
Towards Programmable Address Spaces

Andrew Gozillon† and Paul Keir∗

University of the West of Scotland

High St., Paisley PA1 2BE, Scotland, United Kingdom

Email: ∗andrew.gozillon@uws.ac.uk, †paul.keir@uws.ac.uk

Abstract—High-performance computing increasingly makes
use of heterogeneous many-core parallelism. Individual pro-
cessor cores within such systems are radically simpler than
their predecessors; and tasks previously the responsibility of
hardware, are delegated to software. Rather than use a cache,
fast on-chip memory, is exposed through a handful of address
space annotations; associating pointers with discrete sections of
memory, within trivially distinct programming languages. Our
work aims to improve the programmability of address spaces
by exposing new functionality within the LLVM compiler, and
then the existing template metaprogramming system of C++. This
is achieved firstly via a new LLVM attribute, ext_address_-
space which facilitates integration with the non-type template
parameters of C++. We also present a type traits API which
encapsulates the address space annotations, to allow execution
on both conventional and extended C++ compilers; and illustrate
its applicability to OpenCL 2.x.

I. INTRODUCTION

T
HE MAJORITY of today’s architectures are heteroge-

neous. This means they contain at least two different

types of processors or different local memory units. A familiar

example of this is the modern personal computer (PC) which

contains both a graphics processing unit (GPU) and a central

processing unit (CPU). These architectures have immense poten-

tial as the extra processors tend to be specialized for particular

tasks. For example, GPUs are specialized for rendering graphics.

However, the parallel structure of the GPU lends it incredibly

well to single instruction multiple data (SIMD) tasks on large

data sets. This is commonly referred to as general-purpose

computing on graphics processing units (GPGPU). Due to this

several programming models centered on taking advantage of

this aspect have been created. The two most iconic are OpenCL

[1] and CUDA [2]. GPUs are exceptional at performing SIMD

tasks, so much so that several of the supercomputers in the

TOP500 list [3] use them.

However, power often comes at a cost. In the case of

heterogeneous architectures, the complexity of the program

increases for software aiming to take full advantage of the

power available. One of the more common added complexities

is memory management. Memory management is an important

aspect of several heterogeneous architectures, as auxiliary

processors of these architectures can have separate memory

from their primary processor. One such architecture are PCs

containing GPUs. Each GPU has dedicated memory and data

must explicitly be transferred across from main memory by

the CPU. Current GPGPU programming models also segment

GPU memory into several distinct address spaces with different

properties that help increase throughput.

Figure 1 C++ Address Space API

ad d _a s_ t < i n t ,42 > i = 12345 ;

s t a t i c _ a s s e r t (g e t _a s_ v < d e c l t y p e (i) >==42) ;

a s s e r t (i == 12345)

In some cases, named address space qualifiers have been

introduced to help associate variables with certain address

spaces and thus certain properties. Named address space began

in the Embedded C Extension [4], a set of optional extensions to

the C programming language for use with embedded processors

and have since spread. In fact, several GPGPU programming

models make use of them for example CUDA, OpenCL and

Metal [5]. An example from OpenCL is the __private

qualifier which restricts the scope of a variable to a thread.

Other programming models such as OpenACC [6] aim to

promote a higher level view of GPGPU programming and

abstract away address spaces from the programmer.

Both C and C++ are commonly used or extended in GPGPU

programming. In fact all of the above mentioned programming

models and languages with address spaces use or extend

C/C++ in some way to achieve their goal. However, despite the

number of models that make use of both C/C++ and address

spaces, there is no standard compiler or library support for

address spaces within C/C++. We believe that a C++ library-

based approach could assist greatly in bringing address space

support to C++. An API that new programming models could

explore and integrate with would help improve portability

and programmabillity. Having an API like this available also

removes the requirement to extend the compiler for named

address space support. As such we have created an C++

template API that takes inspiration from the C++ standard

libraries type traits, an example can be found in Figure 1.

To aid in showcasing our API’s viability we have decided

to use the Clang [7] compiler’s address space implementation.

The Clang compiler’s address space implementation is different

from named address spaces. It takes the generic approach of

accepting an integral parameter, provided by an end-user, to

specify the value’s address space, instead of having a fixed

name set while building the compiler itself. This lends itself

well to our API, which proposes integral parameters to index

address spaces. Modifications to the LLVM compiler were

made to add support for C++ non-type template parameters;

since submitted as a patch. Note however that the API works

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 697–700

DOI: 10.15439/2017F217

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 697

with or without our LLVM extension, having two separate

implementations hidden behind one interface.

