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Abstract—In this article, the problem of determining the
significance of data features is considered. For this purpose the
algorithm is proposed, which with the use of Sobol method,
provides the global sensitivity indices. On the basis of these
indices, the aggregated sensitivity coefficients are determined
which are used to indicate significant features. Using such an
information, the process of features’ removal is performed. The
results are verified by the probabilistic neural network in the
classification of medical data sets by computing model’s quality.
We show that it is possible to point the least significant features
which can be removed from the input space achieving higher
classification performance.

I. INTRODUCTION

G
LOBAL sensitivity analysis (GSA) embraces a group of

algorithms which determine the influence of the input

of the model to the model’s output. This gives the possibility

of estimating how the model output variance is influenced by

relative impact of a single input variable and the interactions

between them. In GSA, the influence on the output of the

model can be assessed by means of regression methods,

screening approaches [1], and the variance-based techniques,

e.g., Sobol method [2], [3], the Fourier amplitude sensitivity

test (FAST) [4], or the extended (EFAST) [5].

In literature, we can find a lot of contributions devoted

to applications of GSA to feature selection. For example,

in [6], the Sobol method is applied in optimization of shell

and tube heat exchangers; the non-influential geometrical

parameters which have the least effect on total cost of tube heat

exchangers are identified. In turn, in [7], a new GSA based

algorithm for the selection of input variables of neural network

is proposed. The algorithm ranks the model’s inputs according

to their importance in the variance of the network output.

In reference [8], one can find the use of the standardized
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of Electronics Fundamentals Grant for Statutory Activity (DS 2017).

regression coefficients, Morris screening and EFAST methods

in assessing the most relevant processes occurring in waste-

water treatment systems. The aforementioned methods are

applied to a complex integrated membrane bioreactor where

various interactions among the input factors are detected. The

authors of current work utilize the GSA methods in the domain

of neural network structure reduction. In [9], we present how

the structure of the probabilistic neural network (PNN) can be

optimized by means of Sobol, FAST and EFAST methods.

It is important to note that, in addition to GSA based

techniques, many other approaches exist which can be uti-

lized for feature selection. For example, ReliefF algorithm,

proposed by Kira and Rendell in [10], computes the weights

for data set features. This shows how well the feature values

distinguish among patterns which are near to each other,

taking into account the output class. On the basis of the

weight values, the feature significance can be established.

Similarly, Breiman’s random forest algorithm [11], within

its training process, invokes variable importance procedure.

This procedure provides a ranking of the overall relevance of

features. On the other hand, the extended version of Naı̈ve

Bayes classifier, presented in [12], determines the importance

of features in classification process by means of weights of a

normalized neural network. The weights are obtained by the

backpropagation-like technique applied to the model training.

The appropriate connection between the network and the

classifier is implemented. The attribute clustering algorithms

are also utilized to construct informative subset of available

features from high dimensional data. The authors of [13]

propose such a solution along with an attribute similarity

measure which is useful for identifying groups of features that

are likely to be selected for reduction purposes.

In this study, we propose the algorithm for determining the

significance of input features. This significance is obtained us-

ing Sobol method. For the analysis, the UCI machine learning
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repository (UCI–MLR) data sets [14] are used. The algorithm

is tested in the classification problems conducted using PNN;

the correctness of operation is verified by computing the

learning and test qualities.

This article is organized as follows. In section II, the Sobol

sensitivity analysis fundamentals are provided. Section III,

introduces the PNN model highlighting its architecture and

training algorithm. In section IV, the algorithm for determining

the significance of input features is proposed. Section V

presents numerical verification results achieved by the pro-

posed algorithm. In section VI, we shortly summarize our

work.

II. SOBOL SENSITIVITY ANALYSIS

Sobol method is based on decomposition of the model

output variance into summands of variances of the input

parameters in increasing dimensionality [2], [15]. It establishes

the contribution of each input variable and the interactions

between them to the overall variance in the output of the

model. This is achieved by computing the first-order, second-

order, higher-order and the overall sensitivity indices. Below,

we show how to determine this contribution of variables

according to the Sobol approach.

