
Abstract—Demand peaks  in  electrical  power  system cause

serious  challenges  for  energy  providers  as  these  events  are

typically  difficult  to  foresee  and require  the grid  to support

extraordinary  consumption levels.  Accurate  peak forecasting

enables utility providers to plan the resources and also to take

control  actions  to  balance  electricity  supply  and  demand.

However, this is difficult in practice as it requires precision in

prediction of peaks in advance. In this paper, our contribution

is the proposal of data mining scheme to detect the peak load in

the  electricity  system  at  country  level.  For  this  purpose  we

undertake the approach different from time series forecasting

and represent it as pattern recognition problem. We utilize set

of artificial neural networks to benefit from accurate detection

of the peaks in the Polish power system. The key finding is that

the algorithms can accurately detect  96.2% of the electricity

peaks up to 24 hours ahead.

I. INTRODUCTION

LECTRICITY  consumption  peaks  appear  in  the

electricity  system  as  a  consequence  of  collective

behavior of end users which is influenced by many external

factors [1]-[3].  An example of an aggregate behavior may

happen when relatively large group of consumers is turning

on their home air conditioners within a short time span, as a

consequence of a hot weather. This aggregated behavior is

easy  to  notice  since  temperature  increase  affects  a  large

population which might cause the peak. However, there are

other  factors  that  are  likely  to  influence  users’  electrical

consumption and there-fore, it is not trivial to foresee what

will be the consumption level and,  in turn,  to detect  high

loads in advance.

E

Consumption  peaks  may  cause  serious  challenges  to

electricity  providers  because  they  need  to  over-dimension

the  grid  in  order  to  support  the  abnormally  high

consumption load. Managing these peaks is crucial for the

providers  since  energy  scarcity  can  lead  to  severe

consequences  such  as  power  outages.  An  alternative

approach to overreach these peaks and to reduce the costs of

over-dimensioning and enormity is to balance the grid with

the introduction of intelligent methods for controlling them.

Controlling the peaks can be done in several ways, such as

performing  load  balancing  and  developing  dynamic  and

intelligent  pricing  strategies  taking  into  account  that  end

users  are  sensitive  to  price  and  they  may  reduce  the

consumption whenever the electricity price is high.

The proposed paper is focused on detection of electrical

power  consumption  peaks  in  the Polish power  system by

relying on historical  data for both: electricity and weather

conditions  including  temperature  and  humidity.  The

contribution to the research is twofold. First, we deal with

peak  detection  as  binary  classification  problem  unlike  to

most legacy studies formulating the problem as time-series

forecasting.  Second,  we  propose  a  wide  set  of  artificial

neural  network  parameters  to  assure  the  problem  is

thoroughly  tested  for  the  benefit  of  precise  classification.

We  further  experimented  with  data  from  Polish  power

system, and were able to prove the high accuracy in peaks

detection.

The  rest  of  this  paper  is  organized  as  follows.  In  the

second section the literature review on similar problems is

presented.  The data characteristics and their  mapping  into

binary classification problem is presented in section three.

The fourth  section deals  with the experiments  carried  out

and their results. The paper ends with concluding remarks in

the last section.

II.  LITERATURE REVIEW ON SIMILAR PROBLEMS

Forecasting  the  energy  consumption  and  load  demand

peak  has  been  intensively  studied.  In  recent  years,  the

extensive research stream of forecasting models was based

on  traditional  algorithms  including  time  series  analysis,

regression  and  grey  models,  as  well  as  soft  computing

algorithms  including  genetic  algorithms,  fuzzy  logic  and

other machine learning methods.

