
H.265 Inverse Transform FPGA implementation

in Impulse C

Sławomir Cichoń

NOKIA

Krakow Technology Center

AGH University of Science and Technology,

Department of Automatics and Biomedical Engineering,

Email: slawomir.cichon@nokia.com

Marek Gorgoń

AGH University of Science and Technology,

Department of Automatics and Biomedical Engineering,

Mickiewicz Avenue 30,

30-059 Krakow, Poland

Email: mago@agh.edu.pl

Abstract—High Efficiency Video Coding (HEVC), a modern
video compression standard, exceeds the predecessor H.264
in efficiency by 50%, but with cost of increased complexity.
It is one of main research topics for FPGA engineers working
on image compression algorithms. On the other hand high-level
synthesis tools after few years of lower interest from the industry
and academic research, started to gain more of it recently.
This paper presents FPGA implementation of HEVC 2D Inverse
DCT transform implemented on Xilinx Virtex-6 using Impulse C
high level language. Achieved results exceed 1080p@30fps with
relatively high FPGA clock frequency and moderate resource
usage.

I. INTRODUCTION

H
.265 is the most recent video coding algorithm released

by joint collaboration between ITU and ISO organiza-

tions [1], and also described in details in [2]. It is claimed that

this compression is 50% better then its predecessor, H.264.

Both mentioned video coding standards use finite precision

approximation of Discrete Coding Transform to change from

the spatial domain to frequency, however H.264 uses only

transform block sizes 4x4 and 8x8. HEVC uses various, so

called Transform Unit (TU) sizes, ranging from 4x4 to 32x32

pixels.

High level synthesis languages have gained focus in recent

years both in academic and industry research. During last

years, few such types of commercial and academic tools have

been developed. Impulse C is one of languages which can be

translated to HDL, and further synthesized. It allows also to

partition the solution, to run it in the mixed software/hardware

environment. HLS usage can significantly shorten develop-

ment cycle, but with cost of FPGA resources and lower clock

frequency achieved.

Most of important scientific journals published special

issue editions focused entirely on H.265 implementations,

both hardware and software, to mention [3] and [4]. The

majority of those articles are dealing with encoding chal-

lenges. Some of them like [5] exploits Graphics Processing

Units (GPUs) to accelerate the intra decoding procedure in

HEVC decoder. Hardware partial implementations of H.265

in HLS are presented e.g., in [6] and [7] dealing with only

part of the standard, which may imply overall challenges in

implementing the entire HEVC encoding/decoding in FPGA.

In general, number of published hardware implementations of

HEVC decoder in FPGA (full or partial) is relatively large,

but there is very small number of publications on H.265

decoders using high level languages. In this paper, authors

would like to reference publication related to HEVC IDCT

implementation using Xilinx Vivado HLS and compared with

few other implementations [8].

This paper presents first known to authors, H.265 Inverse

Discrete Cosine/Sine Transform hardware implementation in

Impulse C language [9], and achieved results in terms of clock

frequency, frame rate and resource usage in comparison with

[10]. Solution was verified on hardware platform PICO M503

[11], equipped with Virtex-6 FPGA family. This paper consist

of few sections. In the following subsection, Impulse C fea-

tures have been very briefly described, and their influence on

the resulting implementation performance have been discussed

in later section. Next section presents basic informations about

2D IDCT. Later proposed hardware architecture is depicted,

following with achieved results in comparison with other

solutions. Conclusions are closing this paper.

A. Impulse C - high level language

High level synthesis is a set of tools able to translate

algorithm description written in a high level language (mostly

C/C++-based), to industry standard hardware description lan-

guages (HDL), like Verilog or VHDL, which then can be

synthesized for the desired FPGA family. They provide also

tools to analyse the parallelism of the generated code. HLS

needs to also provide capabilities for the high-speed commu-

nication and synchronization between processing elements, to

allow for the efficient algorithm decomposition into execu-

tion units running in parallel manner. One of the language

from this group is Impulse C [9]. As the name suggests,

it is ANSI C-based language, supporting almost all of its

syntax, with addition of some library functions used for

communication. Algorithm described in Impulse C can be

decomposed into parallel processing units called processes.

They can exchange data or/and synchronize between each

other using few mechanisms, like streams, which allow for

fast data exchange in FIFO-like manner. Signals allow to

achieve synchronization between processes and pass single

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 607–611

DOI: 10.15439/2017F185

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 607



32-bit data, similar to rendez-vous mechanism in real-time sys-

tems programming. Remaining synchronization methods are

semaphores and shared memory. Impulse C compiler analyses

the data dependency, and splits the processing into stages.