Let x = (x1, x2, . . . , xN ) be the set of mutually in-

dependent input parameters in which xi ∈ I
N where I

denotes [0,1] interval and I
N is the N–dimensional unit hy-

percube. The model output, whose sensitivity to the parameters

x1, x2, . . . , xN is to be determined, is an integrable function

f(x) defined in I
N

f(x) = f0 +
N
∑

s=1

N
∑

i1<i2<···<is

fi1i2···is (xi1 , xi2 , . . . , xis). (1)

It can be seen that the overall number of summands in (1) is

2N . Equation (1) can be rewritten in the following form

f(x) = f0 +
N
∑

i=1

fi(xi)+

N
∑

i=1

N
∑

j=i+1

fij(xi, xj) + . . .+ f12···N (x1, x2, . . . , xN ).

(2)

Formula (1) is called ANOVA-representation of f(x) if the

integral of each summand over each of its own variables is

zero
∫ 1

0

fi1i2···is(xi1 , xi2 , . . . , xis)dxk = 0 (3)

for k = i1, i2, . . . , is where both {i1, i2, . . . , is} and s run

from 1 to N .

Some important remarks can now be inferred. First of all,

the integration of (1) over IN yields

∫ 1

0

f(x)dx = f0. (4)

which allows for computing the term f0. Further, after inte-

grating (1) over all variables excluding xi one obtains

∫ 1

0

f(x)
∏

k 6=i

dxk = f0 + fi(xi), (5)

which provides

fi(xi) =

∫ 1

0

f(x)
∏

k 6=i

dxk − f0. (6)

Similarly, integrating (1) over all variables excluding xi and

xj defines the term fij(xi, xj) as follows

fij(xi, xj) =

∫ 1

0

f(x)
∏

k 6={i,j}

dxk−fi(xi)−fj(xj)−f0. (7)

The procedure is performed until last term

f12···N (x1, x2, . . . , xN ) is determined.

Assuming that f(x) is square integrable over IN , all terms

fi1i2···is in (1) are also integrable. Thus

∫ 1

0

f2(x)dx−f2
0 =

N
∑

s=1

N
∑

i1<i2<···<is

∫ 1

0

f2
i1i2···isdxi1 · · · dxis .

(8)

The left side of (8) is called the total variance of f(x)

D =

∫ 1

0

f2(x)dx − f2
0 (9)

while

Di1···is =

∫ 1

0

f2
i1i2···isdxi1 · · · dxis (10)

are the partial variances for each term in (1). Using (8)–(10)

we receive

D =

N
∑

s=1

N
∑

i1<i2<···<is

Di1···is , (11)

which means that

D =

N
∑

i=1

Di +

N
∑

i=1

N
∑

j=i+1

Dij + . . .+D12···N . (12)

The sensitivity indices are defined as the following ratios

Si1···is =
Di1···is

D
, (13)

where

Si =
1

D

∫ 1

0

f2
i (xi)dxi (14)

are the first-order sensitivities computed for the variables xi,

i = 1, . . . , N ; the sensitivities Si measure how particular xi

variables affect the output of the model, i.e., the variance of

f(x). Similarly, the second-order sensitivity

Sij =
1

D

∫ 1

0

∫ 1

0

f2
ij(xi, xj)dxidxj (15)
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is used to determine the second-order contribution from inter-

action between xi and xj to the output variance. The sum of

all sensitivity indices for xi defined as

STi
= Si +

∑

j 6=i

Sij + . . .+ S12...N (16)

measures the overall effect of this parameter on the output of

the model. All Si1···is indices are nonnegative and their sum

is equal
N
∑

s=1

N
∑

i1<i2<···<is

Si1···is = 1. (17)

A Monte Carlo algorithm is used for an estimation of global

sensitivity indices.

III. PROBABILISTIC NEURAL NETWORK

PNN is a feedforward network initially proposed by Specht

in [16], [17]. It is very popular with the scientists in the

field of machine learning. PNN is frequently utilized in many

applications, e.g.: medical diagnosis and prediction [18], [19],

[20], [21], image classification and recognition [22], [23], [24],

multiple partial discharge sources classification [25], interval

information processing [26], [27], phoneme recognition [28],

email security enhancement [29], intrusion detection systems

[30] or classification in a time-varying environment [31].

The operation of PNN is based on a Bayes decision rule.

