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Abstract—Nurse rostering problems are typically too large and
hard to be solved exactly. In order to achieve quality solutions to
these difficult problems, meta-heuristics are often employed. One
such meta-heuristic is Ant Colony Optimisation (ACO), inspired
by the pheromone trails left by ants. ACO works by guiding
a heuristic solution construction by using these pheromones
to direct weighted random choices. When the problem to be
solved is highly constrained, finding feasible solutions is difficult,
which can result in poor performance for ACO. To address this,
we propose an ACO algorithm using an integer programming
based solution construction method to ensure feasibility and
select from a collection of schedules. The approach also uses
a novel solution merging step that combines the information
from multiple ants to generate a better final roster. We discuss
several challenges inherent in this approach, and how they may
be overcome. Computational results on highly constrained nurse
rostering problem instances from the literature demonstrate the
effectiveness of our proposed new hybrid metaheuristic.

I. INTRODUCTION

Rostering problems involve the assignment of employees to

shifts in order to satisfy cover demands, subject to hard and

soft constraints according to rules and preferences respectively.

For a review of rostering problems and methods, see [1], or

more recently [2].

The Ant Colony Optimisation (ACO) metaheuristic [3] has

been applied successfully to a broad range of combinatorial

optimisation problems since its inception, including rostering

problems. ACO is inspired by the behaviour of real ants

that leave trails of pheromones in order to communicate. In

ACO, pheromones are used to guide solution construction

by encouraging the inclusion of solution components with a

higher pheromone presence. Pheromones are left by ants in

quantities proportional to solution quality to push future ants

towards higher quality solutions. In the past, ACO has been

applied to a dynamic version of the Nurse Rostering Problem

(NRP) [4] and to a very loosely constrained NRP variant [5].

This is the only ACO and exact algorithm hybrid we have

encountered for the NRP.

Various hybrid techniques involving ACO have been im-

plemented in literature, including hybrids with Constraint

Programming (CP) [6], [7], Lagrangian Relaxation [8], [9],

and Linear Programming [10]. Hybrids of exact methods

with other meta-heuristics have also been applied to the

NRP, including Tabu Search with CP [11] and Integer Linear

Programming [12], Integer Programming with Variable Neigh-

bourhood Search [13], and Iterated Local Search with CP [14].

More generally, hybridisation of exact algorithms and meta-

heuristics is discussed and classified in [15].

What we are proposing in this paper is a new type of

hybrid meta-heuristic in which Integer Programming is not

only used to handle maintaining feasibility of constraints, but

also to make an objective guided selection between a subset of

possible schedules during solution construction of work-lines.

The ACO framework then provides a way to manage solution

diversification and intensification.

Highly constrained rostering problems feature a set of

hard constraints that cause many roster combinations to be

infeasible, reducing the feasible space of the problem. This

can hinder the performance of meta-heuristics such as ACO

where the random solution construction cannot achieve feasi-

bility. In some cases this can be addressed by using problem

specific knowledge to ensure the construction of only feasible

solutions, however this is not always possible. Alternatively,

this set of hard constraints (or a subset of) may be relaxed

and penalised heavily to discourage violations. Such penalty

approaches can be problematic as they distort the fitness

landscape, often creating many more local optima so that it is

more difficult for the optimisation to find the global optimum.

To address the problem of constructing feasible solutions,

we use integer programming to generate feasible work-lines

for nurses which can be combined to form a complete roster.

This allows us to ensure feasibility in the construction of

solutions for our highly constrained NRP, as well as select the

best option from a subset of schedules, however the use of

Integer Programming can introduce other challenges. Integer

programs can be slow to solve for difficult problems. Quick

solution construction is desired for use within metaheuristics

in order to meaningfully explore the solution space. Opti-

mally solving Integer Programming sub-problems can also

lead to less solution diversity and quicker convergence to a

local optimum. Our proposed hybrid algorithm addresses this

challenge by using ideas from ACO to manage diversification

and intensification of the search.

We propose an Integer Programming based ACO method

for highly constrained rostering problems, making use of the

benefits of this hybrid approach while addressing possible
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concerns. While our approach makes use of features that

are general to rostering problems, we begin developing this

new hybrid method by applying it to instances from a highly

constrained NRP dataset to demonstrate its effectiveness at

generating good solutions quickly, in a way that scales well

for larger problems.

