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Abstract—Deep neural networks enjoy high interest and have
become the state-of-art methods in many fields of machine
learning recently. Still, there is no easy way for a choice of
network architecture. However, the choice of architecture can
significantly influence the network performance.

This work is the first step towards an automatic architecture
design. We propose a genetic algorithm for an optimization of a
network architecture. The algorithm is inspired by and designed
directly for the Keras library [1] that is one of the most common
implementations of deep neural networks.

The target application is the prediction of air pollution based
on sensor measurements. The proposed algorithm is evaluated
on experiments on sensor data and compared to several fixed
architectures and support vector regression.

I. INTRODUCTION

DEEP neural networks (DNN) architectures have become

the state-of-art methods in many fields of machine learn-

ing in recent years [2], [3].

While the learning of weights of the deep neural network is

done by algorithms based on the stochastic gradient descent,

the choice of architecture, including a number and sizes of

layers, and a type of activation function, is done manually by

the user. However, the architecture has an important impact

on the performance of the DNN. Some kind of expertise is

needed, and usually a trial and error method is used in practice.

In this work we exploit a fully automatic design of deep

neural networks. We investigate the use of genetic algorithms

for evolution of a DNN architecture. There are not many

studies on evolution of DNN since such approach has very

high computational requirements. To keep the search space

as small as possible, we simplify our model focusing on

implementation of DNN in the Keras library [1] that is a

widely used tool for practical applications of DNNs.

As a target application, we use a real dataset from the area

of sensor networks for air pollution monitoring. We work with

data from De Vito et al [4], [5].

The paper is organized as follows. Section II brings an

overview of related work. Section III briefly describes the

main ideas of our approach. In Section IV our algorithm

GAKeras is described. Section V summarizes the results of

our experiments. Finally, Section VI brings conclusion.

II. RELATED WORK

There were quite many attempts on architecture optimiza-

tion via evolutionary process (e.g. [6], [7]) in previous decades.

Successful evolutionary techniques evolving the structure of

feed-forward and recurrent neural networks include NEAT [8],

HyperNEAT [9] and CoSyNE [10] algorithms.

On the other hand, studies dealing with evolution of deep

neural networks and convolutional networks started to emerge

only very recently. They usually focus only on parts of network

design, due to limited computational resources. The training

of one DNN usually requires hours or days of computing time,

quite often utilizing GPU processors for speedup. Naturally,

the evolutionary techniques requiring thousands of training

trials were not considered a feasible choice. Nevertheless,

there are several approaches to reduce the overall complexity

of neuroevolution for DNN and provide useful and scalable

algorithms.

For example, in [11] CMA-ES is used to optimize hyper-

parameters of DNNs. In [12] the unsupervised convolutional

networks for vision-based reinforcement learning are studied,

the structure of CNN is held fixed and only a small recurrent

controller is evolved. However, the recent paper [13] presents

a simple distributed evolutionary strategy that is used to train

relatively large recurrent network with competitive results on

reinforcement learning tasks.

In [14] automated method for optimizing deep learning

architectures through evolution is proposed, extending existing

neuroevolution methods. Authors of [15] sketch a genetic

approach for evolving a deep autoencoder network enhancing

the sparsity of the synapses by means of special operators.

Finally, the paper [16] presents two version of an evolutionary

and co-evolutionary algorithm for design of DNN with various

transfer functions.

III. OUR APPROACH

The main idea of our approach is to keep the search space

as small as possible. Therefore only architecture is a subject to

evolution, the weights are learnt by gradient based technique.

Further, the architecture specification is simplified. It di-

rectly follows the implementation of DNN in Keras library,

where networks are defined layer by layer, each layer fully

connected with the next layer. A layer is specified by number

of neurons, type of an activation function (all neurons in one

layer have the same type of an activation function), and type

of regularization (such as dropout).
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IV. GENETIC ALGORITHM FOR KERAS ARCHITECTURES

Genetic algorithms (GA) [17], [18] represent a robust

optimization technique. They work with the population of

feasible solutions represented by individuals. Each individual

is associated with fitness value that evaluates its quality. New

generations are created iteratively by means of GA operators

selection, crossover and mutation.