In this section, we shortly highlight the structure of the model

and its training algorithm.

A. Structure of the network

PNN is organized into four layers. The input vector variables

x = [x1, . . . , xN ] form the neurons in the first input layer. All

given training data, after some activation, are used to create the

neurons in the second layer, called the pattern layer. Pattern

neurons forward produced output to the next summation layer,

where each summation neuron acquires inputs from the pattern

neurons representing the same class. In particular, in the

summation layer, there exist g = 1, . . . , G neurons and each

gth neuron sums the signals from the neurons of the gth class.

The last output layer yields the classification outcome on the

basis of the highest value obtained from all G summation

neurons.

Different approaches may be utilized to activate pattern

neurons of PNN. In this paper, the product kernel involving

all input variables is considered

K(x) = K(x1)· K(x2)· . . . · K(xN ), (18)

where each multiplicand takes the following Cauchy form

K(xi) =
2

π(x2
i + 1)2

. (19)

Such a form of kernel function allows us to define summa-

tion neuron output as follows

fg(x) =
1

Pgdet(h)

Pg
∑

p=1

1

sNp
K







(

x− x
(p)
g

)T

h
−1

sp






, (20)

where: Pg stands for the number of cases in the gth class

(g = 1, . . . , G); h = diag(h1, . . . , hN ) denotes the vector

of smoothing parameters; sp is the modification coefficient;

x
(p)
g = [x

(p)
g,1, . . . , x

(p)
g,N ] is the pth training vector of the gth

class. The formula (20) is also referred to as the kernel density

estimator (KDE) for the gth class in the context of PNN

operation.

Using (18) and (19), the gth summation layer neuron

produces the following signal

fg(x) =
1

Pgdet(h)

Pg
∑

p=1

1

sNp

N
∏

i=1

2

π

(

(

xi−x
(p)
g,i

hisp

)2

+ 1

)2 .

(21)

The final output layer of PNN determines the class assignment

for the sample vector x based on the Bayes decision rule [17]

for all fg KDEs

G(x) = argmax
g=1...G

fg(x), (22)

where G(x) provides the predicted class label. The structure

of the PNN model is illustrated in Fig. 1.

B. Training algorithm

The training algorithm of PNN consists in the appropriate

choice of the smoothing parameter hi and the computation of

the modification coefficients.

For N -dimensional data sets, when the product kernel is

used for KDE estimation, one recommends to compute hi by

means of the plug-in method [32], [33]. The hi parameters are

then determined independently for each dimension

h =

[

R(K)

U(K)2
8
√
πσ̂9

3P

]
1
5

(23)

where σ̂ denotes the estimator of the standard deviation and

for the Cauchy kernel in (19), R(K) = 1 and U(K) = 5/4.

The calculation of σ̂ is solved iteratively using second-order

level approximation [34], [33].

As presented in both (20) and (21), KDE for the gth class

depends on the value of the modification coefficient sp. For

PNN, it is computed separately for each class and is related to

the pth training vector. The modification coefficient is defined

as follows [34]

sp =

(

f̂(x(p))

s̃

)−c

, (24)

where

s̃ =

(

P
∏

p=1

f̂(x(p))

)

1
P

, (25)

where c is the non-negative constant used to determine the

modification intensity. In literature, one usually assumes c =
0.5 [33].
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Fig. 1. The architecture of probabilistic neural network.

IV. ALGORITHM FOR DETERMINING SIGNIFICANCE OF

FEATURES

This section describes the proposed algorithm for determin-

ing the significance of particular features in data set, which

in turn, entails the reduction of the PNN’s input layer. All

components of the this algorithm are set out in Fig. 2 in form

of the flowchart. As it can be observed, the flowchart is divided

into two parts. The upper part (over the dashed line) concerns

a description of PNN topology with all stages of learning

process. The bottom part (under the dashed line) shows the

application of Sobol method for providing a sensitivity indices

what results in establishing the order of data features.

In the first stage of the algorithm, we start from data

acquisition ❶. Since the PNN model is utilized, it is assumed

(step ❷) that data are distinguished between particular classes.