II. THE PROGRAMMABLE ADDRESS SPACE

The named address space implementation of address space

qualifiers does not lend itself easily to user programmability.

The main reason for this is that they have fixed names that

differ per architecture, this makes creating portable libraries

dealing with address spaces challenging. This type of qualifier

can be found in Embedded C, OpenCL and CUDA.

The Clang compiler has chosen another more generic

direction with its address space qualifier choosing an attribute

as its basis, an example can be found in Figure 2. In this

variation, a single qualifier is developed for applying address

spaces to a variable; rather than separate names for each address

space in an architecture or programming model. The attribute

accepts a constant integer as an argument. This argument can

be hard coded as shown in the example in Figure 2 or be

a constant integer provided that it is not from a function or

template argument. Each unique integer value corresponds to

a unique address space.

Whilst Clang’s current address space qualifier is a lot more

generic and portable than named address spaces, it is not

standard C++; rather being a non-standard extension of LLVM.

It is also not as programmable as we might like, as it cannot

be used with template parameters. As such we have built

on Clang’s address space qualifier and created a variation

named ext_address_space. This variation allows non-

type template integer parameters to be used as arguments.

Figure 2 An address space attribute in the Clang compiler

_ _ a t t r i b u t e _ _ ((a d d r e s s _ s p a c e (1))) i n t ∗ as ;

III. C++ TRAIT API

The implemented address space has increased programmabil-

ity and allows for a variety of C++ template API’s to be put in

place; which in turn can make using address spaces easier and

safer. In our case, we created an API that borrows from the C++

standard library’s type traits. Type traits are used for gathering

compile time type information and manipulating types. This

C++ API lends itself to being overloaded, allowing other types

of address spaces to be encapsulated inside. This allows it to

act as an interface for different types of C++ programming

models. This is exemplified in this section, as our API does not

require our Clang address space extension to function; instead

it acts as an interface for it when present and falls back on

another implementation when it’s absent.

A. The Traits API with ext_address_space

Our address space API uses three main class templates.

The first is get_as (Figure 5), which allows the retrieval

of the address space value from a type. The other two are

remove_as (Figure 4) and add_as (Figure 3) which allow

the programmer to both remove and add the address space on

Figure 3 The add_as class template and its type alias

t empla te <typename T , unsigned Nv>

s t r u c t add_as {

us ing t y p e = T _ _ a t t r i b u t e _ _ ((

e x t _ a d d r e s s _ s p a c e (Nv))) ;

} ;

t empla te <typename T , unsigned Nv>

us ing a d d _ a s _ t = typename add_as <T , Nv > : :

t y p e ;

a type respectively. This allows explicit and easy manipulation

of the address space as a qualifier similar to const and

volatile. In fact, remove_as and add_as are parallels to

remove_const, remove_volatile, add_volatile

and add_const from the standard library.

The add_as class template accepts a typename parameter T

and unsigned integer Nv. The parameter Nv denotes the address

space which we qualify the passed in type T with. The new type

can then be accessed with the classes type alias type, this keeps

with common template metaprogramming practice. Another

common practice is the use of type aliases like add_as_t to

simplify template class calls. We stick to this general pattern

throughout our API, however future aliases will be elided for

brevity. The add_as template works similarly to add_const

in that it only adds the qualifier to the top most level of a type.

The remove_as class template requires specialization. The

remove_as class template similarly to add_as accepts in

a type and an address space. However, in this case the address

space is ignored, instead it will be deduced from the type

passed in. Deducing the value in this way allows the template

to generically remove all available address spaces. Without this

an explicit specialization for each template would have to be

generated. The return value of remove_as is the passed in

type with the address space qualifier removed. Both const

and volatile qualifiers should remain untouched if present.

The base template of remove_as specializes for types with

no qualifier and returns the base type. Other specializations

specialize for different combinations of qualifiers on the type

and then return the type with the address space removed.

The most specialized example of this specializes for const,

volatile and the address space qualifier. It returns a type

with the address space removed and other qualifiers intact. We

showcase this specialization but elide the rest for brevity.

The class template get_as accepts the same parameters

as the other class templates. However, like remove_as the

address space parameter will be deduced. The output of this

template class is a value that corresponds to the address space

of the passed in type. Sticking with template metaprogramming

practice it’s named value. The base template and specializa-

tion is again similar to remove_as. The base template with

no address space qualifier returns 0. As 0 is the default address

space. Its specialization again fits all address space values and

deduces the address space which is then returned.