II. NURSE ROSTERING PROBLEM

The NRP consists of scheduling of nurses in hospitals to sat-

isfy shift requirements. There are several types of shifts each

day e.g. Day, Night, Early, Late, each with cover demands.

The assignment of nurses to shifts is subject to various work

contract constraints, both hard and soft, that determine legal

and preferred components of nurse schedules. Individual nurse

preferences for shifts on/off are also desired to be satisfied. For

reviews of models and methods for NRPs, see [16], [17].

Due to the difficulty inherent in NRPs, in order to achieve

good solutions quickly, metaheuristics are often applied to

problems. Approaches attempted include Simulated Annealing

[18], Variable Neighbourhood Search [19], Genetic Algorithm

[20], and Tabu search [12], among others.

As discussed in [21], constraints for the NRP can be put

in 3 categories. Sequence constraints that are applied within

shift sequences (work-stretches), e.g. allowed shift transitions

and maximum / minimum consecutive work days. Schedule

constraints that apply to a work-line for a single nurse (a

combination of work-stretches), e.g. maximum number of

assignments, maximum weekends worked, personal shift re-

quests on / off. Roster constraints that apply across nurse

work-lines for the entire roster, e.g. cover requirements.

Various descriptions of the NRP have been presented in

literature, featuring different constraints and different com-

binations of these being considered hard / soft constraints.

We explore the NRP as defined in [22], and use their set

of benchmark datasets hosted online along with best known

bounds1.

Three methods are applied to the NRP dataset in [22], the

ejection chain and branch-and-price from [23], and solving the

formulation provided with the integer programming software

Gurobi 5.6.3. The instances of the NRP dataset have also

been solved as a partially weighted maxSAT problem [24]

The objective is to minimise the weighted sum of undercover,

overcover, and not satisfied nurse shift preferences. This is

subject to 10 requirements (with their respective category:

sequence, schedule, or roster):

1) A nurse cannot be assigned more that one shift on a

single day - sequence.

2) Certain shifts cannot follow each other on consecutive

days, i.e. a Day shift cannot immediately follow a Night

shift - sequence.

3) Nurses cannot be assigned more than a certain number

each type of shift - schedule.

4) Nurses cannot work less than a minimum or more than

a maximum number of hours in the schedule - schedule.

1http://www.cs.nott.ac.uk/~psztc/NRP/index.html

5) Nurses cannot work more than a maximum number of

days in a row without a day off - sequence.

6) Nurses cannot work less than a minimum number of

days in a row before having a day off - sequence.

7) Nurses cannot take less than a minimum number of days

off in a row - sequence.

8) Nurses cannot work more than a maximum number of

weekends in a schedule - schedule.

9) Nurses cannot work on days on which they have booked

leave - sequence.

10) There is an ideal cover requirement to be achieved each

day, with over cover / under cover penalised -roster.

TABLE I
24 BENCHMARK INSTANCES

Instance Weeks Nurses Shift Types

1 2 8 1
2 2 14 2
3 2 20 3
4 4 10 2
5 4 16 2
6 4 18 3
7 4 20 3
8 4 30 4
9 4 36 4
10 4 40 5
11 4 50 6
12 4 60 10
13 4 120 18
14 6 32 4
15 6 45 6
16 8 20 3
17 8 32 4
18 12 22 3
19 12 40 5
20 26 50 6
21 26 100 8
22 52 50 10
23 52 100 16
24 52 150 32

A summary of the benchmark instances is given in Table

I, varying in the 3 problem dimensions: number of weeks,

nurses, and shift types. These instances are highly constrained

due to requirement 4, which is both an upper and lower bound

on hours worked. This requirement is often quite strict, not

allowing much variation in the number of shifts each nurse

is required to work. As a result, purely random constructions

heuristics perform poorly for these problems.

III. MODEL

Here we will present the Integer Programming formulation

for our solution construction method. The solution construc-

tion involves solving an integer program (IP) for single nurse’s

work-line. A typical integer programming formulation for a

NRP will utilise variables representing the assignment of a

particular nurse to a specific shift on a given day, as in [22],

[23].