In step ❸, the topology of PNN is created. For this purpose,

the number of records, features and classes of the considered

data are acquired. Then all training patterns are copied into

appropriate neurons (stage ❹) preserving class membership,

as it is shown in Fig. 1. This results in obtaining the required

structure of PNN ready for training process. Now, as it

is presented in subsection III-B, in step ❺, the smoothing

parameters hi are computed for each of regarded classes

separately. As a result N smoothing parameters are obtained

in each class (which gives N · G in total). In step ❻ of the

algorithm, for every gth class, the modification coefficients sp,

p = 1, . . . , Pg, are determined.

In the second stage of the algorithm, the global sensitivity

analysis takes place (❼). The application of Sobol method

allows us to obtain required information about influence of

individual elements of the input vector on particular KDEs

fg(x). Based on the Sobol approach described in Section II,

for each input element xi and each class estimator fg(x),

the first order sensitivity index S
(p)
i,g (14) for the pth training

pattern is computed. After determination of S
(p)
i,g for all P

training patterns, one can calculate aggregated parameters by

applying mean square average sensitivity norm

Smean
i,g =

√

√

√

√

∑P

p=1

(

S
(p)
i,g

)2

P
. (26)

Finally, it is required to define the maximum value Si in

ith row of the matrix S
mean with the elements aggregated

according to (26)

Si = max
g=1,...,G

{

Smean
i,g

}

. (27)

In the last step ❽, the algorithm returns the sorted vector with

Si coefficients and the vector which contains the indices corre-

sponding to the sorted coordinates. The first algorithm output

item informs us about the aggregated quantitative sensitivity of

individual inputs in the PNN’s class estimator. These inputs

are associated with the features of the considered data set.

The second algorithm output item gives us the possibility to

indicate the order of features’ significance.
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Fig. 2. Flowchart of the proposed algorithm.

The steps ❼ and ❽ as well as the PNN learning stages

❶–❻ constitute the complete algorithm for determining the

significance of particular features of data set.

In the current paper, we do not focus on providing a priori

general criterion to decide what is the right number of features

to remove. Such a criterion could, for example, be based

on finding explicit difference between two neighboring Si

elements in the matrix S
mean, as shown in [9]. On the other

hand, determining a general threshold of feature significance is

difficult to establish since it is dependent on classifier applica-

tions. However, if we assume the use of PNN in classification

tasks, some solution could rely on iterative reduction of the

least significant feature along with simultaneous assessment

of the network quality.

V. NUMERICAL RESULTS

In this section, numerical verification results of the proposed

algorithm are presented. In the first part, we focus on Sobol

sensitivity method applied to determine the significance of

input features. The second part considers the evaluation of

the introduced algorithm in the classification tasks. To make

our study more representative, three UCI–MLR medical data

sets are taken under consideration. Table I characterizes these

data sets. In particular, we present: the number of records with

class distribution (Mi), the number of features (N ), and the

number of classes (C). In the last column of the table, the

bibliography reference of each data set is provided.

TABLE I
CHARACTERISTICS OF EXPERIMENTAL DATA SETS

Data set Abbrev. Mi N C Biblio.

Wisconsin Breast Cancer WBC 239 – 444 9 2 [35]
Statlog Heart SH 150 – 120 13 2 [36]

Parkinsons Data PD 48 – 147 22 2 [37]

A. Significance of data features

This part of paper examines the application of the Sobol

method used to determine the significance of the individual

features for all data sets presented in Table I. The results of

the numerical verification of the algorithm presented in Section

IV are shown in three drawings for each data set separately. In

particular, for the WBC data set, Fig. 3 contains the sensitivity

values Si for each data feature, Fig. 4 displays the sorted

values of Si in descending order while Fig. 5 illustrates the

difference between the particular bins presented in Fig. 4, i.e.

dSi = Si−1 − Si for i = 2, 3, . . . , N . Figures 6, 7, and 8

depict respectively: Si, sorted Si and dSi for the SH data set.

Finally, in Fig. 9, Fig. 10, and Fig. 11, we show Si, sorted Si

and dSi for the PD data set, respectively.

Fig. 3. Sensitivity coefficients for the WBC data set.

In the case of the WBC data set (Fig. 3 and Fig. 4), we

can see that the 9th feature is the most dominating since

its sensitivity is equal S9 = 0.3998. Then, two features

can be distinguished, i.e., x6 and x7 for which Si ≈ 0.2.

