
Properties and Limits of Supercombinator Set

Acquired from Context-free Grammar Samples

Michal Sičák, Ján Kollár

Technical University of Košice, Department of Computers and Informatics

Letná 9, 042 01 Košice, Slovakia

Email: {michal.sicak, jan.kollar}@tuke.sk

Abstract—We present an improved version of algorithm that
can transform any context-free grammar into a supercombinator
form. Such a form is composed only of lambda calculus’
supercombinators that are enriched by grammar operations. The
main properties of this form are non-redundancy and scalability.
We show the improvements that we’ve made to create smaller
supercombinator set than in our previous algorithm’s version.
We present experiments performed on Context-free grammars
obtained by transformation from Groningen meaning bank
corpus. Experiments confirm that our form has a theoretical
maximum limit of possible supercombinators. That limit is a
mathematical sequence called Catalan number. We show that in
some cases we are able to reach that limit if we use large enough
input data source and we limit the size of supercombinator
permitted into the final set. We also describe another benefit
of our algorithm, which is the identification of most reoccurring
structures in the input set.

I. INTRODUCTION

L
AMBDA calculus is a formalism that describes com-

putation with the use of expressions, variables and ap-

plications. Combinators are lambda expressions without free

variables. We use more restricted form of combinators, su-

percombinators in our work. The term supercombinator was

coined by Hughes in [1] and it means an expression that can

contain only constants or another supercombinators. In this

paper we show an algorithm that can transform input grammar

or a set of grammars into a single supercombinator form that

is non-redundant yet retains the descriptive ability of its input

grammars.

The main fuel of our work are grammars. We can use them

for purposes, which exceed their usual application like the

description of a language. The possibilities of wide grammar

usage has been presented by Klint et al. in [2]. They argue that

grammars are a strong formalism method that are already used

in many areas of software engineering. We have presented in

our work [3] a way to use grammars as a prime object of

internal language incremental evolution.

We have shown in our previous work [4] that any Context-

free grammar (CFG) can be transformed into a supercombi-

nator form. Which means that we can abstract the structure

from the data (represented in grammars as terminal symbols).

The experiment performed in mentioned work showed that

we can reduce the amount of grammar elements with this

This work was supported by project KEGA 047TUKE-4/2016 "Integrating
software processes into the teaching of programming".

approach rather significantly. We have parsed samples of

natural language with the Sequitur [5] algorithm and then

converted resulting grammars into a supercombinator form.

We have proven that our algorithm abstracts CFGs rather well.

In this paper we are using a source that comes from a more

meaningful background, short newspaper articles that have

already been parsed with the use of Combinatory Categorial

Grammars (CCG). We need a large enough data source that

can be converted to CFG form for further processing. However,

we do not process those data for some semantic related

purpose. Our goal is not to create new meaning parser, but to

analyze the possibilities of a CFG abstraction, to explore their

structure and even contribute to the field of grammar metrics.

Our ultimate goal is to create single scalable supercombinator

structure that contains data non-redundantly.

The main contributions of this paper are:

• We present updated algorithm for supercombinator form

acquisition that runs more smoothly than the one from

our previous work [4]. Short description of its basic func-

tionality and a list of performed changes are shown in the

section III. We also explain there, why are those changes

beneficial for the entire process. The improvements of

our algorithm are described in the section III-D.

• We describe various experiments that we have performed

on 62 008 grammar samples taken from 10 000 short

newspaper articles included in the Groningen Meaning

Bank (GMB) [6] corpus. We show in the section IV

that growth of our supercombinator form is limited by

a mathematical sequence called Catalan number. The

achieved grammar element reduction performed on GMB

inputs is still significant, as it was in our previous work

where we have used Sequitur generated grammars.

• We show that supercombinators that have been merged to

achieve non-redundancy can be tracked during that merge

operation in order to acquire more information on the

input data themselves. The results in the section IV-D

show that we can identify the most reoccurring structures

in the input form, as the structure is directly translated

into supercombinators.

II. MOTIVATION

One of motivations behind our work is the ability to process

data stream of grammars at the input. As a grammar needs

not to be predefined, it can be acquired from a plain text

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 711–720

DOI: 10.15439/2017F249

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 711

by a process called grammar inference. It is a well studied

problem. We know that we cannot infer a grammar from a

set of positive samples purely algorithmically. That has been

proven by Gold in [7]. Usually in the communication we

do not possess the knowledge about what is and what is

not a correct sentence. There exist researches that study this

phenomena in human to human communication. For example

Onnis, Waterfall and Edelman found out in [8] that people,

and especially little children, use cues called variation sets to

differentiate utterances as grammatical or not. In the realm of

formal languages, by using heuristics like statistical analysis or

evolutionary algorithms, we can infer a grammar from positive

samples with certain proficiency, see Stevenson and Cordy [9].