698 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Figure 4 The remove_as class template

t empla te <typename T , unsigned Nv = 0>

s t r u c t remove_as {

us ing t y p e = T ;

} ;

t emplate <typename T , unsigned Nv>

s t r u c t remove_as <T _ _ a t t r i b u t e _ _ ((

e x t _ a d d r e s s _ s p a c e (Nv))) > {

us ing t y p e = T ;

} ;

t emplate <typename T , unsigned Nv>

s t r u c t remove_as <T c o n s t v o l a t i l e

_ _ a t t r i b u t e _ _ ((e x t _ a d d r e s s _ s p a c e (Nv)))

> {

us ing t y p e = T c o n s t v o l a t i l e ;

} ;

B. The Traits API with as_val

Each API function has a fall-back version for compilers

that do not support the ext_address_space extension.

This means that the API will not cause compilation errors or

undefined behaviour, ensuring portability. Outwardly the API

calls do not change, nor do the required includes. Only the

implementation of the functions change significantly. This is

handled by macros that check if the ext_address_space

attribute is implemented, then includes the relevant header files.

Figure 5 The get_as class template

template <typename T , unsigned Nv = 0>

s t r u c t g e t _ a s {

s t a t i c c o n s t unsigned v a l u e = Nv ;

} ;

t emplate <typename T , unsigned Nv>

s t r u c t g e t _ a s <T _ _ a t t r i b u t e _ _ ((

e x t _ a d d r e s s _ s p a c e (Nv))) > {

s t a t i c c o n s t unsigned v a l u e = Nv ;

} ;

A template class facilitates the API implementation’s mimick-

ing of the address space qualifier. The as_val class template

(Figure 6) accepts a template type parameter and two non-type

template parameters. The type parameter represents the type

the address space qualifier is to be applied to. The two non-

type template parameters represent the address space of the

top most pointer (the Nv parameter) and the address space of

the pointee (the Np parameter). For example, as_val would

only support address space qualifiers on the first two pointers

of a pointer to a pointer to an integer type. The integer itself

would not be qualifiable. Of the parameters, only the type is

stored, the two address space values are stored at a type level

and can be deduced. Through C++ implicit conversion the

various overloaded functions allow the user to use assignment

operators and dereference operators as if they were using the

base type. This means there should be no discernible difference

between using a normal pointer type and as_val.

Whilst the implementations of the templates are different

using the as_val class template. The change is not drastic.

The functions all take in another non-type template parameter

for the pointee address space (Np). However, this is hidden

from the programmer using type aliases for each template.

The get_as implementation changes very little. Instead of

deducing the value from the ext_address_space attribute

currently tied to the type. It deduces the address space from

the Nv parameter of the as_val class template.

Figure 6 The as_val class template

t empla te <typename T , unsigned Np = 0 ,

unsigned Nv = 0>

s t r u c t a s _ v a l {

a s _ v a l () {}

a s _ v a l (T x) : x (x) {}

operator T () { re turn x ; }

T x ;

} ;

The implementation of remove_as is simplified. Instead of

having multiple specializations for every qualifier combination.

We can simply specialize for as_val. There is however a base

case and specialization as we cannot simply return the type

with the as_val (address space) removed. As there is also a

pointee address space tied to as_val. The base case checks

for an as_val with an 0 address space and pointee address

space and returns as_val’s stored type. The specialization

checks for values greater than 0 in the Np parameter through

deduction; then returns an as_val type with an Nv parameter

set to 0 whilst keeping the same type and Np parameter.

For add_as we require a base template for non-as_val

types and a specialization for types with as_val’s. The base

template wraps the given type with an as_val and sets the

as_val types address space parameter to the given address

space. Whereas the specialization simply replaces the current

address space parameter of the as_val type with the newly

given address space.

C. The add_pointee_as and remove_pointee_as

Traits

From the description of these templates it’s possible to

notice that there is no way to set the pointee address space

of an as_val template class. As such there are another two

template classes that allow manipulation of the pointee. They

are add_pointee_as and remove_pointee_as.

For the ext_address_space attribute extension the

add_pointee_as template class requires base classes and

specializations similar to the remove_as template. They also

ANDREW GOZILLON, PAUL KEIR: TOWARDS PROGRAMMABLE ADDRESS SPACES 699

provide a similar use, to peel off const and volatile

qualifiers from the passed in type and then reapply them to

the return type. The template parameters and type alias in

this case are also identical to add_as. The next step is to

peel off the top level pointer to get access to its pointee (if

it has one) and then apply an address space to it. This is

achieved by a helper template which breaks down the type

using the C++ standard libraries pointer_traits template

class and then rebuilding it. It does this in three steps, first it

uses pointer_traits element_type parameter to get

the pointees type. Secondly it applies the address space to this

type. It finally uses pointer_traits rebind to bind the

new type to the old type. The final result will be a type with a

new address space on the pointee of the original pointer. For

the non-extension implementation this is again much simpler.