In each stage all instructions without data dependency are

scheduled to execute. This implies state machine implemen-

tation in generated HDL. Programmer has some influence on

parallelization, using specific keywords, called pragmas, in the

source code, that can, e.g. pipeline the execution of the loop, or

unroll all instructions inside the loop, under some conditions.

In Impulse C, developer can partition the project to split the

execution between software and hardware. For some of FPGA

development boards, Impulse C IDE provides also libraries and

drivers, called Platform Support Package (PSP), which allow

to build and run complete project in real hardware/software

co-environment. Libraries provide communication mechanism,

especially stream data flow, between software and hardware. In

this way programmable devices can be used as a coprocessor,

also this approach fits in the idea of FPGA-as-a-Service

(FaaS), and latest Amazon AWS EC2 cloud [12] solution.

B. HEVC 2D transform description

HEVC defines finite precision approximation of

2-dimensional discrete cosine transform for Transform

Unit sizes from 4x4 to 32x32 pixels [1] [2]. In addition, it

specifies 4x4 Discrete Sine Transform approximation for use

in intra-frame solutions. Similar approach was introduced

in H.264. In earlier video coding standards, mathematical

formula for calculating cosine transform was used, leading

to different implementations, which resulted in mismatch

between different codecs. Because of this reason, in newer

coding standards, like H.264, VC-1, HEVC, a core, integer

transform has been defined, suitable for fixed-point and

hardware implementations. Scaling and inverse transform

processes are specified in the normalization document, while

the TU size and quantization factor are chosen by the

encoder. The main purpose of the transform is to de-correlate

input data, which in most cases are residual data calculated

based on prediction. Inverse DCT coefficients were carefully

investigated and analysed by working group defining the

H.265 standard. It was decided to represent each matrix

coefficient with 8-bit. To perform integer transform, scaling

factor is used at the end of the process, which is a power of

2, to easily implement it as a right shift. DCT has several

properties very useful in terms of usage in video coding

algorithms, particularly:

• Orthogonality, which allows transform coefficient to be

uncorrelated,

• Good energy compaction,

• Smaller IDCT size matrix, is a sub-sample of the higher

TU size,

• All rows have equal norm.

Formula for calculating 2D IDCT is as follows:

Y = AXA
T (1)

Fig. 1. HEVC 2D-IDCT proposed architecture.

It is known that 2D transform can be calculated in two 1D

steps, with intermediate transpose memory. This decompo-

sition is not standardized, but it is widely adopted in both

software and hardware implementations to optimize calcula-

tions. This part of the decoding process is one of the most

computationally expensive. Because of that, it is beneficial to

realize it in the dedicated and optimized co-processor. Today’s

FPGAs are well positioned to serve such role.

II. IMPLEMENTATION

A. HEVC 2D IDCT Impulse C hardware implementation

In the presented Impulse C implementation of HEVC 2D

IDCT/IDST, transform split into two 1D calculations with

transpose memory was adopted, to pipeline the entire ar-

chitecture. The implementation is based on HEVC reference

software version HM-16.14 [13]. Figure 1 depicts proposed

architecture. There is one single input memory for all trans-

form sizes. All blocks performing 1D-IDCT/IDST reads from

the same memory. Transpose memory has been split into 5

different memory blocks with size appropriate for the TU size.

Split has been used to minimize critical path length. The same

approach has been used for the output memory of the second

stage of transform.

Figure 2 presents proposed architecture, while fig. 3 the

actual source code for the 4x4 1D-IDCT module. Input

memory has been split into 32 separate BRAM memories,

each representing single row of 2D coefficient, to read the

entire column simultaneously, and then copied into several

sets of register arrays for multiple read in the same cycle

later on. Similar approach has been applied to the transpose

memory. Transform results are clipped to the range <-32767,

32768>, before written to the either Transpose Memory or

Output Memory. All complex mathematical operations have

been decomposed into simpler ones, to minimize critical path

in resulting implementation. Presented solution has been split

into software processes and hardware processing elements.

Three software processes have been defined: Producer, which

reads the input data from the file and sends it to the FPGA over

PCIe bus. Consumer receives the result of inverse transform

from the PICO M503 board, and stores the received data

in the file for further verification/processing. Stats process

receives data with processing duration (in clock cycles) of

important hardware modules for every Transform Unit to

608 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Fig. 2. HEVC Inverse Transform hardware/software architecture.

prove real-time performance of the implemented solution.

On the FPGA side, five important processing elements (PEs)

can be seen. xITrMxNP1 and xITrMxNP2 perform the actual

1D inverse transform in the pipeline manner. There are also

modules to receive/send the data from/to the PCIe bus. Data

between hardware processes are exchanged using BRAM

memory. In n-th iteration one process (e.g. xITrMxNP1) writes

the data to the one half of the memory, while the other (e.g.

xITrMxNP2) reads from the other half. Controller process is

responsible for all PEs synchronization, as well as collecting

duration data and sending it over PCIe to the Stats software

process. Presented solution is hardware/software co-design,

but in FPGA only inverse transform is calculated. Software

processes are responsible for data transfers.