Time series models represent the future values based on

previous observations. The models which are based on time

series have many forms adequate for forecasting electricity

consumption volume and peak demand load in the electrical

grid.  For instance, the problem of forecasting the monthly

peak  demand  of  electricity  in  north  India  was  studied  by

Ghosh  [4]  who  combined  two  different  time  series:  a

multiplicative Seasonal Auto-Regression Integrated Moving

Average  (SARIMA)  and  Holt-Winters  multiplicative

exponential  smoothing.  In  turn,  Mati  et  al.  [5]  used  time
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Fig. 1. Weekly load data covering time span between 1st October 2015 

and 30th November 2015 

 

Fig. 2. Daily load data on October 23th (Friday) and 24th (Saturday), 2015. 

series to forecast the electricity demand in Nigeria. Garcia-

Ascanio and Mate [6] used the interval time series to forecast 

the monthly electricity consumption per hour in Spain.  

Another way to predict the energy consumption is to use 

statistical regression models that correlate the power 

consumption with a number of influencing variables. Energy 

distribution companies often use regression analysis to 

forecast the variable (dependent) values based on one or 

more independent (predictor) variables. The relationship can 

be described using simple linear functions (e.g. linear 

regression) or large non parametric models like Gaussian and 

neural network. Simple linear, multiple linear, quadratic and 

exponential regression models are typically used to forecast 

short term load demand (usually five minutes to one week 

ahead) with hour by hour load data. The quantile regression 

is recommended to predict the peak electricity demand as 

well. Gibbons and Faruqui [7] developed a method that used 

quantile regression to model the daily peak demand, and 

subsequently used a loss function to estimate a quantile for 

annual peak prediction. In order to model system 

uncertainty, inexactness and random daily 15-minutes peak 

power demand at distribution trans-formers, Nazarko and 

Zalewski [8] used a fuzzy regression model expressing the 

correlation between substation peak load and other customer 

explanatory variables.  

Lack of detailed data or limited dataset make difficulties 

in predicting future peak demand value which is critical for 

the dispatching center to handle current operations (short-

term forecasting) or to plan development and modernization 

of the power system (long-term forecasting). In such 

circumstances artificial neural networks (ANN) appear to be 

excellent technique to deal with noisy and incomplete data. 

ANN has been used to predict the hourly electricity 

consumption prediction model in Saudi Arabia [9], Nigerian 

Electrical Power System [10], the long-term demand of 

electricity in Turkey [11] and in Iran [12]. The multilayer 

perception model (MLP) to forecast the long-term energy 

consumption in Greece was applied by Ekonomou [13]. He 

compared the results of the model with those resulting from 

the support vector machine and the linear regression model. 

The applied model occurred very promising. Another 

comparative study among ARIMA, ANN and multiple linear 

regression (MLR) models was performed by Kandananond 

[14] who predicted long-term electricity demand in Thailand.  

Lastly, it is worth mentioning that analysis of the last 

decade of electricity demand data in European countries 

shows trend that the peak demand (largest daily demand) 

throughout the year usually occurs in the winter, during the 

weeks before Christmas or in the summer [15]. Factors 

causing this increase in electricity demand include the cold 

weather (increased use of electrical heating devices) or 

prolonged period of abnormally hot weather (increased use 

air conditioners). 

III. DATASET CHARACTERISTICS 

A. Load data 

This study was performed based on historical data 

representing energy consumption in Polish power system 

[16]. The data set included 70128 observations (hourly data) 

covering time span between January 1
st
, 2008 and December 

31
st
, 2015. Time series of the power system load exhibit 

annual, weekly and daily seasonal cycles as shown in Fig. 1. 

The daily curves differ in shape depending on the day type 

(workday, Saturday, Sunday) and season. Fig. 2 shows a 

smooth profile shape with relatively little electricity 

consumption in the early morning, a clearly defined peak in 

the evening and a slightly smaller defined peak in the late 

morning.  