Individuals are coding feed-forward neural networks imple-

mented as Keras model Sequential. The model implemented

as Sequential is built layer by layer, similarly an individual

consists of blocks representing individual layers.

I = ([size1, dropi, act1]1, . . . , [sizeH , dropH , actH ]H),

where H is the number of hidden layers, sizei is

the number of neurons in corresponding layer that is

dense (fully connected) layer, dropi is the dropout

rate (zero value represents no dropout), and acti ∈
{relu, tanh, sigmoid, hardsigmoid, linear} stands for ac-

tivation function.

The operator crossover combines two parent individuals and

produces two offspring individuals. It is implemented as one-

point crossover, where the cross-point is on a border of block.

The operator mutation brings random changes to the in-

dividual. Each time an individual is mutated, one of the

following mutation operators is randomly chosen:

• mutateLayer - introduces random changes to one ran-

domly selected layer. One of the following operation

is randomly chosen: changeLayerSize (the number of

neurons is changed; either one neuron is added, one

neuron is deleted, or completely new layer size is gen-

erated), changeDropOut (the dropout rate is changed),

changeActivation (the activation function is changed),

changeAll (the whole block is discarded and new one

is randomly initialized).

• addLayer - one randomly generated block is inserted at

random position.

• delLayer - one randomly selected block is deleted.

Fitness function should reflect the quality of the network

represented by an individual. To assess the generalization

ability of the network represented by an individual we use

a crossvalidation error. The lower the crossvalidation error,

the higher the fitness of the individual. Classical k-fold cross-

validation is used and the mean squared error is used as an

error function.

The tournament selection is used, i.e. each turn of the

tournament k individuals are selected at random and the one

with the highest fitness, in our case the one with the lowest

crossvalidation error, is selected.

Our implementation of the proposed GAKeras algorithm is

available at [19].

V. EXPERIMENTS

A. Data Set

The dataset used for our experiments consists of real-world

data from the application area of sensor networks for air

pollution monitoring. The data contain measurements of gas

multi-sensor MOX array devices recording concentrations of

several gas pollutants. There are altogether 5 sensors as inputs

and 5 target output values representing concentrations of CO,

NO2, NOx, C6H6, and NMHC.

In the first experiment, the whole time period is divided into

five intervals. Then, only one interval is used for training, the

rest is utilized for testing. We considered five different choices

of the training part selection. This task may be quite difficult,

since the prediction is performed also in different parts of the

year than the learning.

In the second experiments, the data are shuffled randomly

and one third is used for testing and the rest for training.

Table I brings overview of data sets sizes. All tasks have 8
input values (five sensors, temperature, absolute and relative

humidity) and 1 output (predicted value). All values are

normalized between 〈0, 1〉.

TABLE I
OVERVIEW OF DATA SETS SIZES.

First experiment Second experiment

Task train set test set train set test set

CO 1469 5875 4896 2448
NO2 1479 5914 4929 2464
NOx 1480 5916 4931 2465
C6H6 1799 7192 5994 2997
NMHC 178 709 592 295

B. Parameter Setup

The GAKeras algorithm was run for 100 iterations for each

data set, with the population of 30 individuals.

During fitness function evaluation the network weights are

trained by RMSprop for 500 epochs. For fitness evaluation, the

crossvalidation error is computed. When the best individual is

obtained, the corresponding network is built and trained on

the whole training set and evaluated on test set.

C. Results

The testing error values of the best individuals are listed

in Table II. There are average, standard deviation, minimum

and maximum errors over 10 computations. The values are

compared to results obtained by support vector regression

(SVR) with linear, RBF, polynomial, and sigmoid kernel

function. SVR was trained using Scikit-learn library [20], hy-

perparameters were found by grid search and crossvalidation.

The GAKeras network achieved best results in 16 cases, it

in average outperforms the SVR.

Since this task does not have much training samples, also the

networks evolved are quite small. The typical evolved network

had one hidden layer of about 70 neurons, dropout rate 0.3
and ReLU activation function. In case of C6H6 there were

two layers, about 100 neurons together, the first linear and the

second ReLU without dropout.

