanne r ;

p u b l i c c l a s s P1 Z {
p u b l i c s t a t i c vo id main (S t r i n g [] a r g s) {

Scanne r i n = new Scanne r (System . i n) ;

i n t v a l u e = i n . n e x t I n t () , evens = 0 ,

odds = 0 ;

do ub l e evensSum = 0 ;

/∗ I ’m assuming t h e i n p u t i s v i a b l e ,

i . e . a l l i n p u t numbers a r e

p o s i t i v e i n t e g e r s ∗ /

w h i l e (v a l u e != 0){
i f ((v a l u e & 1) == 0){

evens ++;

evensSum += v a l u e ;

} e l s e odds ++;

v a l u e = i n . n e x t I n t () ;

}

System . o u t . p r i n t l n (evens + ”\n ” + odds) ;

System . o u t . p r i n t l n (evens >0?

evensSum / evens : evensSum) ;

}
}

Looking at the structures of both solutions, we can see they

are both divided in the same way. Inside the main method, the

first lines are used for variable declaration and initializations.

Then we have the main cycle, where numbers are read and

the variables are assigned. Finally, in the last lines we have

our results output.

One thing we can easily observe is the size of both solutions,

in regards to the number of lines. The first solution has 61%

more lines of code than the second one. A closer inspection

shows us that S had the concern of leaving empty lines

between some code instructions, while Z didn’t leave a single

one. This is one of the most clear signs of concern for

readability. Empty lines and indentation are probably most

important things when creating readable code. Although it was

not possible to implement the verification of correct usage of

indentation (tabs or spaces) the usage of empty lines was, and

it will weight for the readability grade.

Regarding the use of variables, S declares a total of 4 ints,

2 Scanners and 1 double while Z only needs 3 ints, 1 Scanner

and 1 double.

The number of required variables reflects the capacity

that the programmer has in reusing variables. Therefore, less

number of needed variable declaration reflects a higher skill

in the language. Of course that has the fallback of generally

making the code less understandable (the same variable has

different purposes), so there is a loss in readability as well.

That takes us to the main loop. S makes the mistake of

reinitializing a Scanner and a int in every cycle iteration, that

is a violation that is detected by the PMD tool. Z on the other

hand reuses his variables.

Another bad practice detected by PMD on S’s solution is

the use of a while(true) cycle. This is generally regarded as

an avoidable practice, because it then forces the programmer

to explicitly end the cycle using, as is seen in this case, a

break condition. Z avoids this by simply reading the numbers

in the cycle’s test and checking if the number is equal to zero.

As explained in the previous chapter, detected PMD violations

are ”punished” in the skill or readability grades. Each violation

is related to one of the groups. In this case, both violations

punish the skill group.

The parity check was also made differently in the two

solutions. While S compares with the traditional (and easier to

understand) way of if(n % 2 == 0), Z used the more advanced

approach of if((n & 1) == 0). This is much more efficient

than using the % operator, especially for large numbers. The

bitwise and bitshift operators allow programmers to perform

bit-level operations and have a very high potential to those who

know to use them. These operators are considered advanced,

so their usage will increase the skill level of a programmer

when detected by PP.

Finally, we can see that in the first solution, S has to declare

one last variable, use another if-condition, and call one final

704 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

println method just to compute and output the average of the

even numbers. Z on the other hand does everything in a single

line, using the ternary operator (also know as inline if). All

these extra statements used by S will have a negative effect

on S’s Skill (or a positive effect on Z’s). After all, Z did the

same in less statements. The usage of the ternary if condition

is considered an advanced operator that also benefits Skill.

After running these two solutions (together with five other)

through the PP tool, all data detailed in IV will be extracted.

Then, those individual metric values are normalised across all

solutions. Finally we apply the weight to those normalised

values and achieve a final score by adding the individual

metrics results. That final score is composed by two numbers:

one for Skill another for Readability.

Wrapping up the analysis, we see that Z shows greater

language knowledge and skill, but not much concern for

readability. S is less skillful and programs in a more novice

way. Figure 1 shows the final scores obtained by all seven

solutions that were analysed for this particular case study.

