
A Non-Speculative Parallelization of Reverse

Cuthill-McKee Algorithm for Sparse Matrices

Reordering

Thiago Nascimento Rodrigues,

Maria Claudia Silva Boeres, Lucia Catabriga

Federal University of Espírito Santo

Av. Fernando Ferrari, 514 - Goiabeiras, Vitória, 29.075-910, Brazil

Email: {tnrodrigues, boeres, luciac}@inf.ufes.br

Abstract—This work presents a new parallel non-speculative
implementation of the Unordered Reverse Cuthill-McKee algo-
rithm. Reordering quality (bandwidth reduction) and reordering
performance (CPU time) are evaluated in comparison with
a serial implementation of the algorithm made available by
the state-of-the-art mathematical software library HSL. The
bandwidth reductions reached by our parallel RCM were more
than 90% for several large matrices out of the ones tested, and the
time reordering improvement was up to 57.82%. Speedups higher
than 3.0X were achieved with the parallel RCM. The underlying
parallelism was supported by the OpenMP framework and three
strategies for reducing idle threads were incorporated into the
algorithm.

I. INTRODUCTION

C
OMPUTATION involving sparse matrices have been of

widespread use since the 1950s, and its application

includes electrical networks and power distribution, structural

engineering, reactor diffusion, and, in general, solutions to

partial differential equations [1]. The typical way to solve such

equations is to discretize them, i.e., to approximate them by

equations that involve a finite number of unknowns. The linear

systems that arise from these discretizations are of the type

Ax = b, in which A is a large and sparse matrix, that is, it

has very few nonzero entries.

In order to simplify the solution of this type of system,

the bandwidth minimization plays an efficient role. This pre-

processing method consists of finding a permutation of rows

and columns of a matrix which ensures that nonzero elements

are located in as narrow a band as possible along the main

diagonal. The sparsity of the matrix is not changed by permu-

tations. In this way, let A be a structurally symmetric matrix,

i. e., if aij 6= 0 then aji 6= 0, but not necessarily aij = aji,

whose diagonal elements are all non-zero. The bandwidth

of A denoted by β(A) is defined as the greatest distance

from the first nonzero element to the diagonal, considering

all rows of the matrix [1]. More formally, for the ith row

of A, i = 1, 2, . . . , n, let fi(A) = min{j | aij 6= 0}, and

bi(A) = i− fi(A). So, β(A) = max
i=2,3,...,n

{bi(A)}.

Since Papadimitrou [2] proved that the bandwidth mini-

mization problem is NP-complete, several heuristic algorithms

have been presented in the literature aiming to find good

quality solutions as fast as possible. An important class of

these algorithms treats a matrix bandwidth reduction under

the perspective of a graph labeling problem. In this way,

reordering a sparse matrix is considered a problem of labeling

the vertices of the corresponding graph in such way that closest

labels are assigned to most linked vertices.

The Reverse Cuthill-McKee (RCM) is a traditional heuris-

tic for the bandwidth reduction problem. It was originally

presented by [3], and a performance modification for it was

proposed by [4] posteriorly. The approach based on looking

into a corresponding graph structure is also explored by several

other algorithms. Some of the most often referred for the

bandwidth minimization problem are Sloan [5] and GPS [6].

They are also able to provide quality solutions in an efficient

way.

Classically, algorithms like the aforementioned implement

the matrix reordering in a serial way. Nevertheless, the ad-

vances toward the massive use of multi-core processors on sci-

entific computation has leveraged significant performance im-

provements related to the solution of sparse matrices problems.

In this context, in 2014 [7] described the first parallelization

of the RCM algorithm, which was based on the speculative

parallel model. In this parallelism model, a runtime system de-

tects dependence violations between concurrent computations

and rolls back conflicting computations as needed [8]. As the

RCM is organized around a graph, which is implemented as a

pointer-based data structure, it is considered as an irregular

algorithm [9]. Algorithms of this type exhibit a complex

pattern of parallelism which must be found and exploited at

runtime [10]. To explore this kind of parallelism and to reduce

the programming burden, [7] use the Galois system [11] which

gives support to the speculative parallelism.

Making use of another parallel model, this paper proposes

a non-speculative OpenMP-based implementation of the Un-

ordered Parallel RCM algorithm presented by Karantasis et

al. [7]. This implementation strategy was considered once the

non-speculative parallel model is the traditional manner to

speedup every type of algorithm, and the OpenMP [12] frame-

work for parallelism is widely used in industry as well as in

academia. To reach an efficient non-speculative parallelization

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 527–536

DOI: 10.15439/2017F179

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 527

of the RCM, three optimizations for reducing idle threads were

incorporated into the implemented algorithm. The performance

evaluation of the Unordered RCM algorithm was against the

HSL [13], a state-of-the-art mathematical software library that

contains a collection of Fortran codes for large-scale scientific

computations.

The outline of the paper is as follow. In the next sec-

tion, an efficient sparse matrix storage format is described.

Section III is dedicated to detailing an auxiliary parallel

algorithm implemented for pseudo-peripheral nodes finding.

The Unordered Parallel RCM algorithm is presented in the

subsequent section, as well as the optimizations proposed by

this work. In Section V, all tests and achieved results are

described. Conclusions and future works are addressed in

Section VI.

II. OPTIMIZED STORAGE FORMAT

In many scientific computations, the manipulation of sparse

matrices is considered the crux of the design. Generally,

the nonzero elements in a sparse matrix constitute a very

small percentage of data. This irregular nature of sparse

matrix problems has led to the development of a variety of

compressed storage formats. The Compressed Sparse Row

(CSR) used in this work is an important sparse matrix storage

method which has been widely applied in most sources [1].

Storing a given matrix A with a CSR scheme requires three

one-dimensional arrays AA, JA and IA of length nnz, nnz,

and n+1 respectively, where n is the number of rows and nnz

is the total number of nonzero elements in the matrix A [14].