Changes in the daily load shape and load level during the 

year are influenced by weather conditions including 

temperature, wind speed, cloud cover, humidity, 

precipitation and daylight hours. The weekly cycles are 

determined by workdays and holidays. The multiple seasonal 

cycles in the load time series as well as trend and 

nonstationarity in mean and variance have to be captured by 

a forecasting model. Electricity load when it is considered as 

time series cannot be modeled directly and additional 

treatments such as detrending, or decomposition are needed. 
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Fig. 3. Weekly average weather data in Warsaw in 2015 

 

Fig. 4. Weekly peaks identification in the load data based on the 99th 

quantile of the load distribution (November 2015 data) 

B. Weather data 

Weather is one of the most important independent 

variables for load forecasting, often described by 

temperature and humidity as presented in Fig. 3. The effect 

of weather is most prominent for domestic and agricultural 

consumers, but it can also alter the load profile of industrial 

consumers. Unexpected weather conditions are often cited as 

the tipping point that can cause unreliability in the system by 

decreasing the efficient supply of power. For instance, 

unpredicted thunderstorms in the middle of sunny day are 

one of the environmental factor that can decrease the 

temperature and thus causing overestimated load forecast 

[17], resulting in producing more power than required. 

Temperature can also alter the conductivity of the 

transmission lines. Thus, it can affect the overall carrying 

capability of the transmission lines. High temperature can 

increase not only the resistance of the transmission lines, but 

also it can influence the reactance of line, as well as induced 

expansion of transmission line length [18].  

There is a high positive correlation between temperature 

and load during summer season and there is a negative 

correlation between temperature and load during winter. This 

means that in the summer an increase in temperature will 

result in load increase whilst decrease in temperature will 

result in decrease in average daily load and also lowering the 

peak demand. In winter, the opposite trend is observed as 

decrease in per degree temperature will results in increase of 

electric load. This is because in summer increase in 

temperature affects consumers who use electricity for 

cooling purposes (air conditioners and fans), whereas in 

winter electricity is used for heating purposes. Hence, in 

winter there is negative or inverse relation between 

temperature and consumption volume [18]. 

Another weather factor influencing overall load is 

humidity. Formally, humid air was called not just the moist 

air but was referred as the mixture of water vapors and other 

constituents of air and humidity was defined in terms of 

water contents of this mixture called the absolute humidity 

[18]. In everyday life it is called relative humidity and is 

expressed in percentage. It is common observation that 

humidity can increase apparent temperature while it has no 

effect on the real temperature. This means humidity can 

make a 30 ̊C temperature to be felt say 35 ̊C. 

Although humidity has no effect on real temperature it can 

intensify the severity of hot climate. Therefore for the 

prediction of daily load at domestic consumers it is 

recommended to consider apparent temperature instead of 

real temperature. When dealing with mixed consumers, e.g. 

including industrial, agricultural and domestic, temperature 

humidity index can be employed as the factor influencing the 

load forecasting. 

Finally, due to the high redundancy between weather and 

load data, a proper features selection approach in this 

research has to be considered. 

C. Determining peak values 

In order to determine peak load values, the generic 

function quantile was used [19]. The function produces 

sample quantiles corresponding to the given probabilities by 

the weighted averaging of order statistics 
g

z : 

 ( ) 1
1

p g g
Q z zγ γ

+
= − + , (1) 

where np m gγ = + − , n  is number of observations, 

( )g floor np m= + and 1m p= − . 

In this study, peak load was determined as the load value 

equal or above 99th percentile for a given load distribution 

when grouping load in each week, as presented in Fig. 4. 

Black curve reflects real hourly electricity consumption 

observed in November 2015. Blue line shows average load 

within particular week, red line shows the behavior of 

threshold values above which the loads are recognized as 

peak values. Finally, green dots stand for peak load. 

IV. NUMERICAL EXPERIMENT 

A. Implementation and classification technique 

In our case, all the numerical calculations were performed 
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on personal computer with the following parameters: Ubuntu 

16.04 LTS operating system and Intel Core i5-2430M 2.4 

GHz, 2 CPU*2 cores, 8 GB RAM. R-CRAN [20], which is 

an advanced statistical package, as well as an interpreted 

programming language, was used as the computing 

environment. For training neural networks we used the 

BFGS algorithm, available in the nnet library [20]. A logistic 

function was used to activate all of the neurons in the neural 

network and initial vector with weights was chosen randomly 

using uniform distribution. 