In these small examples, S was classified as Adv. Beginner

(leftmost on the plot) with a readability focus, obtaining a

(S,R) score of (20.9, 15.9), and Z was classified as Expert

(rightmost on the plot) with a score of (32.2, 10.7). This

complies to their programming background, which was stated

previously.

Fig. 1. Profile inference made for Exercise P1

VII. CONCLUSION

The research hypothesis that led the project here reported

was whether was possible to infer the profile of a programmer

through the analysis of his source code. We proved that

research hypothesis by means of demonstration.

The developed tool, Programmer Profiler Tool, takes as

input a set of correct solutions to a given programming

problem, written in Java, by different programmers.

Each one of the metrics extracted and bad practices identi-

fied are linked to one of two groups, Skill and Readability, and

can have a positive or negative effect on the two groups. The

Skill group is related to language knowledge and ability of

creating effective code. The Readability group relates more to

understandability of code, and coding style related practices.

By comparing all results among each other, and applying

previously defined rules of how the metrics and defects affect

the groups, a numeric score is calculated for each group and

for each programmer. Each one of these rules, applies the

results of an extracted metric (or PMD violation) to either

increase or decrease the score of the two groups (S and R),

thus reaching a final value for each group.

By applying the described method to several exercises, a set

of scores is calculated for each programmer, and by combining

those scores a final score is calculated, for each group, that

portraits how the programmer performed in comparison to the

solutions of other programmers.

The final scores are mapped to a set of previously defined

programmer profiles, and thus the profile is inferred for each

one of programmers. The results can then displayed in a plot,

to better interpret how each programmer performed on the

different exercises as well as on the global scope.

All the profiles inferred on the tests performed agreed to

the teacher’s manual evaluation done in Java course of the

University of Minho. Which leads us to state that PP Tool

can correctly infer the profile of Java programmers. Although

this it would be interesting in the future to include more

information about each student namely learning ability and

soft skills.

More data and information regarding this project can be

found at http://www4.di.uminho.pt/∼gepl/PP/ .

ACKNOWLEDGMENT

This work has been supported by COMPETE: POCI-01-

0145-FEDER-007043 and FCT – Fundação para a Ciência e

Tecnologia within the Project Scope: UID/CEC/00319/2013.

REFERENCES

[FCJ+04] Thomas Flowers, Curtis Carver, James Jackson, et al. Empow-
ering students and building confidence in novice programmers
through gauntlet. In Frontiers in Education, 2004. FIE 2004.

34th Annual, pages T3H–10. IEEE, 2004.
[HMRM03] Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca

Mercuri. Identifying and correcting java programming errors for
introductory computer science students. ACM SIGCSE Bulletin,
35(1):153–156, 2003.

[HTHL14] Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. Finding
patterns in static analysis alerts: improving actionable alert
ranking. In Proceedings of the 11th Working Conference on

Mining Software Repositories, pages 152–161. ACM, 2014.
[JCC05] James Jackson, Michael Cobb, and Curtis Carver. Identifying top

java errors for novice programmers. In Frontiers in Education,

2005. FIE’05. Proceedings 35th Annual Conference, pages T4C–
T4C. IEEE, 2005.

[KCM07] Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic.
A survey and taxonomy of approaches for mining software
repositories in the context of software evolution. Journal of

Software Maintenance and Evolution: Research and Practice,
19(2):77–131, 2007.

[PC15] Emı́lia Pietriková and Sergej Chodarev. Profile-driven source
code exploration. Computer Science and Information Systems

(FedCSIS), pp. 929-934, IEEE., 2015.
[Pos14] Raphael ‘kena’ Poss. How good are you at programming?—a

CEFR-like approach to measure programming proficiency. July
2014.

[TRB04] Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of
students’ java programs. In Proceedings of the Sixth Australasian

Conference on Computing Education-Volume 30, pages 317–
325. Australian Computer Society, Inc., 2004.

DANIEL JOSÉ FERREIRA NOVAIS ET AL.: PROGRAM ANALYSIS FOR CLUSTERING PROGRAMMERS’ PROFILE 705