The content of each array is as follow. Figure 1 illustrates this

technique.

• Array AA: contains the nonzero elements of A stored

row-by-row.

• Array JA: contains the column indexes in the matrix A

which correspond to the nonzero elements in the array

AA.

• Vector IA: contains n+1 pointers which delimit the rows

of nonzero elements in the array AA. The last position

of the vector stores the number of nonzero elements of

the matrix plus one.

A =

1 1 5 0 0
3 4 0 0 0
6 0 7 8 9
0 0 3 6 0
0 0 2 0 5

AA 1 1 5 3 4 6 7 8 9 3 6 2 5

JA 1 2 3 1 2 1 3 4 5 3 4 3 5

IA 1 4 6 10 12 14

Fig. 1: Example of a matrix A represented in CSR format.

III. PARALLEL PSEUDO-PERIPHERAL NODE FINDING

Empirical data show that the quality of reordering algo-

rithms are highly influenced by the nodes chosen as the source

for Breadth-First Search (BFS) and RCM algorithms [15].

Often, a heuristic is used for this purpose. Thus, considering

d(x, y) the distance between vertices x and y in a graph G,

i.e., the length of the shortest path between x and y, the

graph diameter is defined as δ(G) = max{d(x, y)| x, y ∈
vertices of G}. Then, ideally, one of two nodes in a pair

(x, y) that achieves the diameter, denoted as peripheral nodes,

can be used as a starting point. However, these nodes are

expensive to determine. Instead, a pseudo-peripheral node,

which has approximately the greatest distance from each other

in the graph, is picked up as source node for constructing the

level set structure1 of these algorithms.

Moreover, the nodes choice strategy employed in order

to select ones to be expanded at each search level also

impacts significantly on the reordering quality. In this work,

the pseudo-peripheral node finding heuristic described by [16]

was implemented for the RCM algorithm. The pseudo-code is

presented in Algorithm 1.

Algorithm 1 Parallel Pseudo-Diameter Algorithm

Input: Graph g, ShrinkingStrategy strategy, float CHUNK

Output: Node start, Node end

1: BFS forwardBFS, reverseBFS;

2: GraphDiameter diameter;

3: diameter.start = graph.vertexOfMinimunDegree();

4: diameter.end = -1; {

5: forwardBFS = Parallel_BFS(g, diameter.start, CHUNK);

6: int localDiameter = forwardBFS.height();

7: List candSet = forwardBFS.verticesAt(localDiameter);

8: candSet = strategy.shrink(candSet);

9: int minWidth = MAX_INT;

10: foreach (Node candidate : candSet) {

11: reverseBFS = Parallel_BFS(g, candidate, CHUNK);

12: if (reverseBFS.width < minWidth) {

13: if (reverseBFS.height > localDiameter) {

14: diameter.start = candidate;

15: diameter.end = -1;

16: break;

17: else

18: minWidth = reverseBFS.width;

19: diameter.end = candidate;

20: } } }

21:

22: } while (diameter.end == -1);

23: if (forwardBFS.width > reverseBFS.width)

24: return (diameter.end, diameter.start);

25: return (diameter.start, diameter.end);

1A level set structure of a graph is defined recursively as the set of all
unmarked neighbors of all nodes of a previous level set. Initially, a level set
consists of one node.

528 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

The pseudo-diameter computation uses two BFS engines

(line 1). The forwardBFS always uses the current start

vertex as root. The reverseBFS variable uses candidates for

the end vertex as root. Initially, the start node is chosen to

be any vertex of smallest degree (line 3) and the end node is

unknown (line 4). Next, the algorithm enters the main outer

loop which does not exit until a suitable end node has been

determined and all candidates have been exhausted. For each

iteration of the outer loop, a forward breadth-first search (line

6) is performed, the current diameter is set as the height of

the level structure, and the list of all vertices that are in the

farthest level set (candSet) is gotten (line 8).

According to [16], the most important optimization incor-

porated by this algorithm is the shrinking strategy (line 9).

Instead of performing a reverse breadth-first search on all

vertices that are farthest away from the start vertex, it is much

faster to only try a selected subset. For this work, the heuristic

of choosing a single vertex of each degree was adopted [17].

Therefore, after applying a shrinking strategy, the list of

candidate nodes is processed. For each candidate for end

vertex in candidate list (line 11), a reverse breadth-first search

is done. As the aim is to find out the candidate whose reverse

breadth-first search has the minimum width, so a local variable

minWidth is initialized to an arbitrarily large number (line

10). If it is found a candidate that has a narrower level structure

than the forward breadth-first search, then this candidate vertex

is promoted to the new start vertex (line 15) and the algorithm

is restarted. The break in line 17 affects only the inner loop

(lines 11-21) and jumps to the line 36. Since diameter.end

is still undetermined, the outer loop (lines 5-21) starts a new

iteration. If the reverse breadth-first search is narrower than

the most narrow reverse breadth-first search so far (line 18),

then a new minimum width has been found (line 19), and the

candidate is chosen as the end vertex (line 20).

It is important to observe that the main computation to

calculate the pseudo-diameter is performing multiple BFS

(lines 5 and 11). In this work, the Unordered Parallel BFS

(Algorithm 2) presented in the next section is used as a

way to parallelize this essential step of the pseudo-peripheral

node finding algorithm. The other steps of this algorithm are

executed sequentially.

IV. UNORDERED PARALLEL RCM ALGORITHM

The serial Cuthill-McKee algorithm [3] is based on a BFS

strategy, in which the graph is traversed by level sets. As

soon as a level set is traversed, its nodes are marked and

numbered. The neighbors of each of these nodes are then

inspected. Each time, a neighbor of a visited vertex that is

not numbered is encountered, it is added to a list and labeled

as the next element of the next level set. The order in which

each level itself is traversed gives rise to different orderings

or permutations of rows and columns. In the Cuthill-McKee

ordering, the nodes adjacent to a visited node are always

traversed from the lowest to the highest degree [1]. However,

in 1971, the Reverse Cuthill-McKee algorithm was presented

by [4]. It was empirically observed that reversing the Cuthill-

McKee ordering yields a better permutation scheme for matrix

reordering problems.