It is identical to add_as, except the pointee address space

parameter is set instead.

IV. EXAMPLE USE CASE

Figure 7 OpenCL Reverse Array Example

__kerne l vo id

r e v e r s e A r r a y (a d d _ p o i n t e e _ a s _ t < f l o a t ∗ , 1>

d , i n t s i z e) {

a dd _a s_ t < f l o a t [6 4] , 2> s ;

i n t t = g e t _ l o c a l _ i d (0) ;

i n t t r = s i z e −t −1;

s [t] = d [t]

b a r r i e r (CLK_LOCAL_MEM_FENCE) ;

d [t] = s [t r]

}

The example we chose to showcase the C++ API can be

found in Figure 7. The example is an OpenCL kernel function

that will reverse one dimensional array data passed into it. The

kernel function is based off a CUDA shared memory example

found on NVIDIA’s developer blog [8]. The idea is that each

thread within a block will run an instance of this kernel and

swap the relevant value based on its thread id. In this example

the OpenCL named address spaces have been traded out for

API calls which represent them as integer values. In the context

of this example global is represented by the value one, local

by the value two and private by the lack of a qualifier.

In the example the kernel accepts a pointer to some floating

point data d. Alongside an integer size that represents the

number of elements contained within d. The float pointer type

is wrapped in an add_pointee_as_t class template from

our API with an integer representing the global address space.

This applies the address space to the target of the float pointer.

Which makes the type equivalent to __global float*.

Further down we create a statically allocated array of floats s

which we can store values from d in for swapping later. We

apply add_as_t to its type alongside an integer representing

the local address space. Which makes the type of s equivalent

to __local float[64]. The function then creates two

index values t and tr which represent the values we wish

to swap within the current thread. After which we use the t

index to copy a value per thread from d in global memory

to s in local memory. However, before we can swap the data

we must place a local barrier to prevent data races. After the

barrier we can proceed to reverse the array.

A feature of our API is that if the attribute extension for

ext_address_space is not found in the compiler it will

still compile. It will fall back on the implementations that

make use of the as_val template class which stores the

address space value and variable within itself. Despite the

variable now being wrapped within as_val it can still be

used as if it was the raw type. This works through overloading

certain operators in the class so that implicit conversion allows

access to the underlying data. This fall-back functionality is

provided by including all the required API functions through

a single include file. This include file can then add different

API implementations based on the presence of the ext_-

address_space attribute. This functionality has been tested

with the GCC and Clang C++ compilers. Despite choosing

OpenCL as the language for the example, the C++ API should

be usable in the same way for C++ and C++ based programming

models.

V. CONCLUSION

In conclusion, we have presented a C++ template API

that we believe improves the programmability of address

spaces. The API borrows concepts from C++’s type traits.

We believe this API will help facilitate bringing address space

qualifiers further into the C++ type system allowing further

template metaprogramming and type safety opportunities. To

help showcase the ability of our API to integrate existing

address space implementations, we integrated it with Clang’s

address space attribute. However we also presented an API

implementation that would also allow it work as a standalone

implementation of address spaces that requires no compiler

extensions.

REFERENCES

[1] A. Munshi, “The opencl specification,” in Hot Chips 21 Symposium

(HCS), 2009 IEEE. IEEE, 2009. doi: 10.1109/HOTCHIPS.2009.7478342
pp. 1–314. [Online]. Available: http://dx.doi.org/10.1109/HOTCHIPS.
2009.7478342

[2] C. Nvidia, “Compute unified device architecture programming guide,”
2007.

[3] T. S. Sites, “Top500 lists,” 1993. [Online]. Available: https://www.top500.
org/

[4] JTC1/SC22/WG14, “Programming languages - c - extensions to
support embedded processors,” 2006. [Online]. Available: http:
//www.open-std.org/jtc1/sc22/wg14/

[5] Apple, “Metal,” 2014. [Online]. Available: https://developer.apple.com/
metal/

[6] S. Wienke, P. Springer, C. Terboven, and D. an Mey, “Openacc -
first experiences with real-world applications,” in European Conference

on Parallel Processing. Springer, 2012. doi: 10.1007/978-3-642-
32820-6_85 pp. 859–870. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-32820-6_85

[7] “clang: a c language family frontend for llvm.” [Online]. Available:
http://clang.llvm.org/

[8] M. Harris, “Using shared memory in cuda c/c++,”
2013. [Online]. Available: https://devblogs.nvidia.com/parallelforall/
using-shared-memory-cuda-cc/

700 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

