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 Abstract - Speech communication is very essential for human-

human communication and human machine interaction. Current 

Automatic Speech Recognition (ASR) may not be suitable for quiet 

settings like libraries and meetings or for speech handicapped and 

elderly people. In this study, we present an end-to-end deep 

learning system for subvocal speech recognition. The proposed 

system utilizes a single channel surface Electromyogram (sEMG) 

placed diagonally across the throat alongside a close-talk 

microphone. The system was tested on a corpus of 20 words. The 

system was capable of learning the mapping functions from sound 

and sEMG sequences to letters and then extracting the most 

probable word formed by these letters. We investigated different 

input signals and different depth levels for the deep learning 

model. The proposed system achieved a Word Error Rate (WER) 

of 9.44, 8.44 and 9.22 for speech, speech combined with single 

channel sEMG, and speech with two channels of sEMG 

respectively. 
 

 Index Terms - Subvocal Speech; Deep Learning; sEMG. 

 

I.  INTRODUCTION 

 Speech plays an important role, not only in human-human 

communication but also in human-machine interaction. Often, 

human speech takes place in harsh acoustic backgrounds with a 

variety of environmental sound sources, competing voices, and 

ambient noise. The presence of such noise makes it difficult for 

human speech to remain robust and clear.  

After the wide popularity of smart devices and assistive 

technologies, Automatic Speech Recognition (ASR) became 

the most convenient communication tool for humans to interact 

with these machines [1]. Although ASR systems have achieved 

reasonably high accuracies compared to human capabilities [2], 

they still suffer from various limitations. First, they are prone to 

environmental noise. Second, audible speech can be very 

disturbing in quiet settings like libraries and meetings. Third, 

normal speech communication is not suitable for speech 

handicapped, e.g., stuttering patients. Similar challenges are 

faced when dealing with elderly people, caused by issues with 

speech pace and articulation [3].  

These limitations motivate the need for the development of 

another strategy for how ASR works in terms of speech form, 

acquisition techniques, and processing algorithms. One 

potential alternative for vocalized speech is subvocalized 

speech. Subvocalization occurs, for example, when someone 

whispers while reading a book, talking to one’s self, or 

murmuring. This subvocalization can be acquired using surface 

Electromyogram (sEMG) signals from the muscles involved in 

speech production. Articulators involved in speech production 

are located in the face and neck area [4]. sEMG signals can thus 

be used to substitute or at least augment traditional vocalized 

signals. 

While it is already showing great promise, the field of 

subvocalized speech recognition is fairly recent and not mature 

compared to vocalized speech recognition. Wand et al. [5] 

achieved a 34.7% word error rate (WER) on 50 phrases using 

sEMG signals of 6 facial muscles from 6 subjects. Mendoza et 

al. [6] obtained a WER of 25% from a single sEMG channel but 

only for 6 Spanish words. Wand et al.  reported a 54.7% WER 

on 50 phrases using 35 sEMG channels and 6 subjects [7]. 

Furthermore, Deng et al. achieved an 8.5% WER on 1200 

words using 8 channels [8].  

Researchers at Nara Institute of Science and Technology, 

Japan [9], investigated the use of non-audible murmur 

microphone fabricated in their own lab using hidden markov 

model for further analysis, reporting a 7.9% WER. However, 

the NAM microphone they used isn’t available, to date, for 
commercial or academic purposes outside of their premises.  

The ability to achieve high recognition accuracies using 

sEMG only has proven to be very challenging [5]-[8]. The 

reason can be attributed to the nature of the sEMG signal, which 

is highly variant from subject to subject depending on the 

muscle strength and gender. Most of the reported research uses 

facial muscles to capture speech signals [6]-[8]. While giving 

better accuracy, this placement isn’t user friendly and may not 
lend itself to practical implementations. Results reported in the 

literature used hand crafted features, heuristically chosen based 

on experience and visual inspection of data.  

This research introduces preliminary results for a multimodal 

end-to-end subvocal speech recognition system using a 

commercially available, low cost close-talk microphone and a 

single channel of sEMG signal acquired from the throat area. 

The proposed system uses deep learning algorithms for 

automatic feature extraction and classification. 

II.  MATERIALS AND METHODS 

A. Corpus Design  

We built an English corpus of twenty words. These words 

were selected to match the following criteria: (1) letters 

comprising the words must represent the English letters in as 

uniform distribution as possible, as shown in Fig.1; (2) they 

should be of different lengths; and (3) the similarity between 

words measured by Levenshtein distance [10] must be 

qualitatively variable, as demonstrated qualitatively in Fig.2. 