The Unordered Parallel RCM proposed by [7] is based on

the construction of a level structure, and an RCM-valid per-

mutation is built after a complete level structure is computed.

The four major algorithms steps are presented and detailed in

the next sections.

A. Unordered Breadth-First Search (Step 1)

Algorithm 2 presents the non-speculative Unordered BFS

including three proposed optimizations. The key aspect of

the approach in which the algorithm is based on relates the

level of a node with a local minimum in the graph. In fact,

excepting the root, the level value of a node corresponds to the

highest level among neighbors added of one [18]. Thus, the

level computation for a node n may be described as a fixpoint

system2:

Initialization:

level(root) = 0; level(k) = ∞, ∀k other than root;
Fixed Point Iteration:

level(n) = min(level(m) + 1), ∀m ∈ neighbors of n.

In order to explore this feature, an unordered worklist (wl)

structure must by maintained by the algorithm. A structure of

this type makes possible any node to be picked up. Thereafter,

the algorithm is able to process several nodes in parallel. As

the iteration over the main worklist (wl) do not have a strict

order, it may happen that a node is temporarily assigned a

level that is higher than the final value. However, the level

will monotonically decrease until it reaches the correct value

(a fixed point). This step of repeatedly taking a closest known

vertex u and testing if level[v] ≤ level[u] + 1 for all of its

v neighbors (lines 19-25), is called node relaxation, which

relaxes constraints on the shortest path between two nodes.

Particularly, the absence of order in the node iteration and

the fact that nodes can be relaxed many times characterize a

chaotic relaxation [20].

d:∞ c:∞

a:1 b:1

r:0

d:3 c:2

a:1 b:1

r:0

d:2 c:2

a:1 b:1

r:0

(i) (ii) (iii)

Fig. 2: Fixed Point Iteration Example.

Figure 2 describes an example of the chaotic relaxation

process executed by speculative BFS. At the step (i), the root r

2A fixed point iteration x(k+1) := f(x(k)) yields a decreasing (increas-
ing) monotonic sequence which converges to a fixed point x∗ such that
f(f(. . . f(x∗) . . .)) = fn(x∗) = x∗ [19].

THIAGO NASCIMENTO RODRIGUES ET AL.: A NON-SPECULATIVE PARALLELIZATION OF REVERSE CUTHILL-MCKEE ALGORITHM 529

Algorithm 2 Parallel Unordered BFS Algorithm

Input: Graph G, Node root, float CHUNK

1: Worklist wl = ∅;

2: ENQUEUE(wl, root);

3: parallel while (wl 6= ∅ ∨ hasUnreachedNodes) {

4: // Shifting head

5: atomic {

6: localHead = wl.head;

7: localTail = wl.tail;

8: sizeChunk = CHUNK * (localTail - localHead);

9: wl.head += sizeChunk;

10: }

11: // Work Chunking

12: Worklist localwl;

13: while (localwl.size() < sizeChunk) {

14: Node v = wl.dequeueAtPosition(localHead++);

15: ENQUEUE(localwl, v);

16: }

17: // Fixed Point Iteration

18: Workset relaxedwl;

19: foreach (Node n: localwl) {

20: int level = n.getLevel() + 1;

21: foreach (Node v: G.neighbors(n)) {

22: if (level < v.getLevel()) {

23: atomic v.setLevel(level);

24: ENQUEUE(relaxedwl, v);

25: } } }

26: // Relaxing nodes

27: foreach (Node m: relaxedwl)

28: atomic ENQUEUE(wl, m);

29: }

has been processed (colored black) and nodes a and b in gray

are actives in the global list. In the intermediate step (ii), node

b has randomly been selected from the global list. After the

activation of node c by b, it has been picked up from the global

list instead of the another possible active node a. Because of

this unordered choice, the node d has become active and its

level has temporarily been set as three. In the last step (iii),

the last active node a has been selected from the global list

and it has updated the level of its neighbor d with the correct

value.

In this work, two optimizations suggested by Hassaan,

Burtscher, and Pingali [18] (Work chunking and Wasted work

reduction) and a new proposed one (Shifted head) were

applied in the implemented Unordered BFS algorithm. Each

implemented optimization is detailed below.

1) Work chunking (lines 12-16). To reduce the overhead

of accessing the main worklist, it was adopted the

strategy of making each thread able to remove a chunk

of active elements from the worklist instead of just one

element. In this way, a newly created worklist is cached

locally by each thread, and after the entire local chunk is

processed (fixed point iteration), a set of new activated

(relaxed) nodes is generated. This newest worklist is

discharged into the main worklist by the respective

thread. With this optimization, each synchronization is

executed by a chunk of nodes rather than node by node.

2) Wasted work reduction (lines 14 and 28). It was

implemented a strategy to reduce the time wasted by

each waiting thread (idle threads) in which all threads

remove active elements from one end of the worklist

and add to the other. The concurrent access of each

worklist end is managed by two distinct access lock.

Naturally, this approach relaxes the strict order in which

the worklist is processed. However, to ensure this strict

order increases the access time of the worklist beyond

the benefit of reducing the amount of wasted work.

3) Shifted head (lines 5-10). Aiming the reduction of the

lock time spent by each thread, it was implemented an

optimization in which the worklist head is shifted to the

first position after the chunk size of the current thread.

After this shifting, the access lock to the worklist head

is released, and the thread starts the dequeue operation

itself. Concomitantly, another different thread grabs the

access lock and carries out a subsequent head shifting.