As solution construction time is of concern, we make use

of the concept of work-stretches for the variables of our IP

in order to reduce complexity. We define a work-stretch as a
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Fig. 1. Definition of a work-stretch as a continuous sequence of work shifts
including the following minimum length stretch of off-days (requirement 7).

continual sequence of shift assignments for a specific nurse

with no off-days in between, combined with a stretch of off-

days of the minimum required length as shown in Figure 1.

These work-stretches are able to incorporate all the sequence

constraints of the problem, as well as the costs due to nurse

preferences not satisfied. Only work-stretches that satisfy all of

the sequence constraints (and so are feasible for our problem)

are generated and added to the problem as variables.

There are several examples in literature of the use of work-

stretch like structures for the NRP, mainly for use in heuristics,

including [21] who also present a brief summary of work-

stretches in NRP. For rostering problems more generally,

[25] present a general column generation approach based

upon work-stretches to reduce complexity. They use a nested

resource constrained shortest path that builds work-stretches

then uses these to construct columns of work-lines for nurses.

Their method is further refined and utilised in a branch-and-

price framework [26].

In using work-stretches to model our NRP, we reduce the

number of constraints we need to formulate explicitly in our

model. Each nurse’s schedule is modelled as a network flow

with side constraints that cover only the schedule and roster

constraints. By introducing single off-day variables, we can

model all combinations of shifts on and off by allowing

transitions from work-stretches to other work-stretches or to

these single off-day variables. The mathematical formulation

of this integer programming model for a given nurse i ∈ I is

given here in terms of the notation described in Table II.

First, we construct the network flow for this nurse. Equa-

tions (1) and (2) set up the source and sink of the flow

respectively. Equation (3) defines the flow conservation for

all other nodes, that the sum of work-stretches or off days

finishing on a given day equals the sum of those starting the

next day.

Day 0 flow:
∑

j∈Wi0

xij + oi0 = 1. (1)

Day h (last day) flow:
∑

j∈WE

ih+1

xij + oih = 1. (2)

Middle day flows:
∑

j∈WE

id

xij+oid−1 =
∑

j∈Wid

xij+oid, ∀d ∈ D\{0, h}. (3)

TABLE II
SETS, VARIABLES AND PARAMETERS FOR WORK-STRETCH NRP

FORMULATION

Component Type Description

I Set Set of Nurses i
D Set Set of Days in the schedule period d
T Set Set of Shift types t, e.g. t ∈ {D,A,N}

Wid Set Set of all work-stretches j that start on day
d ∈ D for nurse i ∈ I

WE
id

Set Set of all work-stretches j that end the day
before day d ∈ D for nurse i ∈ I

WN
it Set Set of all work-stretches j that contribute a

shift of type t ∈ T for nurse i ∈ I

WC
td

Set Set of all work-stretches j that contribute a
shift of type t ∈ T on day d ∈ D

lt Parameter length of shift type t ∈ T in hours
cstj Parameter penalty cost of assigning work-stretch j
cstoid Parameter penalty cost of assigning nurse i ∈ I an off-

day on day d ∈ D
wej Parameter 1 if work-stretch j involves working a week-

end, 0 otherwise
citj Parameter number of shifts of type t ∈ T that work-

stretch j contributes for nurse i ∈ I
amax
i Parameter maximum number of weekends that nurse i ∈

I can work
mmax

it Parameter maximum number of shifts of type t ∈ T that
can be assigned to nurse i ∈ I

bmin
i Parameter minimum number of hours that nurse i ∈ I

must be assigned
bmax
i Parameter maximum number of hours that nurse i ∈ I

can be assigned
h Parameter last day of the horizon
udt Parameter preferred total number of nurses assigned shift

type t ∈ T on day d ∈ D

vmin
td

Parameter weight if below the preferred cover for shift
type t ∈ T on day d ∈ D

vmax
td

Parameter weight if exceeding the preferred cover for
shift type t ∈ T on day d ∈ D

xij Variable 1 if nurse i ∈ I is assigned work-stretch j ∈⋃
d∈D Wid, 0 otherwise

oid Variable 1 if nurse i ∈ I is assigned an off-day on day
d ∈ D

ytd Variable total below the preferred cover for shift type
t ∈ T on day d ∈ D

ztd Variable total above the preferred cover for shift type
t ∈ T on day d ∈ D

cvtd Variable Total cover for shifts of type t ∈ T on day
d ∈ D

Equations (4), (5), and (6) cover the schedule requirements

3, 4, and 8 respectively for the nurse. Equation (4) specifies

that for each shift type t ∈ T the sum of shifts of that

type worked by the nurse is less than the maximum allowed.