To compare the neural networks obtained for different 

number of hidden neurons we used the following measures: 

(1) AUC (area under the Receiver operating characteristic 

(ROC) curve), (2) classification accuracy, (3) Sensitivity 

(true positive rate), (4) Specificity (true negative rate). Those 

measures are related to efficiency and effectiveness of the 

ANN and they have been often used for evaluation of 

classification models in the context of various practical 

problems such as credit scoring, income and poverty 

determinants or customer insolvency and churn [21]-[24]. 

The dataset was split into three parts which corresponded 

to the training, validation and testing samples with the 

following proportion. The training sample consisted of 6 

years between January 1
st
 2008, and December 31

st
 2013; the 

validation sample consisted of one year between January 1
st
 

2014, and December 31
st
 2014; and finally, the testing 

sample consisted also one year between January 1
st
 2015, 

and December 31
st
 2015. 

The main criterion taken into account while learning the 

models is to gain good generalization of knowledge with the 

least error. The most commonly used measure to assess the 

quality of binary classification problem is AUC. Therefore, 

to find the best parameters for all models and to assure their 

generalization, the following function was maximized: 

 ( )
1 1

,
2 2

T V T V Vf AUC AUC AUC AUC AUC= − − +  (2) 

where 
T

AUC  and 
V

AUC  stand for the training and 

validation errors, respectively. 

In contrast to other machine learning algorithms, ANN 

required special preparation of the input data. The vector of 

continuous variables has been standardized, while the binary 

variables were converted in a way that the value of 0 was 

transformed into -1. 

In the experiment we tried several neural network 

structures to get the best result. The number of neurons in 

hidden layer was proposed as a result of numerical 

procedure. We started neural network learning with small 

number of hidden units and then, successively, we increased 

number of neurons until no significant improvement in terms 

of models performance was observed (the number of neurons 

considered in the hidden layer was from 5 to 15). To avoid 

overfitting, after the completion of each learning iteration 

(with a maximum of 50 iterations - because already after 20 

iterations the difference in terms of AUC between the 

learning and validation set began to increase), the models 

were checked for the error measure defined in equation (2). 

At the end, the ANN characterized by the smallest error was 

chosen as the best model. In order to achieve robust 

estimation of models' error, for each number of hidden 

neurons, ten different ANN were learned with different 

initial weights vector. Final estimation of the error was 

TABLE 1.  

FEATURE VECTOR USED FOR MODEL ESTIMATION 

Attribute  

No. 
Description Formula 

1–5 Hour indicator (bits encoding) , 1,..., 24iG i =  

6–10 Day of the month indicator (bits encoding) , 1,...,31iD i =  

11–13 Day of the week indicator (bits encoding) , 1,...,7iT i =  

14–17 Month indicator (bits encoding) , 1,...,12iM i =  

18 Holiday indicator (dummy variable) S  

19 Sunset indicator (dummy variable) N  

20–43 Load of previous 24 hours , 1,..., 24g iZ i− =  

44–51 Average load observed over previous hourly intervals  { }[ 1],..., , 3,6,9,12,15,18, 21, 24g i g iavg W W i− − + =  

52–57 Load in the same hour of the previous week 
, , 2,...,7g d iZ i− =  

58–65 Linear trend of the load observed over previous hourly periods { }1,..., W , 3,6,9,12,15,18, 21, 24g g iTrend W i− − =  

66–73 Average temperature observed over previous hours { }1,...,T , 3,6,9,12,15,18, 21, 24g g iavg T i− − =  

74–81 Average temperature observed over previous hourly intervals { }[ 1],...,T , 3,6,9,12,15,18, 21, 24g i g iavg T i− − + =  

82–89 Average humidity observed over previous hours { }1,..., H , 3,6,9,12,15,18, 21, 24g g iavg H i− − =  

90–97 Average humidity observed over previous hourly intervals { }[ 1],..., H , 3,6,9,12,15,18, 21, 24g i g iavg H i− − + =  

Notation [+1] stands for the next element from the set of indices { }1,3,6,12, 24i  e.g. { }1 3,...,g gavg T T− −  or { }6 9,...,g gavg T T− − . Source: own preparation. 
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TABLE 2.  