B. Implementation improvement techniques

Regular C++ H.265 reference software [13] inverse trans-

form implementation, can not be directly compiled using

Impulse C, also achieving 30fps frame rate requirement is not

guaranteed. In order to meet real-time requirements for the

video decoder, several changes and improvements have been

introduced into the code. They include:

• Code changes - pointer arithmetic, dynamic allocations,

and C++ specific features removal,

• Impulse C specific pragmas,

• Code refactoring - assignment simplification, arrays split

or/and duplication, loop unrolling and pipelining, ad-

ditional function(s) and process(es) extraction, explicit

clock boundaries.

In this paper some of Impulse C features, like loop unrolling

and pipelining used in the presented implementation, will be

Fig. 3. HEVC 4x4 1D-IDCT Impulse C implementation - code snippet.

SŁAWOMIR CICHOŃ, MAREK GORGOŃ: H.265 INVERSE TRANSFORM FPGA IMPLEMENTATION IN IMPULSE C 609



TABLE I
RESULTS COMPARISON WITH OTHER IMPLEMENTATIONS

Solution LUT DFF Slices BRAM Freq FullHD fps

Proposed 22457 31591 11985 31 200 39 (*)

[10] Vivado 50566 34955 14944 13 208 54

[8] Verilog 38790 11762 11343 32 150 48

TABLE II
PROCESSING DURATION FOR EACH TU SIZE

Duration [clock cycles] FullHD frame rate [fps]

2D-IDST 47 32.8

4x4 2D-IDCT 47 32.8

8x8 2D-IDCT 197 31.3

16x16 2D-IDCT 812 30.4

32x32 2D-IDCT 2541 38.6

described in more detail.

1) Loop unrolling: This technique is commonly used in

FPGA development. It results in speedup of the loop calcu-

lation in cost of area. In Impulse C it can be forced using

dedicated pragma (#pragma CO UNROLL). In order to benefit

from it, data array must be scalarizable, which is possible

under few conditions:

• Array scalarization option is enabled in the compiler,

• Array cannot be initialized where declared,

• Array elements are accessed with constant indexes,

• Array elements cannot be read and written in single C

statement,

• Loop index must by of type int.

In the provided code snippet in fig.3, for 4x4 1D-IDCT

butterfly calculation, loop unrolling was applied. This allows

to save at least 16 clock cycles per each TU (4 iterations of the

inner loop * 4 iterations of the outer loop) in comparison with

the implementation without it. The purpose of the outer loop

is to duplicate input data, in order to access them in parallel

for the transform calculation, and minimize the fanout from

the tempCoeff array in the resulting netlist.

2) Loop pipelining: Pipelined architecture is often very ef-

fective, however not all types of algorithms can be executed in

such way efficiently. Inverse transform definition fits into this

architecture. In impulse C loop pipelining must be called ex-

plicitly with the special C pragma (#pragma CO PIPELINE).

Once compiled, it can be verified with Stage Master Explorer,

what is the rate and the latency of the pipeline. Rate equals

number of cycles required to complete single loop iteration,

also determines how often pipeline can consume input data.

So the goal is to reach rate equal 1. Latency is the number of

cycles required for an input data to reach its output, it is also

the pipeline length. The goal here is to have it as smallest as

possible, especially for loops with small number of iterations.

Pragma CO SET stageDelay, defines maximum number of

combinatorial gate delays for single stage, and it is roughly

equal to the gate delay in the target hardware. To achieve rate

optimal value, input data array for 1D-IDCT has been split

into arrays representing each row. This allows to access the

entire column of TU simultaneously. Also intermediate data

arrays have been implemented and used in a way to sclarize

them by the compiler, as described previously. Additional

intermediate arrays have also been defined to break the critical

path, however with cost of higher latency. Also each call to

Clip3 method inferred separate logic in order to make those

calculations simultaneous.

C. Results and comparison with other implementations

Results of the proposed implementation written in Impulse

C have been compared with results presented in [10], espe-

cially for Vivado HLS implementation which seems to be the

most comparable. Presented solution uses multipliers realized

in DSP blocks with exception to multiplication by 64, which

is replaced by left shift operation. Table I contains comparison

results.

Full HD fps has been approximated based on input data

containing 58k TUs, calculated by the reference encoder

[13], for the 3840x2160 frame resolution. So for the purpose

of results comparison, estimated number of Transform Units

in Full HD frame equals 14.5k. Based on processing time

gathered in runtime, average inverse transform duration for the

first 14.5k TUs equals Tavg = 357 [clock cycles]. Achieved

results are comparable to the Vivado HLS solution in terms

of clock frequency, number of Slices and flip-flops used.