And such grammars might have a form of a CFG, therefore we

can apply our process on them and obtain highly parallel, non-

redundant structure that is scalable. We describe experiments

in the section IV that give out the evidence to these claims.

One of the other reasons why we have created this process is

to battle the phenomena called structural explosion [10]. This

occurs for example when we are trying to create a finite state

automaton from a regular expression that contains structurally

identical parts. Let’s have the expression (1) as an example.

a(b)∗ | c(d)∗ | e(f)∗ (1)

Three parts of that expression located in between alterna-

tive operators | are structurally identical, yet carry different

symbols. We can see in Fig. 1 how the structural identity is

reflected in the automaton created from the expression (1).

Each strand representing identical structures has its own state

and transitions. Although we can see that they are structurally

identical, they are still fully present in the resulting automaton.

Should we want to process a grammar set of substantial size

and then store it in a memory, this could pose a problem,

where we would end up with lots of identical structures in

the memory. With our process, we are able to transform

those structures into one unified supercombinator form. For

example, three structurally identical branches of the automaton

from Fig. 1 would yield supercombinators1 showed in (2)

and (3), where L0 represents identity combinator. Terminal

symbols from the original grammars are now stored separately,

although they are still connected to the supercombinators

by references. Should we apply our supercombinators on

arguments, we would obtain the original grammar structure.

L2 = λx1.λx2.L
0 x1 + L1 x2 (2)

L1 = λx1.λx1.(L
0 x1)

∗ (3)

Although the algorithm presented in this paper is capable

of processing virtually any form of a CFG, we are leaning

towards using it for the natural language processing. Formal

grammars describing formal languages tend to be rather short

and therefore it is not so relevant to process them further. But

with the acquisition of a large enough grammar set we can

1Note the inclusion of grammar operations in the lambda expressions, see
section III for further details.

0

1

a

2

c

3

e

b d f

Fig. 1. Finite state automaton of a regular expression a(b)∗ | c(d)∗ | e(f)∗.

actually see valid results. This of course does not mean, that

our process is restricted to the natural languages only.

III. TRANSFORMATION OF CONTEXT-FREE GRAMMARS

INTO A SUPERCOMBINATOR SET

Our process transforms CFGs into a non-redundant su-

percombinator set. We have CFGs in the extended Backus-

Naur form (EBNF) on the process’ input. EBNF consists of

rules and a set of terminal and nonterminal symbols. Rules

are composed of symbols and grammar operations. In EBNF

case, these operations are concatenation, alternative, closure

and option. Our algorithm can process any number of defined

operations, as they can be abstracted away the same way as

the terminal symbols are. Every operation that occurs in the

input grammar form is translated to our supercombinator form,

yet the meaning of the operation remains the same. In the

following example we use only concatenation and alternative

operations for the simplicity sake.

Let’s have a grammar defined by rules (4) and (5).

A → a B a (4)

B → b | A (5)

Rules (4) and (5) represent a simple CFG. We can see that

this grammar generates language anban. It contains a cycle,

which will spice the things a bit. It also has only two rules,

which in the resulting form would not show the full benefits

of our process as there are no reoccurring structures. However,

it is sufficient for this explanation.

The rule (4) is a plain sequence of three symbols. Rule (5)

on the other hand is an alternative. Both rules refer to each

other. This simple grammar can be transformed into a set that

has three supercombinators, see Table I.

Supercombinators are lambda expressions. We use enriched

lambda calculus, where the standard definition of lambda

calculus has been enriched with grammar operations of the

processed grammar. Hence in our example, only alternative

and concatenation are added to it2. Supercombinators created

from the grammar in (4) and (5) are shown in the Table I.

Supercombinators are designated with the L symbol. Grammar

operations are designated with the standard | symbol for

alternative and + symbol for concatenation3.

2The example in the section II uses concatenation and closure.
3We have chosen the plus symbol since standard symbols for concatenation,

either dot (.) or an empty space already are used in the lambda calculus.

712 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

TABLE I
SUPERCOMBINATOR FORM OF THE GRAMMAR IN (4) AND (5).

Name Supercombinator Body Arguments

L0 λx1.x1 {a, b}

LA λx1.λx2. L
0 x1 + LB x2 x1 + L0 x1 {a b}

LB λx1.λx2. L
0 x1 | LA x2 x1 {b a}

The arguments on the right side of the Table I are a part

of our set. They represent permissible arguments for each

supercombinator. They are stored non-redundantly as well.