THE RESULTS OF THE KOLMOGOROV–SMIRNOV STATISTICS FOR QUANTITATIVE VARIABLES 

Variable name 
K-S 

p-value 
Variable name 

K-S 

p-value 
Variable name 

K-S 

p-value 
Variable name 

K-S 

p-value 

t_1 0.0000 t_21 0.0000 d_2 0.0000 temp_avg_19_21 0.0005 

t_2 0.0000 t_22 0.0000 d_3 0.0000 temp_avg_22_24 0.0000 

t_3 0.0000 t_23 0.0000 d_4 0.0000 hum_avg_1_3 0.0000 

t_4 0.0000 t_24 0.0000 d_5 0.0000 hum_avg_4_6 0.0000 

t_5 0.0000 temp_1_3 0.0000 d_6 0.0000 hum_avg_7_9 0.0000 

t_6 0.0000 temp_1_6 0.0000 d_7 0.0000 hum_avg_10_12 0.0000 

t_7 0.0000 temp_1_9 0.0000 avg_1_3 0.0000 hum_avg_13_15 0.0000 

t_8 0.0000 temp_1_12 0.0022 avg_4_6 0.0000 hum_avg_16_18 0.0000 

t_9 0.0000 temp_1_15 0.1550 avg_7_9 0.0000 hum_avg_19_21 0.1383 

t_10 0.0000 temp_1_18 0.0718 avg_10_12 0.0000 hum_avg_22_24 0.0001 

t_11 0.0000 temp_1_21 0.0303 avg_13_15 0.0000 trend_1_3 0.0000 

t_12 0.0000 temp_1_24 0.0229 avg_16_18 0.0000 trend_1_6 0.0000 

t_13 0.0000 hum_1_3 0.0000 avg_19_21 0.0000 trend_1_9 0.0000 

t_14 0.0000 hum_1_6 0.0000 avg_22_24 0.0000 trend_1_12 0.0000 

t_15 0.0000 hum_1_9 0.0000 temp_avg_1_3 0.0000 trend_1_15 0.0000 

t_16 0.0000 hum_1_12 0.0000 temp_avg_4_6 0.0000 trend_1_18 0.0000 

t_17 0.0000 hum_1_15 0.0001 temp_avg_7_9 0.0489 trend_1_21 0.0000 

t_18 0.0000 hum_1_18 0.0191 temp_avg_10_12 0.0007 trend_1_24 0.0000 

t_19 0.0000 hum_1_21 0.1227 temp_avg_13_15 0.0000   

t_20 0.0000 hum_1_24 0.1610 temp_avg_16_18 0.0000   

Source: own preparation. 

computed as the average value over ten models and for each 

number of hidden neurons. 

B. Feature vector 

We focused on the next-day peak power demand 

detection. To forecast the peak, we constructed a feature 

vector with attributes as presented in Table 1. The attributes 

were constructed based on time series with hourly electricity 

demand. Additionally, other features were collected, 

including temperature, humidity, and calendar variables. 

Electricity demand varies over time depending on the time 

of day (daily cycles), day of the week (weekly cycles), day of 

the month (monthly cycles), season (seasonal cycles) and 

occurrence of holidays. Therefore, we enriched the analysis 

with additional 18 variables including 5 variables describing 

the hour, 5 variables associated with the day of the month, 3 

variables associated with the day of the week, 4 variables 

associated with the month, 1 variable indicating a holiday 

and 1 variable indicating the sunset in a particular hour. All 

above variables were derived in the following manner (bits 

encoding instead standard dummy encoding): first the 

categories were encoded as ordinal, then those integers were 

converted into binary code, then the digits from the binary 

string were split into separate columns. This encodes the data 

in fewer dimensions than standard dummy encoding.  

The main variables taken into account in the forecasting 

process are those derived directly from the time series. The 

features were created by the decomposition of the time 

series, and they define, among others, linear trend and actual 

demand at certain intervals, taking into account up to 7 days 

of the history. 