Such modifications led to the non-speculative parallel ver-

sion of BFS algorithm (Algorithm 2). The parallelism begins at

line 3 where threads are triggered. The shifted head optimiza-

tion is carried out by the first atomic section of the algorithm

(lines 5 to 10). Every time a thread reaches this region, it stores

locally the current memory position of the head (localHead)

and the tail (localTail) of the global main worklist wl. In turn,

the global head is shifted sizeChunk positions. The next two

stages of the algorithm, work chunking (lines 12-15) and fixed

point iteration (lines 18-25), are executed concurrently by each

thread. In fact, the cached locally worklist (localwl) makes

possible the independent nodes processing in each scope of

thread. In the second synchronization point of the algorithm

(lines 27-28) there is no any dependence with the first one

(shifting head). Because of this, the algorithm is able to reduce

the idle time of threads.

v0 v1 v2 v3 v4 v5 v6 v7 v8

th0

(dequeue)

head

th1

trail

th2

(enqueue)

Fig. 3: Multithreading FIFO queue.

Figure 3 describes an iteration of the implemented parallel

BFS. At the execution point presented by the figure, a thread

th0 has executed a shifting head and is carrying out the

dequeue operation of all its corresponding nodes (red positions

530 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

v1, v2, v3). At this moment, the access lock of the main

worklist head has already released by th0 and, furthermore

has already grabbed by th1. Concomitantly, a thread th2 is

executing the respective enqueueing of the nodes processed by

it. It is important to notice that all three threads are performing

their corresponding operations in a completely parallel way.

The synchronization happens just when th1 must wait the

shifting head executed by th0.

B. Counting Nodes by Level (Step 2)

Computing the number of nodes per level of a graph in a

parallel way can be separated in three stages as described by

the Algorithm 3 originally presented by [7].

Algorithm 3 Parallel Counting Nodes by Level Algorithm

Input: Graph G

Output: Array counts, int max_level

1: foreach (Node n : G) {

2: local_count[th_id][n.level]++;

3: local_max[th_id] = max(local_max[th_id], n.level);

4: }

5: foreach (int id : threads) {

6: max_level = max(max_level, local_max[id]);

7: }

8: foreach (int l : [0:max_level]) {

9: foreach (int id : threads) {

10: counts[l] += local_count[id][l];

11: } }

12: return [counts, max_level]

nodes 1 2 3 4 5 6 7 8 9 10

level: 4 0 5 3 1 4 5 3 2 4

(a)

th1: level 4 5 0 3

local_count 1 1 1 1

th2: level 1 4 5

local_count 1 1 1

th3: level 3 2 4

local_count 1 1 1

(b)

level 0 1 2 3 4 5

count 1 1 1 2 3 2

(c)

Fig. 4: Example of parallel counting nodes by level.

In the initial stage, all nodes of the graph are divided among

the set of threads. Each thread counts locally how many nodes,

from its respective subset of nodes, belong to each level.

Moreover, a local maximum level is determined by each thread

(lines 1-4). In the subsequent stage (lines 5-7), the global

maximum level is computed through the comparison of each

maximum local level of each thread. In the final stage (lines 8-

10), as the number of levels of the graph is already computed,

thus a range of levels is assigned to each thread that, in turn,

counts how many nodes were computed by all threads in its

respective range. The result is stored in the global counts

array.

Figure 4 describes an example of the parallel process of

counting nodes per level. The respective level of each node is

stored in the array of Figure 4(a). In Figure 4(b), a range of

the levels is assigned to each one of three threads (th1, th2,

th3) and the number of nodes by level is locally computed.

The Figure 4(c) presents the final array as a result of the merge

of each locally counting carried out by the threads.

C. Prefix Sum (Step 3)

In this work, the Algorithm 4 was implemented for the

prefix sum3 calculus. It is based on the algorithm proposed

by [21]. Initially, each thread computes the prefix sums of

the n
p

elements it has locally (lines 3-5). The total number of

elements (n) corresponds to the maximum level (max_level)

accounted for by the previous step of the Unordered RCM

algorithm. The value p is related to the number of threads.

Algorithm 4 Parallel Prefix Sum Algorithm

Input: Array counts, int max_level

Output: Array prefix_sum

1: int num_changes = log2(threads.size());

2: int chunk = threads.size() / max_level;

3: for (int i = thId; i < thId + chunk; i++) {

4: prefix_sum[i] = prefix_sum[i-1] + counts[i];

5: }

6: cPrefix[thId] = cTotal[thId] = prefix_sum[thId + chunk];

7: lPrefix[thId] = lTotal[thId] = prefix_sum[thId + chunk];

8: for (i = 0; i < num_changes - 1; i++) {

9: thId’ = thId ⊗ 2i;
10: if (thId’ < threads.size() ∧ thId’ 6= thId) {

11: if (thId’ < thId) {

12: lPrefix[thId’] += cTotal[thId];

13: lTotal[thId’] += cTotal[thId];

14: else

15: lTotal[thId’] += cTotal[thId];

16: }

17: cPrefix[thId] = lPrefix[thId];

18: cTotal[thId] = lTotal[thId];

19: } }

20: for (int i = thId; i < thId + chunk; i++)

21: prefix_sum[i] += lPrefix[i];

22: return prefix_sum;

In the second phase of the algorithm, the last prefix sum

of each thread is assigned to four arrays (lines 6-7) which are

responsible for guiding the data exchanging process among the

threads. In fact, the local prefix sum values are exchanged and

each thread accumulates the respective received value (lines 8-

19). The rule to determine a pair of threads that are going to

communicate is through a XOR (exclusive OR, denoted by ⊗)

3The prefix sum operation takes a binary associative operator ⊕, and an
ordered set of n elements [a0, a1, . . . , an−1] and returns the ordered set
[a0, (a0 ⊕ a1), . . . , (a0 ⊕ a1 ⊕ . . .⊕ an−1)].

THIAGO NASCIMENTO RODRIGUES ET AL.: A NON-SPECULATIVE PARALLELIZATION OF REVERSE CUTHILL-MCKEE ALGORITHM 531

bitwise operation between the unique identifier of the sender

thread and a constant related to the group of the receiver thread

(line 9). Finally, each thread combines the result from the

accumulated prefix sums with each local prefix sum initially

computed (lines 20-21).