The next distinctive group of features constitute x1 and x3

where Si ∈ (0.05, 0.1). The remaining features, i.e., {2,4,8,5}
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Fig. 4. Sorted sensitivity coefficients for the WBC data set.

Fig. 5. The differences between sorted sensitivity coefficients for the WBC
data set.

comprise the collection of less significant inputs because all

their sensitivities are less than 0.025. In Fig. 5, one can clearly

notice two distinct values for the first and third bar. This

indicates the border between the most important feature x9,

two elements group of x6, x7, and further features x1 and x3.

These visible bars may contribute to discovering the cutoff

between significant and negligible features for this data set.

This fact will be explained in subsection V-B.

In the case of the SH data set (Fig. 6), it is possible to point

out two significant features x6 and x2 for which Si equals

0.2751 and 0.2434, respectively. The next group of features

create the inputs x13 and x3 with Si ≈ 0.1150. Then for the

features {x12, x11, x10} (what can be observed in Fig. 7), we

can remark linear decline of the sensitivity. The remaining

features are characterized by a similar value of Si ≈ 0.02.

Only the last feature x1 is the least significant what results

from S1 = 0.0047. Analyzing Fig. 8, one can see a noticeable

peak at 13th feature and much smaller one at x12. These

observations indicate two potential borders where the input

Fig. 6. Sensitivity coefficients for the SH data set.

Fig. 7. Sorted sensitivity coefficients for the SH data set.

reduction may occur.

Finally, for the last PD data set considered in this study,

which consists of 22 features, one observes that the most

important feature index is 10; here S10 = 0.1602 (see Fig.

9 and 10). Subsequent group of features is characterized by

Si ≈ 0.1 which includes inputs {x13, x6, x8, x12}. Analyzing

the indices of features from the set {1, 5, 4, 15} we can see a

linear decrease in the sensitivity coefficient values. The next

two peaks in the figure belong to features 11 and 14 with

similar sensitivity (approx. 0.028). The last group of features

comprises the ones for which Si < 0.02.

B. Verification of data features significance in classification

task

The results presented in subsection V-A are verified in

the classification problems. Firstly, we apply Sobol method

globally on the entire data set and determine the order of

features’ significance. Sorted sensitivity coefficients for the

considered WBC, SH and PD data sets are presented in

Figures 4, 7 and 10, respectively. Then, the PNN classification
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Fig. 8. The differences between sorted sensitivity coefficients for the SH data
set.

Fig. 9. Sensitivity coefficients for the PD data set.

performance is evaluated using a 10-fold cross validation (CV)

procedure. Single classification task is performed by removing

the least significant feature. The entire procedure is conducted

until a single feature is left. The whole experiment is repeated

30 times. As the result, we provide classification quality

computed as the ratio of the number of correctly classified

input patterns to the data set cardinality.

For all analyzed data sets, the obtained results are set out in

tables and figures. The tables present the following indicators:

the current number of features (N ), the least significant feature

index (LSF ), average learning quality along with standard

deviation–denoted as qLcv and std(qLcv), and average test quality

with standard deviation–denoted as qTcv and std(qTcv). In the

case of figures, the plotted bars depict qLcv (painted gray) and

qTcv (painted white) determined at particular set of selected

features.

Table II and Fig. 12 represent the results for the WBC

data set. Analyzing the reduction of individual features, the

following is observed. First of all, the inequality qLcv > qTcv

Fig. 10. Sorted sensitivity coefficients for the PD data set.

Fig. 11. The differences between sorted sensitivity coefficients for the PD
data set.

holds in the entire range of feature indices. The sensitivity

to the reduction in the test set is higher than the one in

the learning set. Secondly, by reducing the least significant

feature (no. 5) we notice an improvement in the quality of

the classification for the test set. However, within the removal

of the next least significant features (i.e., 8,4 and 2), a slight

quality decrease is noticed: qLcv drops from 0.9987 (for full

data set) down to 0.9946 (data set with 6 features) while qTcv

– from 0.9677 down to 0.9458. Let us proceed further: by

removing x3 and x1, we achieve the decrease of the test quality

to 0.9311. Now the tendency in quality decrease becomes

stronger and stronger since discarding the next two features (7

and 6) results in a sudden qTcv decline (0.8912). Finally, leaving

only the most significant 9th feature causes a drastic worsening

of the test quality (down to 0.7861). The above conclusions

strongly refer to the groups of features with similar sensitivity

values.