C. Feature selection 

In order to identify dependence between observed peak 

load and explanatory variables Kolmogorov–Smirnov 

statistics was applied as presented in Table 2. 

The Kolmogorov–Smirnov statistic quantifies a distance 

between the empirical distribution function of the sample and 

the cumulative distribution function of the reference 

distribution, or between the empirical distribution functions 

of two samples. In our case we derived two samples, i.e. 

distribution for peak cases and distribution for non-peak 

cases. Based on the obtained p-values it was identified that 

most of the considered features have different distributions 

within positive and negative cases. The only exceptions are 

observed for the following variables (0.05 statistical 

significance assumed): temp_1_15, temp_1_18, hum_1_21, 

hum_1_24 and hum_avg_19_21. 

Next, the Chi2 ( 2χ ) test was used to determine whether 

there is a significant difference between the expected and the 

observed frequencies in one or more categories of each 

independent variable and dependent variable. Each 

independent variable was divided into 10 disjoint groups 

based on the quantiles values of the particular distribution 

(based on deciles). Then each feature and dependent variable 

have created a contingency table 2×10. Finally, based on the 

aforementioned table, Chi2 test was applied. 

Proposed test showed that there is statistically significant 

dependence between independent variable and all dependent 

variables. On the other hand, in case of the categorical 

features, variables indicating holiday days and day of the 

month were not statistically significant (please refer to Table 

3 for details). 

The third approach to determine appropriate set of 
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TABLE 4.  

AUC VALUES FOR THE QUANTITATIVE VARIABLES 

Variable name AUC Variable name AUC Variable name AUC Variable name AUC 

t_1 0.744 t_21 0.551 d_2 0.677 temp_avg_19_21 0.53 

t_2 0.678 t_22 0.629 d_3 0.673 temp_avg_22_24 0.496 

t_3 0.663 t_23 0.689 d_4 0.74 hum_avg_1_3 0.615 

t_4 0.665 t_24 0.72 d_5 0.815 hum_avg_4_6 0.65 

t_5 0.644 temp_1_3 0.528 d_6 0.84 hum_avg_7_9 0.557 

t_6 0.608 temp_1_6 0.54 d_7 0.766 hum_avg_10_12 0.556 

t_7 0.56 temp_1_9 0.532 avg_1_3 0.701 hum_avg_13_15 0.61 

t_8 0.531 temp_1_12 0.514 avg_4_6 0.641 hum_avg_16_18 0.582 

t_9 0.514 temp_1_15 0.504 avg_7_9 0.535 hum_avg_19_21 0.508 

t_10 0.514 temp_1_18 0.514 avg_10_12 0.575 hum_avg_22_24 0.552 

t_11 0.573 temp_1_21 0.516 avg_13_15 0.709 trend_1_3 0.752 

t_12 0.638 temp_1_24 0.514 avg_16_18 0.688 trend_1_6 0.632 

t_13 0.687 hum_1_3 0.615 avg_19_21 0.529 trend_1_9 0.657 

t_14 0.714 hum_1_6 0.638 avg_22_24 0.684 trend_1_12 0.725 

t_15 0.708 hum_1_9 0.619 temp_avg_1_3 0.528 trend_1_15 0.786 

t_16 0.696 hum_1_12 0.578 temp_avg_4_6 0.549 trend_1_18 0.788 

t_17 0.69 hum_1_15 0.54 temp_avg_7_9 0.509 trend_1_21 0.731 

t_18 0.664 hum_1_18 0.517 temp_avg_10_12 0.543 trend_1_24 0.607 

t_19 0.608 hum_1_21 0.513 temp_avg_13_15 0.571   

t_20 0.53 hum_1_24 0.519 temp_avg_16_18 0.564   

Source: own preparation. 

TABLE 3.  