40

09

40

17

40

20

40

22

40

29

40

30

40

36

40

40

22

09

22

17

22

20

22

22

18

07

18

08

18

14

18

18

17

09

17

17

05

03

05

05

08

07

08

08

10

06

10

10

09

09

08

08

03

03

02

02

07

07

01

01

06

06

04

04

09 08 03 02 07 01 06 04

0
0

0
0

0
0

0
1

0
0

1
0

0
0

1
1

0
1

0
0

0
1

0
1

0
1

1
0

0
1

1
1

Ti

si

Ti

si

Ti

si

Ti

si

xi

Fig. 5: Parallel prefix sum example.

Figure 5 presents an example of the implemented parallel

prefix sum algorithm. The prefix sum is carried out by a set of

eight threads (the unique identifier of each thread is shown in

binary notation). The values indicated by xi line correspond

to the values initially assigned to each thread i = 1, . . . , 8. In

the other words, the prefix sum is going to be executed on the

ordered xi set. Each line labeled with si is related to the prefix

sum value stored by the thread i. The label Ti indicates the

total sum value calculated by a thread i. The parallel prefix

sum is executed in three phases of data exchanging. In the first

one, threads are divided among groups of size two, and the

data exchanging carries out inside each group. In the second

and third phases, the group size is increased to four and eight

respectively. When the unique identifier of a sender thread is

lower than a receiver thread, both the values of local prefix

sum and local total sum are updated. Otherwise, only the local

prefix sum of the receiver thread is incremented.

D. Nodes Placement (Step 4)

The fourth step is described by the Algorithm 5. It was

originally proposed by [7]. The underlying concept behind

the operation of this phase is the pipelining of threads actions

among the levels of the graph. For this, one thread is assigned

for each level, and the communication among them takes place

in pairs: a thread responsible for a level l plays a producer

(writer) role, while a thread assigned to the level l+1 acts as

a data consumer (reader). Every read/write operation happens

over the permutation array. The controller of this implemented

producer/consumer paradigm is done through the prefix sum

array (sums) generated in the previous step. Two copies

(read_offset and write_offset) of this array are created

(line 1) in order to control the number of nodes to read from

a level, and the number of nodes to write from the next level.

The original sums array is never changed once its values are

used as bounds for threads operations.

The process starts assigning the source node to the first

position of the permutation array. As there is a write op-

eration related to the level 0, the corresponding position

in write_offset array is incremented (line 3). Thereafter,

every time the read_offset[l] is different of sums[l + 1]
(line 6), the thread assigned to the level l becomes able

to read the node from the permutation array at position

read_offset[l] (line 8). Actually, this condition indicates that

there are sums[l+1]− read_offset[l] nodes whose children

must be placed in the permutation array. In this way, the

reading of each node at level l generates an increment of the

read_offset array at position l (line 9). Next, the respective

thread gets the neighbors of the read node (line 10), sort them

by degree (line 11), and place them in the permutation array

(line 13). Each write operation produces an increment of the

write_offset array at position l+1 (line 14). Therefore, this

pipeline makes possible the construction of the permutation

array in a parallel way: while a thread writes the children

nodes from a level l in the permutation array, another thread

reads these ones in order to write the corresponding neighbors

of them at level l + 1 in the permutation array.

Algorithm 5 Parallel Nodes Placement Algorithm

Input: Graph G, Node source, int dist, Array sums

Output: Array perm

1: int read_offset = write_offset = sums;

2: int perm[0] = source;

3: write_offset[0] = 1;

4: foreach (int thread : threads) {

5: for (int l = thread; l < dist; l += threads.size()) {

6: while (read_offset[l] 6= sums[l + 1]) {

7: while (read_offset[l] == write_offset[l]) { }

8: Node n = perm[read_offset[l]];

9: ++read_offset[l];

10: children = G.neighborsAtLevel(n, level+1);

11: sort(children); // Sort children by degree

12: foreach (Node c : children) {

13: perm[write_offset[l+1]] = c;

14: ++write_offset[l+1];

15: } } }

532 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

V. EXPERIMENTAL RESULTS

The program was coded in the C language and the paral-

lelism was supported by OpenMP framework - version 4.0.

The experiments were performed on a PC running Ubuntu

Linux, version 14.04.5 LTS, with Kernel version 3.19.0-31. It

consists of one Intel i7-3610QM processor of 4 cores (two

threads per core), operating at 2.3 GHz. Each core has a

unified 256KB L2 cache and each processor has a shared

6MB L3 cache. The PC contains 8GB of main memory and

the code was compiled with GCC version 5.4.0, and with the

−O3 optimization flag turned on. The complete source code

is available on GitHub repository [22].

A. Methodology

A set of twenty structural symmetric and square matrices

was selected from the University of Florida Sparse Matrix

Collection [23]. These matrices cover multiple types of prob-

lems in order to increase the dataset variety and the percentage

of sparsity of each one is higher than 99.95%. The set of

tested matrices is shown in Table I. The columns tabulate the

matrice’s name, as well as the dimension, the number of non-

zeros, and the average of non-zeros per row (NNZ/row) of

them.

TABLE I: Tested sparse matrices.