Equation (5) specifies that the sum of hours worked by the

nurse is within the allowed bounds. Equation (6) specifies

that the sum of weekends worked by the nurse is less that

the allowed number.

∑

d∈D

∑

j∈WN

it

citjxij ≤ mmax
it ∀t ∈ T, (4)

bmin
i ≤

∑

t∈T

∑

j∈WN

it

ltxij ≤ bmax
i , (5)

∑

d∈D

∑

j∈Wid

wejxij ≤ amax
i . (6)

JOE BUNTON ET AL.: AN INTEGER PROGRAMMING BASED ANT COLONY OPTIMISATION METHOD FOR NURSE ROSTERING 409



For the roster requirement of meeting cover demand, we

sum assigned work-stretches for all nurses in the current

solution:

cvtd =
∑

i′∈I

∑

j∈WC

td

xi′j . (7)

Assigning under and over-cover variables the correct values:

ytd ≥ utd − cvtd ∀t ∈ T, d ∈ D, (8)

ztd ≥ cvtd − utd ∀t ∈ T, d ∈ D. (9)

The objective function is then the sum of work-stretch and

off-day costs with under and over cover:

min
∑

i′∈I

∑

d∈D

∑

j∈W
i′d

cstjx
w
i′j +

∑

i′∈I

∑

d∈D

cstoi′doi′d

+
∑

t∈T

∑

d∈D

(

vmin
td ytd + vmax

td ztd
)

. (10)

IV. ACO-IP ALGORITHM

ACO is a meta-heuristic based upon quality solutions

leaving pheromones to encourage future solutions. Generally,

the solution construction heuristic that is guided by these

pheromones is just a weighted random selection. In the case of

highly constrained rostering problems, this weighted random

selection may choose shift / off-day combinations early on

that means upper or lower bounds for work hours cannot

be satisfied. To address this, we use an integer programming

based ant construction in our ACO-IP hybrid algorithm.

Our ant construction is still guided by random choices in the

ACO fashion, using a heuristic component, η, calculated using

problem specific knowledge, and a pheromone component, τ .

Typically, there is one η and τ component per decision made

in the ant construction. As our decisions are the assignment of

whole work-stretches, the number of which is exponential in

number of shift types, we instead use one of each component

η and τ for each shift for each nurse for each day. Rather than

directly informing the choice of work-stretch, the weightings

are used to choose the reduced set of shifts that will make the

components of the work-stretches. All feasible work-stretches

are then generated from this subset of shifts, with integer

programming used to select the best schedule from these

subset of all work-stretches. From the set of available shifts,

each is given a probability of being chosen, then shifts are

selected for each day without replacement until the desired

number of shifts are chosen. Only work-stretches comprising

the chosen set of shifts on their given days will be added to

the integer programming problem. Thus we have for each ant:

pitd(S) =
τitd(S)

α · ηβitd
∑

u∈T τiud(S)α · ηβiud
∀i ∈ I, t ∈ T, d ∈ D,

(11)

where S is the current solution, pitd(S) is the probability of

choosing shift t for nurse i and day d given solution S, ηitd(S)
is the calculated heuristic value of shift t for nurse i on day

d given solution S, τitd is the pheromone value, and α and β

are parameters to adjust the influence of η and τ .

After each iteration, all of the pheromone components are

evaporated according to some evaporation rate, ρ, then updated

with an additional pheromone amounts for each solution in that

iteration. The amount of pheromone left is proportional to the

quality of the solution, 1
objval(S) for a minimisation problem

with solution S, scaled by a constant Q:

τitd = (1−ρ)·τitd+
∑

S∈Sn

Q

objval(S)
∀i ∈ I, t ∈ T, d ∈ D,

(12)

where Sn is the set of solutions for iteration n. To avoid

extreme pheromone values, it is typical to control the values of

pheromones using fixed maximum and minimum pheromone

levels. We do not run our algorithm for long enough for this

to become necessary.