THE RESULTS OF THE CHI2 STATISTICS FOR THE CATEGORICAL 

VARIABLES 

Variable name 
Chi2 

p-value 

month 1.0000 

month_day 0.0977 

hour 0.0000 

week_day 0.0000 

holiday 1.0000 

sunset 0.0000 

Source: own preparation. 

independent variables was Area Under the ROC curve 

(AUC). In this case discriminatory power of each variable 

was check out in the following manner:  

• quantitative and ordinal variable were sorted in 

ascending order; categorical variables were sorted 

in ascending order based on the conditional 

probability of belonging into positive cases. 

• ROC curve was determined. The actual values of the 

sorted variable served as the score values of the 

classification model. 

• AUC measure was computed using trapezoidal 

integration. 

Final AUC values for all the features are presented in 

Table 4 (quantitative variables) or Table 5 (categorical 

variables). 

In the case of quantitative variables, the greatest 

discriminatory power can be assigned to: d_6, d_5, 

trend_1_18, trend_1_15, d_7, trend_1_3 and t_1 attributes. 

Out of categorical variables, two of them – hour and 

week_days – have the best performance.  

Obviously, there is a strictly linear dependence between 

some features, which means that the redundancy in the data 

could be observed. There is no need to include for instance 

variable t_4 and t_5 in final input vector, due to collinearity. 

Therefore, from the best set of attributes, the variables 

having Spearman correlation coefficient greater than 0.6 

were removed. Eventually, the final set of attributes is 

presented in Table 6. 

D. Results 

In order to benefit from the optimal score threshold which 

determine the peak (score above the threshold) or normal 

load (score below the threshold), Youden’s J statistic [25] 

was employed. The optimal cut-off is the threshold that 

maximizes the distance to the identity (diagonal) line. The 

optimality criterion is defined as: 

 ( )max sensitivities specifitities+  (3) 

In this research optimal cut-off was identified at 0.1111. 

The classification results obtained on training, validation 

and testing datasets are presented in Table 7 (upper and 

lower part). Importantly, the models exhibited stable 

performance in terms of the classification quality on all three 

datasets. For the testing sample the accuracy, which 

measures of how many correct forecasts the model makes, is 

up to 90.5%, and this is observed for the neural networks 

with six and eleven hidden neurons. The AUC measure for 

the models is ranging between 0.947 and 0.967. In terms of 

the sensitivity, which is proportion of peaks that are correctly 

identified as such, the results are ranging between 0.915 and 

0.962. Finally, specificity which measures the proportion of 

non-peaks that are correctly identified as such is ranging 

from 0.855 to 0.904.  

Taking into account that simpler model should be 

preferred over the complex one, the neural network with 9 
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TABLE 5.  

AUC VALUES FOR THE CATEGORICAL VARIABLES 

Variable name AUC 

month 0.504 

month_day 0.509 

hour 0.748 

week_day 0.678 

Source: own preparation. 

TABLE 6.  

THE FINAL SET OF ATTRIBUTES 

Variable name 

avg_1_3 

d_4 

d_6 

hour 

hum_avg_4_6 

hum_avg_13_15 

t_14 

t_18 

t_24 

trend_1_3 

trend_1_12 

trend_1_18 

week_day 

Source: own preparation. 

 

Fig. 5. Prediction results in October 2015. Color denotes the result of the 

classification as follows: True positive – green, False negative – red, False 

positive – yellow.  

hidden neurons represents fair tradeoff between the 

complexity and the classification quality. 

Additionally, to give also a graphical view on the 

performance of the proposed model with 9 neurons, one day-

ahead peak forecast obtained for the randomly drawn test 

period (five weeks in October 2015) is shown in Fig. 5. 

From the figure we can observe that the peak loads are 

correctly predicted in seven cases – green dots represent true 

positive classification. Three peak loads, marked as red dots, 

are incorrectly classified as a normal loads (false negative 

classification). Finally, in some cases (yellow dots), neural 

network claims that there will be peak load in one day ahead, 

but actually there was no peak (false positive classification). 

For the clarity of the Fig. 5 True negative class was not 

provided as it constitutes for the overwhelming majority. 