Matrix Dimension Non-zeros NNZ/row

01 m_t1 97,578 9,753,570 100

02 filter3D 106,437 2,707,179 25

03 SiO2 155,331 11,283,503 73

04 d_pretok 182,730 1,641,672 9

05 CO 221,119 7,666,057 35

06 offshore 259,789 4,242,673 16

07 Ga41As41H72 268,096 18,488,476 69

08 F1 343,791 26,837,113 78

09 mario002 389,874 2,097,566 5

10 msdoor 415,863 19,173,163 46

11 inline_1 503,712 36,816,170 73

12 gsm_106857 589,446 21,758,924 37

13 Fault_639 638,802 27,245,944 43

14 tmt_sym 726,713 5,080,961 7

15 boneS10 914,898 40,878,708 45

16 audikw_1 943,695 77,651,847 82

17 nlpkkt80 1,062,400 28,192,672 27

18 dielFilterV2real 1,157,456 48,538,952 42

19 Serena 1,391,349 64,131,971 46

20 G3_circuit 1,585,478 7,660,826 5

The algorithms were performed five times for each pair

(mi, tj), where mi is a sparse matrix, and tj is the number

of threads between 1 and 12 (in steps of 2). For each (mi, tj)
tested pair, the average was calculated from the reported

values. In order to confront the algorithms, for each matrix

mi, it was selected the number of threads tj that reached the

best value considering the CPU time. The Compressed Sparse

Row format (Section II) was the mechanism used to store each

tested matrix. For the starting point of the algorithms (source

node), it was used a pseudo-peripheral node obtained by

the heuristic described in Section III. Moreover, the speedup

S computed for the parallel RCM algorithm was calculated

according to expression S(n) = T1

Tn

, where T1 is the run-time

of the parallel RCM executed with one thread, and Tn is the

run-time of the same algorithm executed with n threads.

B. Environment Variables Setup

Some OpenMP variables that affect the execution of

OpenMP programs were configured to guide the threads be-

havior. According to OpenMP Language Working Group [24],

all settings must be done before the program has started.

Otherwise, modifications to the environment variables are

ignored. In this work, the OpenMP configured variables are

described below.

• OMP_DYNAMIC: This environment variable controls

dynamic adjustment of the number of threads inside

parallel regions. As the executed experiments involve

a specific number of threads, this variable was set to

FALSE.

• OMP_WAIT_POLICY: It provides a hint to the

OpenMP implementation about the desired behavior of

waiting threads. For all experiments of this work, the

behavior of waiting threads was set to PASSIVE. This

value specifies that waiting threads should mostly be

passive, not consuming cycles, while waiting.

• OMP_PROC_BIND: It enables or disables threads bind-

ing to processors. In this work, the value TRUE was

defined for this variable. With this configuration, the

execution environment does not move OpenMP threads

between OpenMP places.

C. Reordering Quality

Table II shows reordering quality (final bandwidth columns)

comparison between the serial HSL library and the im-

plemented Unordered Parallel RCM algorithm (URCM).

Columns reduction display the bandwidth percentage reduc-

tion attained by each algorithm in relation to the original

bandwidth value.

TABLE II: Bandwidth Comparison after Reordering

Matrix Final Bandwidth Reduction (%)

Name Bandwidth HSL URCM HSL URCM

m_t1 6,482 6,807 6,482 -5.01 0.00

filter3D 8,276 3,492 3,613 57.81 56.34

SiO2 55,068 21,647 19,572 60.69 64.46

d_pretok 129,917 2,564 2,577 98.03 98.02

CO 26,470 20,734 19,116 21.67 27.78

offshore 237,738 23,923 21,617 89.94 90.91

Ga41As41H72 40,195 35,164 34,139 12.52 15.07

F1 343,754 14,970 10,052 95.65 97.08

mario002 387,647 1,191 1,178 99.69 99.70

msdoor 291,114 6,088 5,823 97.91 98.00

inline_1 502,403 6,468 6,002 98.71 98.81

gsm_106857 588,744 18,132 17,742 96.92 96.99

Fault_639 19,988 17,016 15,749 14.87 21.21

tmt_sym 1,921 1,141 1,139 40.60 40.71

boneS10 8,969 15,789 13,751 -76.04 -53.32

audikw_1 925,946 39,441 35,102 95.74 96.21

nlpkkt80 550,481 37,522 37,445 93.18 93.20

dielFilterV2real 948,032 18,014 18,045 98.10 98.10

Serena 81,578 81,360 81,647 0.27 -0.08

G3_circuit 947,128 5,069 5,069 99.46 99.46

THIAGO NASCIMENTO RODRIGUES ET AL.: A NON-SPECULATIVE PARALLELIZATION OF REVERSE CUTHILL-MCKEE ALGORITHM 533

(a) SiO2 (b) d_pretok (c) offshore

(d) inline_1 (e) audikw_1 (f) G3_circuit

Fig. 6: Sparse matrix pattern yielded by the Unordered RCM.

The results displayed in Table II highlight the efficiency

of the implemented algorithms for solving the bandwidth

minimization problem. The HSL’s sequential RCM and the

Unordered RCM produce very similar bandwidth numbers.

The HSL library reached a better solution only for four

matrices. For eleven matrices, the percentage of bandwidth

reduction attained by the URCM algorithm was higher than

90%. For the other matrices, there was a lower bound of

15.07% for the bandwidth reduction. Just three exceptions

were observed: (i) Despite the URCM has not reached any

bandwidth reduction with the m_t1 matrix, the result achieved

by HSL was worse. The library increased the matrix band-

width; (ii) For the boneS10 matrix, both algorithms produced

a bandwidth higher than the original; and (iii) For the Serena

matrix, the URCM algorithm also generated a final bandwidth

worse than the original.

The reordering quality produced by the implemented algo-

rithm may also be graphically attested through Figure 6. It

presents some examples of sparse matrix pattern yielded by

the URCM algorithm. The first row of each subfigure presents

the matrix sparsity before reordering. In the below rows, each

respective matrix is exhibited as result of a permutation of

rows and columns. The first set of matrices (Figures 6(a), 6(b),

and 6(c)) are samples out of smallest matrices (order up to

around 500.000). The second group of matrices (Figures 6(d),

6(e), and 6(f)) corresponds to some of the highest ones (with

order of 1.500.000 approximately). The bandwidth reduction

reached with these six matrices varied from 64.46% (SiO2)

to 99.46% (G3_circuit).

D. Reordering Performance

Table III shows a performance comparison of the two

algorithms. The reordering times are presented in scale of

10−3 seconds, and the best values in terms of CPU time

are highlighted in bold. The numbers in parentheses indicate

the number of threads used to reach the respective value.