This limited vocabulary set can be used later for controlling 

machines or enabling the performance of various daily 

activities.  
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B. Subjects 

Ten healthy subjects participated in this experiment, five 

males and five females, with average age of 22 ± 2 years. All 

the subjects are not Native American speakers. The experiment 

was conducted in a lab controlled environment. 

 

C. Experiment Protocol and Data Labelling  

Each subject was presented with 150 slides, each 

containing a single phrase. Subjects were asked to subvocalize 

the phrase within 6 seconds of its appearance on the screen, then 

relax for swallowing and breathing for 10 seconds, and so on. 

Fig. 3 illustrates the experimental sequence and timing.  The 

experimental setup and connections are shown in Fig. 5. Each 

subject gave output of 150 records, out of which 100 records 

were used for training and 50 records for testing, for both 

modalities (microphone and sEMG). 

D. Signal Acquisition  
As described above, both sEMG, to capture the electrical 

activities of the muscles responsible for sound production, and 

a close-talk microphone, to capture the articulation effect 

(vibration or sound), were used. 

1) Surface Electromyogram (sEMG) 

A wireless sEMG from Mega Electronics Ltd was used. The 
sampling rate was 1 KHz using 16 bit ADC. Two electrodes 
were placed diagonally around the throat as shown in Fig. 4.  
2) Close-Talk Microphone 

A Koss CS100 close talk microphone was used. This 
microphone has a noise reduction filter and has a sensitivity 
range of -36 dB ± 3dB per 1V / 1 KHz. The microphone is placed 
2 cm from the subject mouth to capture the murmurs. For 
recording this signal, we used freely available software named 
Audacity [11]. 

E. Sound Pressure Level Quantification  

In order to make sure that all subjects follow the same level 

of subvocalization, there was a need to quantify this level 

numerically. We used an iPhone with an application named 

SPLnFFT, whose accuracy was proven by [12].  

Subjects were asked to subvocalize the sentences appearing 

on the screen within a range of 12 ± 2 dB and were trained for 

10 minutes prior to starting each recording session to help them 

meet this requirement. 

F. Short Time Fourier Transform (STFT) 

Input signals were converted from time domain to frequency 

domain through Short Time Fourier Transform (STFT) to 

obtain a spectrogram, which was fed to deep learning model. 

Figure 5. Experiment setup 

Figure 2. Levenshtein distance between words 

Figure 4. sEMG electrode placement 

Figure 3. Timing diagram showing the experiment protocol 

Figure 1. Distribution of letters across the corpus words 
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G. Deep Learning 

Conventional ASR systems consist of many complex 

building blocks: pre-processing, feature extraction, and 

building an acoustic model using Gaussian Mixture Model 

(GMM) and Hidden Markov Model (HMM) [13]. At the final 

stage, a language model is used to constrain the predicted 

subscription in order to follow the context of the speech as 

shown in Fig. 6.  

Using sEMG instead of speech signals means that there is 

no well-defined building blocks akin to phonemes in traditional 

audible speech processing. Fig. 7 shows an end-to-end deep 

learning model as presented in [14]. 

H. Spatial Convolutional Layer 

Spatial convolution layer performs the traditional 

convolution operation as shown in Eq. (1). Convolutional 

operation works to find the most similar pattern to the filter in 

the underlying image [15].  

 

         (g*f)(x,y) = ∑ ݃ሺܽ, ܾሻ݂ሺݔ − ܽ, ݕ − ܾሻ           ሺ௔,௕ሻ∈𝐴 (1) 

 

I. Bi-Directional Recurrent Neural Network (BRNN) 

RNN was developed to make use of the sequential 

information. In conventional neural networks, it is assumed that 

all the inputs and outs are independent, i.e., the input at a certain 

time is independent of other inputs and the same for the output. 

However, for a sequential signal like sEMG and speech, 

this is not true. That’s because each sound or letter in the 
previous frame affects the prediction of the sound in the next 

frame [16]. Also, future frames could enhance and fine-tune the 

prediction of earlier frames. This is the main reason for 

choosing bidirectional RNN instead of RNN. 

J. Connectionist Temporal Classification (CTC) 

The goal from an ASR system is to transfer any sequence 

of sounds into sequence of letters or phonemes. Traditional 

classification algorithms require that both inputs and outputs 

are aligned, which is not the case in most ASR problems. 

 

The CTC layer generates a probability distribution at each 

time step of the input sequence instead of generating labels. 

These probabilities are then decoded into maximum likelihood 

labels. Finally, an objective function converts these maximum 

likelihood labels into the corresponding desired labels [17].  