The approach as described above makes use of the η and

τ components to choose the work-stretches that are included

in the integer programming problem for each nurse, but not

to influence the decisions made directly. The decision of

what schedule to choose is limited by the options given

by the pheromone guided random choice of shifts, but is

made to minimise the objective given in Equation 10 for the

available options of work-stretches. This limits the influence

of the pheromones in directing the search. It is possible to

address this by similarly randomly weighting the objective

coefficients for undercover of the corresponding shift and day

combinations.

Algorithm 1 Ant Construction: make_ants()

for ant in num_ants do

2: new_sol = best solution copy

for all nurse in nurses do

4: remove work-line for current nurse from new_sol

for all day in horizon do

6: calculate heuristic weight from new_sol cover

randomly choose num_shift shifts weighted by

heuristic weight and pheromone

8: end for

make_workstretches(chosen_shifts)

10: solve_nurse()

add work-line to new_sol

12: end for

end for

Also of interest are the heuristic weights η, which if

calculated for the first few nurses of a solution, will give

little information as to which shifts should be scheduled as

most of the solution is empty. This can be addressed with

a pseudo-elitist strategy where the best know solution is

assumed to be present for nurses whose work-lines have not

yet been constructed. This both gives the η components a more

insightful value and encourages solutions closer to the best

known solution. The algorithm for the ant construction in this

way is shown in Algorithm 1. The construction of multiple
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ants is able to parallelised easily, and we make use of this in

our application of the method.

Algorithm 2 ACO-IP: ACO meta-heuristic and merge solve

while not iteration limit & not time limit do

2: make_ants()

if new best solution then

4: store best solution

end if

6: update_pheromones()

end while

8: for last n solutions do

add unique solution work-stretches to merge_stretches

10: end for

add merge_stretches to merge_IP

12: add best solution to merge_IP (as incumbent)

solve merge_IP

Solving single work-lines to optimality in serial can result

in less solution diversity than other random construction meth-

ods, especially when we do not alter the objective coefficients

for undercover of shifts. To consistently achieve good solutions

and properly explore the search space, it is desirable to have

some diversity in the solutions being constructed.

In order to improve solution quality, we can make use what

diversity there is in the solution set, even for solutions of

varied quality, by solving an IP as a final merging step for

solutions explored. By combining work-stretches from previ-

ous solutions into an IP and taking the current best solution

as an incumbent solution, we can explore the neighbourhood

around our best solution. As we do not consider all possible

work-stretches, this keeps the IP a more manageable size.

The overarching ACO algorithm is described in Algorithm

2, with the integer programming merge step as described as a

final step to improve solutions.

V. EXPERIMENTAL RESULTS

To determine the effectiveness of our new approach, we

evaluate its performance on the 24 NRP benchmark instances

discussed above. Parameter tuning was performed on a sub-

set of the benchmark instances to improve solution quality.

Our algorithm was then applied to the full NRP benchmark

dataset with the tuned parameters, with ant construction run

in parallel. We also analyse the variance of performance of

the algorithm on a subset of the NRP dataset. The results

are compared with existing results for this NRP dataset from

the literature. The ACO-IP hybrid algorithm was implemented

in Python to construct 4 ants in parallel for each iteration,

using the commercial solver Gurobi 7.0 to evaluate the integer

programs. All runs were conducted on 4 threads of an Intel

Xeon CPU E5-2680 v3 @ 2.50GHz.

A. Parameter Tuning

There are several parameters in our algorithm that can

affect performance. Here we present a brief study over sev-

eral choices of parameter values to tune our algorithm. The

selection of some parameters were made explicitly with time

or computational hardware considerations in mind.

The termination criteria was set to 50 iterations of the ACO

loop then 5 minutes for the integer programming merge step

(or until optimality is proven). The iteration limit chosen is

aimed at reducing the run time for instances.

The number of shift types to choose as options for building

work-stretches in the ant construction was chosen to be 3

for all instances. As the number of work-stretches can be

exponential in the number of shift types, this number of shifts

was chosen to give a balance of choices available, which

influences convergence performance, and also keeping solve

times short. For instances with 3 shift types or less, this means

that we are reducing greatly the variability in our approach,

especially when the number of employees is small and time

horizon is short. As such we omitted the 7 smallest instances

from our experiments.