Table III shows comparison of testing errors of GAKeras

network and several fixed architectures (for example 30-10-1

stands for 2 hidden layers of 30 and 10 neurons, one neuron
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TABLE II
TEST ERRORS FOR EVOLVED GAKERAS NETWORK AND SVR WITH DIFFERENT KERNEL FUNCTIONS ON THE SECOND TASK. FOR GAKERAS NETWORK

THE AVERAGE, STANDARD DEVIATION, MINIMUM AND MAXIMUM OF 10 EVALUATIONS OF LEARNING ALGORITHM IS LISTED.

Testing errors

Task GAKeras SVR
avg std min max linear RBF Poly. Sigmoid

CO part1 0.209 0.014 0.188 0.236 0.340 0.280 0.285 1.533
CO part2 0.801 0.135 0.600 1.048 0.614 0.412 0.621 1.753
CO part3 0.266 0.029 0.222 0.309 0.314 0.408 0.377 1.427
CO part4 0.404 0.226 0.186 0.865 1.127 0.692 0.535 1.375
CO part5 0.246 0.024 0.207 0.286 0.348 0.207 0.198 1.568
NOx part1 2.201 0.131 1.994 2.506 1.062 1.447 1.202 2.537
NOx part2 1.705 0.284 1.239 2.282 2.162 1.838 1.387 2.428
NOx part3 1.238 0.163 0.982 1.533 0.594 0.674 0.665 2.705
NOx part4 1.490 0.173 1.174 1.835 0.864 0.903 0.778 2.462
NOx part5 0.551 0.052 0.456 0.642 1.632 0.730 1.446 2.761
NO2 part1 1.697 0.266 1.202 2.210 2.464 2.404 2.401 2.636
NO2 part2 2.009 0.415 1.326 2.944 2.118 2.250 2.409 2.648
NO2 part3 0.593 0.082 0.532 0.815 1.308 1.195 1.213 1.984
NO2 part4 0.737 0.023 0.706 0.776 1.978 2.565 1.912 2.531
NO2 part5 1.265 0.158 1.054 1.580 1.0773 1.047 0.967 2.129
C6H6 part1 0.013 0.005 0.006 0.024 0.300 0.511 0.219 1.398
C6H6 part2 0.039 0.015 0.025 0.079 0.378 0.489 0.369 1.478
C6H6 part3 0.019 0.011 0.009 0.041 0.520 0.663 0.538 1.317
C6H6 part4 0.030 0.015 0.014 0.061 0.217 0.459 0.123 1.279
C6H6 part5 0.017 0.015 0.004 0.051 0.215 0.297 0.188 1.526
NMHC part1 1.719 0.168 1.412 2.000 1.718 1.666 1.621 3.861
NMHC part2 0.623 0.164 0.446 1.047 0.934 0.978 0.839 3.651
NMHC part3 1.144 0.181 0.912 1.472 1.580 1.280 1.438 2.830
NMHC part4 1.220 0.206 0.994 1.563 1.720 1.565 1.917 2.715
NMHC part5 1.222 0.126 1.055 1.447 1.238 0.944 1.407 2.960

16 2 2 5 0

in output layers, ReLU activation is used and dropout 0.2).

The one with most (10) best results is the GAKeras network.

The results of the second experiment are listed in Table IV.

In this case the GAKeras has best results in 4 cases from 5.

The training sets are bigger and also the evolved architectures

contained several layers. Again the dominating activation

function is ReLU.

VI. CONCLUSION

We have proposed genetic algorithm for automatic design

of DNNs. The algorithm was tested in experiments on the

real-life sensor data set. The solutions found by our algorithm

outperform SVR and selected fixed architectures. The activa-

tion function dominating in solutions is the ReLU function.

Evolved architecture depends on the task size, for tasks with

small number of training points networks with only one hidden

layer were evolved, for bigger tasks architectures with several

hidden layers were found.

In our future work we plan to extend the algorithm to

work also with convolutional networks and to include more

parameters, such as other types of regularization, the type of

optimization algorithm, etc. The importance of this direction

is supported also by the recently conceived library [21] which

combines genetic algorithm with models obtained by means

of Keras and TensorFlow libraries.
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