They are connected to the starting (top) supercombinator that

roughly corresponds to the starting nonterminal symbol of a

grammar. Should we apply those arguments to that supercom-

binator, we obtain the original grammar back. Therefore our

supercombinator form is equivalent to the original CFG.

In the Table I we see that the grammar represented by

rules (4) and (5) has been transformed into three supercombi-

nators. As mentioned above, the fact, that we have obtained

three supercombinators from two rules is due to the simplicity

of the input grammar. What is important however, is the

fact that our form is non-redundant. When we have larger

grammars with repeating structures, our process works rather

well, as we show later on in the section IV. Let’s just imagine

that we have expanded the grammar in (4) and (5) with same

structured rules that have different terminal symbols. In that

case, our form would not contain any new supercombinators,

since it looks only at the structure and abstracts terminals

away. Only new terminals and their links would be the new

additions to our form.

A. Construction of Node Graph

The first version of our algorithm [10] could process only

regular grammars. Construction of the form was straightfor-

ward and rather simple. In [11] we showed a method how to

extend this process to CFGs. There we note that nonterminals

could be treated similarly as terminals. Nonterminal in a rule’s

body means a jump to another nonterminal rule. And as we

see on the grammar in (4) and (5), those jumps can create

cycles.

Each rule produces its own subset of supercombinators.

They are merged together later on, but at this stage they

are treated as separate entities. On a plus side, this opens

a possibility for a parallel processing. Since each subset of

supercombinators contains a top supercombinator of that rule,

i.e. a supercombinator that corresponds to the nonterminal

from the left side of a rule, each subsequent call of another

supercombinator inside of a rule’s body can be replaced by

that particular subset’s top supercombinator. We just need to

know the possible arguments and therefore the arity of that

supercombinator.

In order to obtain that information, we need a graph

constructed from the entire grammar. We need to know how

many arguments are permissible for each nonterminal symbol.

For that we are going to use depth first search from that

A

a B a

Cb
c

D

cd c
d

Fig. 2. The graph constructed from the grammar in (6).

node. To better show what we mean, let’s have this following

grammar (6):

A → a B a C

B → b D c C

C → c c A

D → d d

(6)

In this case we have four nonterminal symbols A,B,C and

D and four terminals a, b, c and d. The graph of this grammar

is depicted in Fig. 2. By using depth first algorithm from the

node A, we obtain the following string: AaB bD dd cC c c a.

By deleting nonterminals and removing all duplicates, we

obtain the resulting argument string abdc. Now we can create

a dummy version of a top supercombinator from the rule A.

We know that it has four arguments and that is sufficient for

us to use it inside of another supercombinator’s body.

But do we need to remove duplicate terminals from that

string? It seems that it is a logical step to retain the non-

redundancy property. Yet as we show further on (see sec-

tion III-D), this may not be the case. By not removing

duplicates in this step we can obtain larger amount of similar

structures, where the only trade off is an increased amount of

connections to arguments.

B. Initial Supercombinator Construction

As all of our references to other rules are taken care of, we

can now process each rule separately into a supercombinator

form. Usually this yields at least two supercombinators per

rule, the identity function supercombinator that we call L0

and a top supercombinator of that rule. In case that the rule

is more structured, other supercombinators are created. The

amount depends on the structural complexity of each grammar

rule. Each grammar operation inside of a rule creates its own

supercombinator. As mentioned above, each nonterminal is

replaced by the reference to its top supercombinator, which

does not need to be created yet. This allows us to process rules

in any order, even in parallel. After this step, we can proceed

to the merge process that merges all structurally identical

supercombinators together. This is done on the level of a single

MICHAL SIČÁK, JÁN KOLLÁR: PROPERTIES AND LIMITS OF SUPERCOMBINATOR SET ACQUIRED FROM CONTEXT-FREE GRAMMAR SAMPLES 713

0

1 2

3 4

0

1 2

3

0

1

3

Fig. 3. Visualization of iterative merge operation.

rule and then over the entire set, thus creating unified non-

redundant form.

Let us explain the merge process in more detail here. In

Fig. 3 we see an example of supercombinator applications. On

the left side we see a tree structure, where bottom nodes are

supercombinators that are a part of supercombinators above

them. This means that supercombinator with the identifier

0 contains in its body supercombinators 1 and 2. And they

contain each only one subsequent supercombinator (3 and 4)

in their bodies. We find out at the beginning of our merge

process that nodes 3 and 4 are identical. We merge them

together to a single node, designated as 3. Even if the nodes 1
and 2 are structurally identical, they are not merged yet, since

they both contain different references. After the first merge

iteration, we update references and now nodes 1 and 2 can

be merged together assuming they are identical. We show the

result on the right side of the Fig. 3. The set now contains

only three supercombinators out of the original five. Needles

to say, supercombinators that are different in the structure are

not merged together, as they represent separate structures. The

merge process stops when no new identical supercombinators

are found after the reference update.