For the SH data set, the results are presented in Table III and

in Fig. 13. Here, the effect of simultaneous features’ reduction

PIOTR ANDRZEJ KOWALSKI, MACIEJ KUSY: DETERMINING THE SIGNIFICANCE OF FEATURES WITH THE USE OF SOBOL’ METHOD 45



TABLE II
SIMULATION RESULTS FOR WBC DATA SET

N LSF qLcv std(qL) qTcv std(qT )

9 5 0.9987 0.0001 0.9677 0.0023
8 8 0.9973 0.0001 0.9697 0.0019
7 4 0.9972 0.0002 0.9589 0.0024
6 2 0.9946 0.0001 0.9458 0.0032
5 3 0.9861 0.0002 0.9421 0.0030
4 1 0.9691 0.0005 0.9311 0.0026
3 7 0.9245 0.0004 0.8918 0.0019
2 6 0.9079 0.0008 0.8912 0.0046
1 9 0.7876 0.0008 0.7861 0.0015

5 8 4 2 3 1 7 6 9

Indices of features

0.7

0.75

0.8

0.85

0.9

0.95

1
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Fig. 12. Simulation results for WBC data set.

and the increase of the classification quality can be discerned.

This phenomenon occurs when first two features (i.e., 6 and

2) are deleted from data set. The test quality grows form

0.7781 for original data set up to 0.7819 for the reduced

one. The removal of four least significant features leads to

0.0155 decrease of qTcv index. The rejection of the subsequent

features results in a significant deterioration in the data set

representativeness, therefore the obtained outcomes keep on

worsening. The smallest value of test quality is obtained for

N = 2. However, for the data set with the single feature

(N = 1), the value of qTcv is over 7% higher than the one

determined when N = 2.

Finally, Table IV and Fig. 14 present the results achieved

for the PD data set. As shown, discarding ten least significant

features yields a slight fluctuation in classification outcomes,

since the overall level of quality varies by about 2% here. The

reduction of 11 features makes qTcv decrease below 0.84. The

removal of seven subsequent features results in qTcv changes

in the range of 0.87 to 0.83. Discarding 17 least significant

features results in a substantial drop in test quality down to a

TABLE III
SIMULATION RESULTS FOR SH DATA SET

N LSF qLcv std(qL) qTcv std(qT )

13 1 1.0000 0.0000 0.7781 0.0083
12 4 1.0000 0.0000 0.7859 0.0087
11 5 1.0000 0.0000 0.7819 0.0077
10 7 1.0000 0.0000 0.7478 0.0083
9 8 1.0000 0.0000 0.7626 0.0081
8 9 0.9967 0.0002 0.6763 0.0091
7 10 0.9968 0.0004 0.6726 0.0127
6 11 0.9966 0.0002 0.6419 0.0100
5 12 1.0000 0.0000 0.6041 0.0083
4 3 0.9801 0.0012 0.5537 0.0126
3 13 0.9460 0.0012 0.5807 0.0164
2 2 0.7503 0.0021 0.5500 0.0195
1 6 0.6429 0.0012 0.6204 0.0064

6 2 13 3 12 11 10 9 8 7 5 4 1 

Indices of features

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

le
ar

n
in

g
/t

es
in

g
 q

u
al

it
y

Fig. 13. Simulation results for SH data set.

value of 0.7197. At last, when we get rid of N − 1 features,

the worst outcome is provided, i.e., qcv = 0.7015.

VI. SUMMARY

In this work, the complete algorithm for determining the sig-

nificance of input features in medical data sets was proposed.

It was based on the definition of the global sensitivity indices

generated according to the Sobol method. The correctness of

the algorithm was verified on the UCI-MLR data classifica-

tion tasks using the PNN model by computing learning and

testing qualities. We showed that it was possible to obtain

higher classification performance of PNN after removal of the

least significant features. According to medical feedback, the

proposed algorithm exhibited proper functioning. Based on the

numerical verification, the algorithm had advantageous prop-

erties in high-dimensional case (N = 22) since no increase

in data set cardinality was required to achieve satisfactory
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Fig. 14. Simulation results for PD data set.