The results of the numerical experiments can be 

summarized as follows: 

• Peak demands in Poland are mostly affected by such 

features as day of the week, temperature, humidity, 

load in previous hours and the load trend observed 

in previous hours; 

• The best results were obtained for the neural network 

with 9 hidden neurons;  

• Predictive power of the model is considered to be 

excellent what was confirmed by AUC, accuracy, 

sensitivity and specificity measures; 

• High true positive rate confirms the models ability to 

correctly classify the real peaks in the system. 

V.  SUMMARY AND CONCLUDING REMARKS 

The research addresses the problem of predicting 

electrical consumption peaks as an input into load balancing 

and smart pricing strategies. This was done by mapping the 

problem into a binary classification task aimed to detect the 

peaks using the features based on previous consumption and 

the weather data. 

The contribution of this study provides the proof that 

models can capture the complex nonlinear effects of 

historical load, temperature, humidity and calendar effects. 

The classification results demonstrate that neural networks 

models perform remarkably well on the historical data. 

The most promising results were produced by applying 

artificial neural network with 9 hidden neurons what led to 

predicting 96.2% of the true peaks (sensitivity) as observed 

on the testing dataset. It is worth mentioning that the 

algorithm was to favor false positives over false negatives as 

the latter are having less impact on electrical power grids. 

This is because a false positive, which is predicting a peak 

that is not present, has significantly fewer consequences than 

not predicting peaks which are present. Thus, high true 

positive rate is much more favored after than high precision 

of the model. 

There are number of practical applications to make use of 

next-day peak power demand identification. Forecasts of the 

peak demand are useful for both, network capacity planning 

and investment decisions. In addition, the knowledge on the 

timing of the peak demand is important for network 

maintenance planning. An accurate classification can be used 

to improve decision making and the correct classification can 

reduce both costs and risks for the entities operating on the 

electricity markets. 
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TABLE 7.  

CLASSIFICATION RESULTS FOR THE NEXT-DAY PEAK POWER DEMAND 

Upper part 

Number 

of hidden 

neurons 

Average 

number of 

iterations 

Training sample Validation sample 
AUC Equation 

No 2 Accuracy AUC Sensitivity Specificity Accuracy AUC Sensitivity Specificity 

5 27.0 0.912 0.964 0.933 0.912 0.868 0.954 0.95 0.867 0.944 

6 22.2 0.911 0.969 0.952 0.911 0.886 0.963 0.96 0.885 0.956 

7 27.8 0.9 0.968 0.955 0.899 0.884 0.959 0.956 0.883 0.95 

8 25.2 0.906 0.973 0.958 0.906 0.888 0.963 0.956 0.887 0.953 

9 26.0 0.91 0.975 0.957 0.909 0.903 0.967 0.947 0.903 0.96 

10 22.6 0.885 0.957 0.934 0.885 0.878 0.948 0.922 0.877 0.94 

11 20.4 0.907 0.972 0.95 0.907 0.891 0.966 0.962 0.89 0.961 

12 21.2 0.872 0.957 0.945 0.872 0.858 0.944 0.941 0.857 0.932 

13 23.0 0.892 0.965 0.948 0.891 0.862 0.958 0.966 0.861 0.951 

14 23.4 0.899 0.969 0.957 0.899 0.87 0.962 0.981 0.869 0.956 

15 22.0 0.889 0.962 0.937 0.889 0.85 0.954 0.966 0.849 0.946 

 

Lower part 

Number of 

hidden 

neurons 

Test sample 

Accuracy AUC Sensitivity Specificity 

5 0.88 0.958 0.944 0.88 

6 0.905 0.956 0.915 0.904 

7 0.884 0.958 0.94 0.883 

8 0.886 0.963 0.95 0.885 

9 0.893 0.967 0.962 0.892 

10 0.856 0.948 0.94 0.855 

11 0.905 0.963 0.933 0.904 

12 0.863 0.947 0.938 0.862 

13 0.882 0.957 0.938 0.881 

14 0.868 0.96 0.962 0.867 

15 0.865 0.954 0.946 0.864 

Source: own preparation. 
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