C. Transformation to a Single Set

We already have all basic functions to create a unified set

of supercombinators. After processing each rule separately, we

may merge them together with the same process that we have

used before. After that we have a non-redundant set.

However this set is not necessarily final, we can still

add another processed grammar into it, hence we achieve

scalability. Imagine that we have processed a grammar G1 to

a set S1. A new grammar G2 appeared on the input. First we

need to process that grammar into its own supercombinator set

S2 and than merge it with the S1. Unification of grammars can

be described as the following expression G1 +G2 = S1 ∪S2.

Therefore we can continuously add grammars to a single set.

The ability to incrementally expand the set is an important

property of our process. We can thus create one set of

supercombinators from multiple grammars. We show how our

set grows with the addition of new grammars in the section IV.

As already mentioned before, our algorithm is capable of

transforming any CFG into a set of supercombinators. CFG is a

formalism that can describe languages with certain properties.

All rules of this grammar type are basically derivations of

nonterminal symbols, as the basic structure of a CFG rule

is A → α, where A is nonterminal symbol and α is a

sequence of terminal and nonterminal symbols. We see that a

sequence is an operation, which is transformed along with its

arguments into a supercombinator. Each grammar operation

creates exactly one supercombinator in this step. We can

therefore say that any type of a rule can be transformed into a

supercombinator. However, we obtain better results when we

use restricted forms of CFGs as there is a higher chance that

the repeating structures will occur. For example cycles in a

grammar are quite restricting and limit that occurrence to a

certain degree, as we can see on an example presented in the

Table I.

D. Room For Improvement

The results presented in this paper are achieved with the

use of our algorithm that has been improved and now differs

in some points from the one presented in [4]. We have

unified the merge operation and also used more efficient data

structures that increased the speed of grammar processing.

In the previous version, we have differentiated between the

merger of rules within a single grammar and the merge in

between the grammars. As we ultimately are getting a single

set, the differentiation was unnecessary and now we are using

the same merge operation during the entire transformation

process.

As we have mentioned a bit earlier (see III-A), one of

another improvements is the possibility of not deleting du-

plicate arguments from a string obtained from the grammar’s

graph. One of our process’ core principles is the fact that

we do not store the same element twice in the final set and

not deleting duplicates might pose the risk of introducing

redundancy. However, we argue that this is not the case and it

can even reduce the amount of supercombinators, where only

the number of connections would rise.

Let’s have supercombinators (7) and (8):

LA =λx1.λx2.x1 + x2 (7)

LB =λx1.x1 + x1 (8)

We see that the first one has two distinct arguments, where

the second has only one. Yet the structure of their bodies is

suspiciously similar. It is just a simple concatenation of two

arguments. What we see is that if we delete duplicate argu-

ments, as it is in the case of supercombinator (8), we obtain

supercombinators that are structurally similar yet different in

their arity.

Should we treat all arguments as unique entities, the su-

percombinator (8) would not exist, as it would be merged

with the (7), see the right side of Fig 4. We see that by

treating arguments as unique elements, we actually obtain

more compact form. At least here it is clear only in a theory.

We have performed experiments to confirm this hypothesis,

see section IV-B.

But does the inclusion of all arguments violate our non-

redundancy criteria? No, it does not, since the arguments are

stored separately, only the connections (in fact references)

714 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig. 4. Visualization of our old and new approach to argument connections.

Fig. 5. Example of input sample in CCG form.

are actually attached to supercombinators. We see this fact

in Fig. 4, where we see that this improved approach does not

store anything more than once.

IV. EXPERIMENTAL RESULTS

We present various experiments that show the abilities

and properties of our algorithm in this section. As already

mentioned, we are no longer using grammars generated with

the Sequitur algorithm as we have done in [4]. We have

decided to use different kind of input data.

In order to properly examine our algorithm, we need to have

a rather large dataset. We are taking our input grammars from

Groningen Meaning Bank (GMB) [6]. It is a large base of

news articles parsed with Combinatory Categorial Grammar

(CCG) [12]. At the time of writing this paper, GMB consisted

of 10 000 short newspaper articles, 62 008 sentences in total.

We want to have a set of structural data that is sufficiently large

enough, and this bank matches that criteria. Normally, CCGs

are used for parsing natural language sentences along with

their semantics. However, we do not use those grammars in

a traditional way, since they are already parsed and combined

with deep semantics. We transform the tree structure of each

parsed sentence into one CFG in a straightforward fashion.