The column Reduction presents the time reduction percentage

achieved by the Unordered RCM in comparison with HSL.

TABLE III: CPU time comparison (x10−3 sec.)

Matrix Reordering Time

Name HSL URCM Reduction (%)

m_t1 0.871 0.628 (04) 28.64

filter3D 0.880 0.394 (04) 54.76

SiO2 2.339 1.668 (04) 28.69

d_pretok 0.746 0.585 (04) 21.58

CO 2.095 1.020 (08) 51.31

offshore 2.432 1.082 (06) 55.51

Ga41As41H72 3.988 1.794 (04) 55.02

F1 3.394 2.414 (04) 28.87

mario002 1.507 1.349 (06) 10.48

msdoor 2.381 1.838 (08) 22.81

inline_1 4.140 3.100 (08) 25.12

gsm_106857 5.780 2.840 (08) 50.87

Fault_639 3.250 2.900 (08) 10.77

tmt_sym 2.040 2.290 (06) -12.25

boneS10 10.480 4.420 (08) 57.82

audikw_1 12.590 5.910 (08) 53.06

nlpkkt80 8.320 3.670 (08) 55.89

dielFilterV2real 10.390 5.170 (08) 50.24

Serena 11.170 5.920 (08) 47.00

G3_circuit 5.120 4.750 (06) 07.22

As displayed in Table III, the Unordered RCM achieved

outstanding performance results. In fact, the rate of time

reordering reduction of the algorithm varies from 10.48%

(mario002) to 57.82% (boneS10). The time reordering im-

provement presented by five matrices was very significant.

With these matrices, the algorithm reached speedups supe-

rior to 3.0X, i.e., 3.84X (boneS10), 3.64X (msdoor), 3.40X

(audikw_1), 3.15X (inline_1), and 3.12X (Fault_639).

Figure 7 shows two sets of speedup curves generated by

experiments with the Unordered RCM processing ten matrices.

Figure 7(a) presents the five matrices that have shown the

best speedup ratio out of the smallest ones tested (matrix

order up to five hundred thousand). In this set of matrices, the

performance improvement was more impacted by the matrices

order than by the number of non-zeros per row. Actually,

534 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

the best speedup ratios observed in this set of matrices were

3.64X (msdoor), 2.93X (F1), and 2.88X (Ga41As41H72).

Although the matrix SiO2 has the most significant average of

NNZ/row among these five ones (about 76 - see Table I), the

Unordered RCM achieved the lowest speedup ratios with this

matrix (1.81X running with just 4 threads).

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5

4

Threads

S
p

e
e

d
u

p

msdoor F1

Ga41As41H72 offshore

SiO2

(a) Smallest matrices

0 2 4 6 8 10 12
0.5

1

1.5

2

2.5

3

3.5

Threads

S
p

e
e

d
u

p

inline_1 Fault_639 tmt_sym boneS10 audikw_1

(b) Largest matrices

Fig. 7: Speedup of Unordered RCM.

A different behavior was observed with largest matrices.

Figure 7(b) shows the speedup of a second set of five matrices

whose order varies from 500,000 to 1,500,000 approximately.

The best performance improvement was reached with the

matrices with a high average of non-zeros per row. It was

the case of inline_1, Fault_639, boneS10, and audikw_1.

The same was not observed with tmt_sym matrix - it has

an average of just 7 nonzeros per row. These different ratios

of performance observed with matrices of distinct orders and

distinct average of non-zeros per row suggest that speedups of

parallel algorithms like Unordered RCM, which are based on

a BFS approach, are higher for graphs with a larger number

of edges per node. Nevertheless, for lower order graphs,

the parallelism overhead impacts heavily on the CPU time

improvement.

VI. CONCLUSION

This paper analyzed a parallel strategy for a traditional

reordering algorithm. The obtained results show the benefits

related to improving reordering time. In fact, for the set of

tested matrices, the attained time reduction varies between

10.48% and 57.82%. Other significant results show the un-

ordered RCM algorithm achieving speedups up to 3.84X

with 6 threads. About the quality of solutions, the bandwidth

reduction reached by the implemented algorithm was not

superior to HSL just for one tested matrix. Therefore, the

new parallel implementation proposed by the RCM algorithm

may be considered as an efficient approach for the bandwidth

minimization problem applied on large sparse matrices.

Some works in the literature have addressed the reordering

problem through the use of other data structures and alternative

breadth-first search (BFS) strategies have been proposed for

the parallelism of RCM. As example, relevant results have

been reached with a wavefront BFS implementation [18], and

a novel implementation of a worklist data structure, called

bag, has been used in place of FIFO queue usually employed

in BFS algorithms [25]. The use of these new structures and

strategies may promote more improvements to the algorithm

studied in this work.

REFERENCES

[1] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics, 2003.
ISBN 0898715342

[2] C. H. Papadimitriou, “The np-completeness of the bandwidth
minimization problem,” Computing, vol. 16, no. 3, pp. 263–
270, 1976. doi: 10.1007/BF02280884. [Online]. Available: http:
//dx.doi.org/10.1007/BF02280884

[3] E. Cuthill and J. McKee, “Reducing the bandwidth of sparse
symmetric matrices,” in Proceedings of the 1969 24th National

Conference, ser. ACM ’69. New York, NY, USA: ACM, 1969.
doi: 10.1145/800195.805928 pp. 157–172. [Online]. Available: http:
//doi.acm.org/10.1145/800195.805928

[4] W. Liu and A. H. Sherman, “Comparative analysis of the Cuthill-
McKee and the Reverse Cuthill-McKee ordering algorithms for sparse
matrices,” SIAM Journal on Numerical Analysis, vol. 13, no. 2,
pp. 198–213, May 1974. doi: 10.1137/0713020. [Online]. Available:
http://dx.doi.org/10.1137/0713020