The ant construction in our algorithm is able to be done

in parallel, this allows multiple ants to be constructed at

each iteration without increase in overall solution time (given

enough CPUs). The ant population size was chosen to be 4 ants

per iteration for all instances. This was mainly due to compu-

tational hardware constraints, enabling each ant construction

one CPU core in parallel.

The pheromone evaporation rate ρ was chosen to be 0.05.

As we initiate all pheromone values at 1, the evaporation rate

was chosen such that after the 50 iteration limit the pheromone

values would be reduced by about an order of magnitude.

The parameters selected for tuning were the constant mul-

tiplier for pheromone placement, Q, and the heuristic and

pheromone influence parameters, α and β. These parameters

were tuned for the whole of our ACO-IP algorithm, not

including the integer programming merge step, as the variation

in solutions generated in the ACO-loop of our algorithm also

influences the performance of the merge step.

The choice of the constant Q affects the amount of

pheromones placed by ants each iteration. This effects the

convergence of pheromone values. As the solution quality

( 1
objval

) is instance dependent, this constant Q was chosen

in terms of the objective value of the initial solution, scaled

by some constant Qs. This gives:

Q =
Qs · inisol

objval
, (13)

where inisol is the objective value of the initial solution for the

solve. This makes the choice of value specific for the instance,

without the need for any a priori knowledge.

The α and β parameters effect the relative influence of the

heuristic information and pheromone values on the random

solution construction. To determine the best combination of

Qs, α, and β, combinations were evaluated for a subset of

instances (instances 12, 15, and 19) for 10 runs each.

The choices of parameters for testing were Qx ∈
[0.1, 0.5, 1], α ∈ [0, 0.5, 1], and β ∈ [1]. The results of

these runs are shown in Table III. The use of pheromones

to guide the search can be seen to have a beneficial effect as

JOE BUNTON ET AL.: AN INTEGER PROGRAMMING BASED ANT COLONY OPTIMISATION METHOD FOR NURSE ROSTERING 411



TABLE III
AVERAGE BEST SOLUTION AFTER ACO LOOP OF OUR ALGORITHM FOR DIFFERENT Qs , α, AND β COMBINATIONS AFTER 10 RUNS.

Qs = 0.1, β = 1 Qs = 0.5, β = 1 Qs = 1, β = 1

Instance α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1 α = 0 α = 0.5 α = 1

12 5875 4518.7 5031.1 5682.1 5034.8 5043.6 5064 4911.9 5059.7
15 5026.3 5220.2 5511.2 5060 5392.9 5435.1 5234.5 5552.3 5548.6
19 4154.5 3756.5 3773.8 3722.9 3788.2 3845.8 4017.5 3799.5 3919.2

TABLE IV
COMPARISON OF RESULTS WITH EXISTING APPROACHES. BEST RESULTS ARE IN BOLD, AND OOM INDICATES THE SOLVE RAN OUT OF AVAILABLE

MEMORY. INSTANCE DIMENSIONS IN TERMS OF NUMBER OF WEEKS IN HORIZON (W), NUMBER OF NURSES TO SCHEDULE (N), AND NUMBER OF SHIFT

TYPES (S) ARE SHOWN ALONG WITH INSTANCE NUMBER. BEST RESULTS HIGHLIGHTED IN BOLD.

Gurobi 7.0 WPM3 B&P Ejection Chain ACO-IP
Instance (WxNxS) Sol. Sol. Sol. Sol. Avg. Sol. Avg. Time (s)

8 (4x30x4) 1306 11018 1308 2260 1450.2 1059.3
9 (4x36x4) 439 10949 439 463 570.6 1562.49
10 (4x40x5) 4631 16435 4631 4797 4891.1 1433.99
11 (4x50x6) 3443 12183 3443 3661 3460 1897.53
12 (4x60x10) 4040 18770 4046 5211 4350.8 2698.77

13 (4x120x18) 2663 6110163 OoM 3037 6423.9 4007.09
14 (6x32x4) 1278 16303 OoM 1847 1456.9 1586.9
15 (6x45x6) 4843 30833 OoM 5935 5074 2417.75
16 (8x20x3) 3225 10292 3323 4048 3547.1 828.37
17 (8x32x4) 5749 22002 OoM 7835 5853.4 1388.78
18 (12x22x3) 5078 18498 OoM 6404 5347 1120.19
19 (12x40x5) 3591 1698538 OoM 5531 3760 2295.05
20 (26x50x6) 132445 5519316 OoM 9750 5177.3 5782.54