TABLE IV
SIMULATION RESULTS FOR PD DATA SET

N LSF qLcv std(qL) qTcv std(qT )

22 16 1.0000 0.0000 0.9027 0.0046
21 18 1.0000 0.0000 0.9000 0.0065
20 2 1.0000 0.0000 0.8968 0.0090
19 20 1.0000 0.0000 0.8860 0.0069
18 9 1.0000 0.0000 0.8993 0.0082
17 3 1.0000 0.0000 0.9000 0.0050
16 7 0.9954 0.0003 0.8905 0.0075
15 21 0.9962 0.0005 0.8918 0.0075
14 19 0.9912 0.0007 0.8972 0.0084
13 22 0.9911 0.0005 0.8775 0.0093
12 17 0.9919 0.0006 0.8410 0.0092
11 14 0.9582 0.0006 0.8278 0.0069
10 11 0.9620 0.0011 0.8345 0.0069
9 15 0.9636 0.0009 0.8420 0.0112
8 4 0.9638 0.0013 0.8285 0.0091
7 5 0.9720 0.0008 0.8348 0.0110
6 1 0.9767 0.0008 0.8777 0.0062
5 12 0.8058 0.0023 0.7197 0.0105
4 8 0.8077 0.0019 0.7120 0.0121
3 6 0.8525 0.0019 0.7477 0.0110
2 13 0.7793 0.0039 0.7392 0.0176
1 10 0.7519 0.0032 0.7015 0.0118

results. This, in turn, saved us from well known “curse of

dimensionality”.

The future work will focus on application and simplifica-

tion of the proposed algorithm on high-dimensional data set

classification problems. Other global sensitivity methods will

also be considered.

REFERENCES

[1] M. D. Morris, “Factorial sampling plans for preliminary computational
experiments,” Technometrics, vol. 33, no. 2, pp. 161–174, 1991.

[2] I. M. Sobol, “Sensitivity estimates for nonlinear mathematical models,”
Mathematical Modelling and Computational Experiments, vol. 1, no. 4,
pp. 407–414, 1993.

[3] ——, “Global sensitivity indices for nonlinear mathematical models and
their monte carlo estimates,” Mathematics and computers in simulation,
vol. 55, no. 1, pp. 271–280, 2001.

[4] R. Cukier, C. Fortuin, K. E. Shuler, A. Petschek, and J. Schaibly, “Study
of the sensitivity of coupled reaction systems to uncertainties in rate
coefficients. i theory,” The Journal of Chemical Physics, vol. 59, no. 8,
pp. 3873–3878, 1973.

[5] A. Saltelli, S. Tarantola, and K.-S. Chan, “A quantitative model-
independent method for global sensitivity analysis of model output,”
Technometrics, vol. 41, no. 1, pp. 39–56, 1999.

[6] M. Fesanghary, E. Damangir, and I. Soleimani, “Design optimization
of shell and tube heat exchangers using global sensitivity analysis and
harmony search algorithm,” Applied Thermal Engineering, vol. 29, no. 5,
pp. 1026–1031, 2009.

[7] E. Fock, “Global sensitivity analysis approach for input selection and
system identification purposes–a new framework for feedforward neural
networks,” IEEE Transactions on Neural Networks and Learning Sys-

tems, vol. 25, no. 8, pp. 1484–1495, 2014.

PIOTR ANDRZEJ KOWALSKI, MACIEJ KUSY: DETERMINING THE SIGNIFICANCE OF FEATURES WITH THE USE OF SOBOL’ METHOD 47



[8] A. Cosenza, G. Mannina, P. A. Vanrolleghem, and M. B. Neumann,
“Global sensitivity analysis in wastewater applications: A comprehensive
comparison of different methods,” Environmental modelling & software,
vol. 49, pp. 40–52, 2013.