[5] S. W. Sloan, “An algorithm for profile and wavefront reduction of sparse
matrices,” International Journal for Numerical Methods in Engineering,
vol. 23, no. 2, pp. 239–251, 1986. doi: 10.1002/nme.1620230208

[6] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer, “An algorithm for
reducing the bandwidth and profile of a sparse matrix,” SIAM Journal

on Numerical Analysis, vol. 13, no. 2, pp. 236–250, 1976. [Online].
Available: http://www.jstor.org/stable/2156090

[7] K. I. Karantasis, A. Lenharth, D. Nguyen, M. Garzarán, and K.
Pingali, “Parallelization of reordering algorithms for bandwidth and
wavefront reduction,” in Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’14. Piscataway, NJ, USA: IEEE Press, 2014. doi:
10.1109/SC.2014.80. ISBN 978-1-4799-5500-8 pp. 921–932. [Online].
Available: http://dx.doi.org/10.1109/SC.2014.80

[8] D. Padua, Encyclopedia of parallel computing. Springer Publishing
Company, Incorporated, 2011. ISBN 0387097651

[9] K. Pingali et al., “The tao of parallelism in algorithms,” in Proceedings

of the 32Nd ACM SIGPLAN Conference on Programming Language

Design and Implementation, ser. PLDI ’11. New York, NY, USA: ACM,
2011. doi: 10.1145/1993498.1993501. ISBN 978-1-4503-0663-8 pp. 12–
25. [Online]. Available: http://doi.acm.org/10.1145/1993498.1993501

[10] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval,
“How much parallelism is there in irregular applications?” SIGPLAN

Not., vol. 44, no. 4, pp. 3–14, Feb. 2009. doi: 10.1145/1594835.1504181.
[Online]. Available: http://doi.acm.org/10.1145/1594835.1504181

THIAGO NASCIMENTO RODRIGUES ET AL.: A NON-SPECULATIVE PARALLELIZATION OF REVERSE CUTHILL-MCKEE ALGORITHM 535

[11] M. Kulkarni et al., “Optimistic parallelism requires abstractions,” in
Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation, ser. PLDI ’07. New York,
NY, USA: ACM, 2007. doi: 10.1145/1250734.1250759. ISBN 978-1-
59593-633-2 pp. 211–222. [Online]. Available: http://doi.acm.org/10.
1145/1250734.1250759

[12] L. Dagum and R. Menon, “Openmp: An industry-standard api for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan. 1998. doi: 10.1109/99.660313. [Online]. Available:
http://dx.doi.org/10.1109/99.660313

[13] HSL, “A collection of fortran codes for large scale scientific
computation,” 2011. [Online]. Available: http://www.hsl.rl.ac.uk/

[14] A. Farzaneh, H. Kheiri, and M. A. Shahmersi, “An efficient storage for-
mat for large sparse matrices,” Communications Series A1 Mathematics

& Statistics, vol. 58, no. 2, pp. 1–10, Jul. 2009.
[15] J. K. Reid and J. A. Scott, “Ordering symmetric sparse matrices for small

profile and wavefront,” International Journal for Numerical Methods in

Engineering, vol. 45, pp. 1737–1755, Feb. 1999.
[16] G. K. Kumfert, “An object-oriented algorithmic laboratory for order-

ing sparse matrices,” Ph.D. dissertation, Lawrence Livermore National
Laboratory and United States. Department of Energy and United States.
Department of Energy. Office of Scientific and Technical Information,
2000.

[17] I. S. Duff, J. K. Reid, and J. A. Scott, “The use of profile
reduction algorithms with a frontal code,” International Journal

for Numerical Methods in Engineering, vol. 28, no. 11, pp.
2555–2568, 1989. doi: 10.1002/nme.1620281106. [Online]. Available:
http://dx.doi.org/10.1002/nme.1620281106

[18] M. A. Hassaan, M. Burtscher and K. Pingali, “Ordered vs. unordered: a
comparison of parallelism and work-efficiency in irregular algorithms,”
in Proceedings of the 16th ACM Symposium on Principles and Practice

of Parallel Programming, ser. PPoPP ’11. New York, NY, USA: ACM,

2011. doi: 10.1145/1941553.1941557. ISBN 978-1-4503-0119-0 pp.
3–12. [Online]. Available: http://doi.acm.org/10.1145/1941553.1941557

[19] B. S. W. Schröder, “Algorithms for the fixed point property,” Theoretical

Computer Science, vol. 217, no. 2, pp. 301 – 358, 1999. doi:
http://dx.doi.org/10.1016/S0304-3975(98)00273-4. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397598002734

[20] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear Algebra

and its Applications, vol. 2, no. 2, pp. 199 – 222, 1969. doi:
http://dx.doi.org/10.1016/0024-3795(69)90028-7. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0024379569900287

[21] S. Aluru, “Teaching parallel computing through parallel prefix,”
in Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, ser. SC12,
2012. [Online]. Available: http://sc12.supercomputing.org/hpceducator/
ParallelPrefix/ParallelPrefix.pdf

[22] T. N. Rodrigues, “tnas/reordering-library: Federated Conference on
Computer Science and Information Systems 2017,” May 2017. [Online].
Available: https://doi.org/10.5281/zenodo.570225

[23] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–
1:25, Dec. 2011. doi: 10.1145/2049662.2049663. [Online]. Available:
http://doi.acm.org/10.1145/2049662.2049663

[24] OpenMP Language Working Group, “Openmp technical report 4,”
OpenMP Architecture Review Board, Tech. Rep. TR-4 Version 5 Pre-
view 1, 2016.

[25] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism
of reducers),” in Proceedings of the Twenty-second Annual ACM

Symposium on Parallelism in Algorithms and Architectures, ser. SPAA
’10. New York, NY, USA: ACM, 2010. doi: 10.1145/1810479.1810534.
ISBN 978-1-4503-0079-7 pp. 303–314. [Online]. Available: http:
//doi.acm.org/10.1145/1810479.1810534

536 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