All computations were done on a desktop PC with GTX 

960 TI and 6 GB GPU ram. Torch platform was used for deep 

learning implementation. 

III. RESULTS 

This section highlights the system performance using 

different input signals and different number of RNN layers. For 

acoustic input only from the close-talk microphone, we 

obtained a WER of 16%, 11.33%, 9.44%, 12.56%, and 10.44% 

for different numbers of RNN layers as shown in Table 1. 

For concatenating acoustic data and sEMG data from 

channel #1, we achieved a WER of 16.89%, 10.39%, 8.44%, 

11.44%, and 9.83% using different RNN layers as illustrated in 

Table 2.  

Combining acoustic data, sEMG from channel #1, and 

sEMG from channel #2 resulted in WER of 54.17%, 10.61%, 

9.22%, 11.33, and 10.44% as shown in Table 3.  

#RNN Layers WER CER Time (minutes) 

1 16 2.7 18.26 

2 11.33 2.43 24.23 

3 9.44 2 32 

4 12.56 3.04 58 

5 10.44 2.45 68.7 

#RNN Layers WER CER Time (minutes) 

1 16.89 2.83 26 

2 10.39 2.33 39 

3 8.44 1.91  47 

4 11.44 2.21 60 

5 9.83 1.89 72.5 
Figure 6. Building blocks for traditional ASR system 

versus end-to-end ASR 

Figure 7. Proposed end-to-end deep learning model  

Table 2. Results for speech input + sEMG from channel 1 

Table 1. Results for speech input  
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IV. DISCUSSION  

In this study, we investigated the performance of an end-

to-end subvocal speech recognition system using a wireless 

sEMG system and a close-talk microphone. The performance 

criteria were Word Error Rate (WER) and Character Error Rate 

(CER). We studied the performance of the system for acoustic 

signal only and acoustic signal combined with sEMG from the 

throat muscles. The depth of the deep network model was 

examined in search of the optimum number of bidirectional 

RNN.  

For the input signal being acoustic data only, we found that 

the performance of the system increases by increasing the 

number of RNN layers till a peak of 9.44% WER then it 

decreases by a factor 3.12% then increased by 2.12%. This 

sudden change in performance is likely to be caused by 

overfitting. After increasing the number of layers, the model 

starts to experience an overfitting due to the increase in the 

number of parameters. 

When feeding the network with acoustic data concatenated 

with sEMG signal from the throat muscle, the performance of 

the system has was boosted to achieve a WER of 8.44% with 

an increase of 1% from acoustic signal only. This increase in 

performance was expected because the microphone is unlikely 

to catch all the information from the audio in the 

subvocalization mode while sEMG can capture additional 

information. We notice that results in Table 2 almost follow the 

same pattern as Table 1. Three RNN layers is the turning point 

for the system. After 3 layers the system experiences an 

overfitting problem. 

For the final experiment, we fed the network with a 

composition of three signals: acoustic, sEMG from channel #1 

and sEMG from channel #2. The best WER was 9.22% at 3 

RNN layers. The performance drop illustrate that channel #2 is 

a noisy channel and doesn’t add much information. 

The timing performance for different model structures and 

input signals is reported in Tables 1, 2 and 3. The training time 

was increased when the depth of the network was increased, due 

to the increase in the number of parameters that need to be 

optimized and settled. 

Comparatively, the proposed algorithm has a better 

performance compared to Deng et al. [8] and Wand et al. [5] in 

terms of WER. In contrast with literature of subvocal speech 

recognition, the system doesn’t depend on hand crafted features 
or traditional building blocks for ASR. In addition, the proposed 

algorithm demonstrates the efficacy of a single channel sEMG 

combined with a close-talk microphone. 

 

V. CONCLUSION 

An end-to-end deep learning system for subvocal speech 

recognition using a close-talk microphone and a single channel 

wireless sEMG was presented. The proposed system used a mix 

of convolutional neural layers and bidirectional RNN in 

addition to a CTC layer as the objective layer. We studied the 

effect of different input signals and different numbers of RNN 

layers on system performance. The proposed system achieved 

a Word Error Rate of 9.44, 8.44 and 9.22 for acoustic, acoustic 

combined with a single channel sEMG, and acoustic with two 

channels of sEMG, respectively.  
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#RNN Layers WER CER Time (minutes) 

1 54.17 17.4 18.85 
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3 9.22 2.07  35.9 

4 10.11 1.93 64.5 

5 11.31 2.14 81.3 

Table 3. Results for speech input + sEMG from channel 1 & 2 
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