Proposed solution uses 50% LUTs than HLS implementation

presented in [10]. However the frame rate is significantly

lower, but still exceeds 1080p@30fps resolution. In the cur-

rently discussed architecture, mechanism to gather duration

data of all important PEs has been implemented. Complete

data contains Table II. It can be seen that the most time

consuming is 32x32 TU size, which is intuitive. On the other

hand frame rate achieved with only this type of TUs is the

highest one, as the number of such units within the video

frame is smaller.

III. CONCLUSIONS

In this paper, first known to authors, 2D-IDCT HEVC hard-

ware implementation using Impulse C has been presented, with

additional software processes for data transfer and profiling.

Achieved results are compared with Vivado HLS solution

proposed in [10], and are better in terms of resources used,

but worse in terms of frame rate. Using HLS tools can

greatly speedup implementation process, minimizing number

of errors, as the same C testbench can be used later in HDL

simulation and hardware functional verification. Future work

can include critical path minimization or/and area optimization

of the implementation to achieve better frame rate, even 4K

real-time requirements, however this may require newer FPGA

family, e.g. Xilinx UltraScale/UltraScale+ with higher speed

grade. The other direction could be to include all intra-decoder

parts as either software or hardware processes, and gradually

move them to the FPGA.

610 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



ACKNOWLEDGMENT

Authors would like to thank Impulse Accelerated Tech-

nologies (http://www.impulseaccelerated.com) for providing

software license for the CoDeveloper Integrated Development

Environment.

The work was supported by the AGH-UST grant

11.11.120.612.

REFERENCES

[1] High Efficiency Video Coding ITU-T Rec. H.265 and ISO/IEC 23008-2
(HEVC), ITU-T and ISO/IEC, Apr. 2013.

[2] Sze V., Budagavi M., Sullivan G.J., High Efficiency Video Coding

(HEVC) - Algorithms and Architectures, Springer, Switzerland; 2014,
https://dx.doi.org/10.1007/978-3-319-06895-4.

[3] Sousa L., Roma N., “Special Issue on Real-time Energy-aware Cir-
cuits and Systems for HEVC and for Its 3D and SVC Exten-
sions,” Journal of Real-Time Image Processing, vol. 13, Mar. 2017,
https://doi.org/10.1007/s11554-017-0675-6.

[4] Kim, B., Psannis, K. and Jun, D., “Special Issue on Architectures and
Algorithms of High-efficiency Video Coding (HEVC) Standard for Real-
time Video Applications,” Journal of Real-Time Image Processing, vol.
12, Aug. 2016, http://dx.doi.org/10.1007/s11554-016-0595-x.

[5] de Souza, D.F., Ilic, A., Roma, N. et al., ‘GPU-assisted HEVC Intra
Decoder,” Journal of Real-Time Image Processing, vol. 12, Aug. 2016,
http://dx.doi.org/10.1007/s11554-015-0519-1.

[6] Sjövall P., Virtanen J., Vanne J., Hämäläinen T. D., “High-
Level Synthesis Design Flow for HEVC Intra Encoder on SoC-
FPGA,” 2015 Euromicro Conference on Digital System Design, 2015,
http://dx.doi.org/10.1109/DSD.2015.67

[7] Kalali E., Hamzaoglu I., “FPGA Implementation of HEVC Intra
Prediction Using High-Level Synthesis,” IEEE International
Conference on Consumer Electronics ICCE, Berlin, 2016,
https://doi.org/10.1109/ICCE-Berlin.2016.7684745

[8] Kalali E., Ozcan E., Yalcinkaya O. M., Hamzaoglu I., “A low
energy HEVC inverse transform hardware,” IEEE Transactions on
Consumer Electronics, vol. 60, no.4, pp. 754-761, Nov. 2014,
https://doi.org/10.1109/TCE.2014.7027352.

[9] Pellerin D., Thibault S., Practical FPGA Programming in C, Prentice
Hall; 2005.

[10] Kalali E., Hamzaoglu I., “FPGA Implementations of HEVC In-
verse DCT Using High-Level Synthesis,” Conference on Design

and Architectures for Signal and Image Processing (DASIP), 2015,
https://doi.org/10.1109/DASIP.2015.7367262.

[11] PICO M503 webpage: http://picocomputing.com/products/hpc-modules/
m-503/

[12] Amazon EC2 F1 Instances: https://aws.amazon.com/ec2/instance-types/
f1/

[13] HM Software Repository: https://hevc.hhi.fraunhofer.de/

SŁAWOMIR CICHOŃ, MAREK GORGOŃ: H.265 INVERSE TRANSFORM FPGA IMPLEMENTATION IN IMPULSE C 611