[9] P. A. Kowalski and M. Kusy, “Sensitivity analysis for probabilistic
neural network structure reduction,” IEEE Transactions on Neural

Networks and Learning Systems, vol. PP, no. 99, pp. 1–14, 2017. doi:
10.1109/TNNLS.2017.2688482

[10] I. Kononenko, “Estimating attributes: analysis and extensions of relief,”
in Machine Learning: ECML-94. Springer, 1994, pp. 171–182.

[11] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[12] M. Szczuka and D. Slezak, “Feedforward neural networks for compound
signals,” Theoretical Computer Science, vol. 412, no. 42, pp. 5960–5973,
2011.

[13] A. Janusz and D. Slezak, “Utilization of attribute clustering methods
for scalable computation of reducts from high-dimensional data,” in
Federated Conference on Computer Science and Information Systems

(FedCSIS), 2012, pp. 295–302.
[14] M. Lichman, “UCI machine learning repository,” 2013. [Online].

Available: http://archive.ics.uci.edu/ml
[15] A. Saltelli, S. Tarantola, and K.-S. Chan, “A quantitative model-

independent method for global sensitivity analysis of model output,”
Technometrics, vol. 41, no. 1, pp. 39–56, 1999.

[16] D. F. Specht, “Probabilistic neural networks,” Neural Networks, vol. 3,
no. 1, pp. 109–118, 1990.

[17] ——, “Probabilistic neural networks and the polynomial adaline as com-
plementary techniques for classification,” Neural Networks, IEEE Trans-

actions on, vol. 1, no. 1, pp. 111–121, Mar 1990. doi: 10.1109/72.80210
[18] R. Folland, E. Hines, R. Dutta, P. Boilot, and D. Morgan, “Comparison

of neural network predictors in the classification of tracheal–bronchial
breath sounds by respiratory auscultation,” Artificial intelligence in

medicine, vol. 31, no. 3, pp. 211–220, 2004.
[19] D. Mantzaris, G. Anastassopoulos, and A. Adamopoulos, “Genetic

algorithm pruning of probabilistic neural networks in medical disease
estimation,” Neural Networks, vol. 24, no. 8, pp. 831–835, 2011.

[20] M. Kusy and R. Zajdel, “Application of reinforcement learning algo-
rithms for the adaptive computation of the smoothing parameter for
probabilistic neural network,” Neural Networks and Learning Systems,

IEEE Transactions on, vol. 26, no. 9, pp. 2163–2175, 2015.
[21] ——, “Probabilistic neural network training procedure based on q(0)–

learning algorithm in medical data classification,” Applied Intelligence,
vol. 41, no. 3, pp. 837–854, 2014.

[22] Y. Chtioui, S. Panigrahi, and R. Marsh, “Conjugate gradient and ap-
proximate newton methods for an optimal probabilistic neural network
for food color classification,” Optical Engineering, vol. 37, no. 11, pp.
3015–3023, 1998.

[23] S. Ramakrishnan and S. Selvan, “Image texture classification using
wavelet based curve fitting and probabilistic neural network,” Interna-

tional Journal of Imaging Systems and Technology, vol. 17, no. 4, pp.
266–275, 2007.

[24] X.-B. Wen, H. Zhang, X.-Q. Xu, and J.-J. Quan, “A new watermarking
approach based on probabilistic neural network in wavelet domain,” Soft

Computing, vol. 13, no. 4, pp. 355–360, 2009.
[25] S. Venkatesh and S. Gopal, “Orthogonal least square center selection

technique–a robust scheme for multiple source partial discharge pattern
recognition using radial basis probabilistic neural network,” Expert

Systems with Applications, vol. 38, no. 7, pp. 8978–8989, 2011.
[26] P. A. Kowalski and P. Kulczycki, “Data sample reduction for classifica-

tion of interval information using neural network sensitivity analysis,”
in Artificial Intelligence: Methodology, Systems, and Applications, ser.
Lecture Notes in Computer Science, D. Dicheva and D. Dochev, Eds.
Springer Berlin Heidelberg, 2010, vol. 6304, pp. 271–272.

[27] ——, “Interval probabilistic neural network,” Neural Computing

and Applications, vol. 28, no. 4, pp. 817–834, 2017. doi:
10.1007/s00521-015-2109-3. [Online]. Available: http://dx.doi.org/10.
1007/s00521-015-2109-3
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