21 (26x100x8) 265504 14715064 OoM 36688 2247.4 9186.65
22 (52x50x10) - - OoM 516686 34262.3 14295.70
23 (52x100x16) - - OoM 54384 34068.2 19648.3
24 (52x150x32) - - OoM 156858 98552 25188.57

performance is worse when α is set to 0 (when pheromone

values are ignored). The algorithm tends to perform better with

more of an influence on the heuristic values. This may be due

to the limited number of iterations not allowing convergence

of the pheromone values. For further runs a Qs walue of 0.1,

α value of 0.5, and β value of 1 were chosen.

B. Variance of Performance

As with other random searches, the variance in performance

of the ACO algorithm can be quite large. Here we aim to

analyse the variance of performance for our ACO-IP hybrid

algorithm. To do this we tested our algorithm more extensively

on a subset of the NRP dataset (instances 12, 15, and 19).

Our algorithm was run 30 times on each instance, with the

mean performance and standard deviation presented for both

after the ACO loop is complete, and after the final integer

programming merge step. The results are summarised in Table

V. It is clear that our integer programming merge step leads to

a significant improvement in solutions achieved. The standard

deviation of solution achieved does not decrease significantly

after the merge step, and in fact increases, indicating there is

still variability in the performance of the integer programming

merge step.

C. Comparison of Results

Finally our algorithm was run on all instances of the NRP

dataset with tuned parameters for comparison with existing

results in literature for the dataset used. Existing results on

this dataset for comparison are shown in Table IV, including

TABLE V
AVERAGE (AVG.) AND STANDARD DEVIATION (SD) OF BEST SOLUTION

AFTER THE ACO LOOP AND FINAL SOLUTION AFTER THE INTEGER

PROGRAMMING MERGE STEP AFTER 30 RUNS OF OUR ACO-IP
ALGORITHM.

ACO Search Final
Instance Avg. SD Avg. SD

12 5577.03 229.23 4347.3 334.76
15 5735.86 220.93 5055.6 326.38
19 4411.22 214.32 3782.22 371.04

the work of [24] who model the NRP using Partial Weighted

maxSAT and solve it using the WPM3 algorithm of [27]

for 4 hours runtime, both an ejection chain heuristic method

(reported after 10 and 60 minutes, solutions after 60 minutes

shown) and a branch-and-price method implemented by [22] as

in [23], and finally results for a complete integer programming

implementation of the problem instances from [22], run on

Gurobi 7.0 with a 1 hour runtime limit.

The best results for these methods are compared with the

average result of 10 runs of our ACO-IP approach in Table

IV. Note that in our parameter tuning we trained on Instances

12, 15, and 19. Other methods were not similarly trained on

a subset of the instances used for comparison.

Best results across all methods are highlighted in bold.

While Gurobi obtains the best solution for the largest number

of test instances, it is clear that it does not scale well with

increasing problem size. Indeed, as the problem size increases

our method clearly starts to outperform the others presented
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here. For the medium to large instances, our method is

comparable to or outperforms the best other heuristic method

(ejection chain). While the ability to solve larger problems is

encouraging for the scalability of our method, further research

is required to improve the method. Gurobi is able to generate

solutions of better quality for the medium sized instances, and

further work is required to ensure we are generating good

solutions for the larger instances.

VI. CONCLUSIONS

We have presented a new ACO-IP hybrid metaheuristic

for highly constrained rostering problems. It uses an integer

programming based solution construction to avoid problems

of finding feasible solutions inherent in other random con-

struction methods typical of ACO when problems are highly

constrained, as well as to enhance the quality of the schedule

chosen over a subset of all options. Performance of the algo-

rithm is improved by a novel integer programming merge step

which uses past solutions to explore the neighbourhood around

the best solution achieved. While unable to compete against

Gurobi for solution quality in the small to medium sized

instances, our method scales well and outperforms Gurobi and

all other methods for large instances, and is generally able to

achieve good solutions to medium instance comparable to or

better than the ejection chain heuristic.

These results show that our ACO-IP hybrid algorithm can be

effective for highly constrained problems, this encourages the

further improvement of the method and application to rostering

problems more generally.
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