As an example, we can see input CCG in Fig. 5. It is a parse

tree of a sentence "No explanation was given". This is the

third sentence from the GMB sample no. 88/0248. It is short

enough to serve as an example. The resulting CFG from that

sentence is shown in Fig. 6.

To complete the picture, we show in the Table II super-

combinators that are created from this sample. Arguments

were omitted for brevity. You can see that rules 2 and 3

0 → 1 < . >

1 → 2 3

2 → < No > < explanation >

3 → < was > < given >

Fig. 6. Context free grammar created from input sample.

TABLE II
SUPERCOMBINATORS CREATED FROM THE GRAMMAR SHOWN IN FIG. 6.

Name Supercombinator Body

L0 λx1.x1

L1 λx1.λx2. L
0 x1 + L0 x2

L2 λx1.λx2.λx3.λx4.L
1 x1 x2 + L1 x3 x4

Ltop λx1.λx2.λx3.λx4.λx5.L
2 x1 x2 x3 x4 + L0 x5

0
1
24 8

1
6

2
0

2
4

2
8

3
2

3
6

4
0

4
4

4
8

5
2

5
6

6
0

6
5

7
1

1
0
3

0

500

1000

1500

2000

2500

3000

3500

Rule count

A
m

o
u

n
t

Fig. 7. Input grammars’ rule amount distribution.

from Fig. 6 are structurally identical and they translate to

the supercombinator L1. Should we perform β-reduction of

Ltop with the arguments (in this case words), we would obtain

the input sentence. Therefore our form is complete and fully

represents the input sentence.

These grammars are different from the Sequitur grammars

that we have used before. They are still simple CFGs that

generate sentences and use only sequencing. However, and

this is important to stress out, these CFGs are no longer just

compiled from repeating phrases, but are purposely parsed

based on their linguistic categories. We capture the structure

of these parse trees, which in it self might show interesting

information about the input form.

A. Input Data

We have obtained large amount of data by using GMB data

transformed to CFGs. These data can show, how our algorithm

works and what are its strong parts. We have transformed a

total number of 62 008 sentences to the equal number of CFGs.

The average number of rules per grammar is 20.838, with the

median of 20 and the mode is 19. Standard deviation of rule

amount is 7.947. We can see in Fig. 7 that the distribution of

grammar rules roughly resembles the gauss curve, therefore it

can be considered a normal distribution.

We have mentioned earlier in the section III-B that each

grammar is processed into its own supercombinator set. How

we can relate CFGs with the supercombinators created from

them? We could look at the maximum arity of a supercombi-

nator set, i.e. the arity of the top supercombinator. We see in

the Fig. 8 that the distribution of maximum arity is also normal

and very similar (although not identical) to the distribution of

grammar rules. The other values are similar as well, where

MICHAL SIČÁK, JÁN KOLLÁR: PROPERTIES AND LIMITS OF SUPERCOMBINATOR SET ACQUIRED FROM CONTEXT-FREE GRAMMAR SAMPLES 715

0 13 25 37 49 61 10
45 9 17 21 29 33 41 45 53 57 66 72

0

500

1000

1500

2000

2500

3000

3500

Maximal arity of supercombinators

A
m

o
u

n
t

Fig. 8. Maximum arity of a supercombinator per supercombinator set created
from input samples. Each input grammar generates one set, they were not
merged yet at this stage.

2 34 66 98 13
0

16
2

19
4

22
6

25
8

29
0

32
2

35
4

38
6

41
8

45
0

48
2

51
4

54
6

57
8

61
0

0

50000

100000

150000

200000

250000

300000

350000

New Old

Number of merge iterations

T
o

ta
l
a

m
o

u
n

t
o

f
s
u

p
e

rc
o

m
b

in
a

to
rs

Fig. 9. Comparison of cumulative incremental merge between older and newer
approach, described in the section III-D.

the average arity is 21.84, with the median of 21 and the

mode of 20. Standard deviation is almost identical, 7.95. The

arity is important property of supercombinators, as with it

we can find out the theoretical maximum amount of created

supercombinators.

B. Comparison of Approaches

We have described in the section III-D our performed

tweaks to the algorithm. As this is the result section, we

present the comparison results here. We have said that by

allowing the same argument to be applied in one supercombi-

nator more than once, we gain the reduction of elements.

To check our hypothesis, we have performed following

experiment. We have taken the entire sample set and incre-

mentally built a supercombinator set. This means that we have

started with the first sample, created supercombinator set from

it and then incrementally merged each next sample’s set with

it (see section III-C). In Fig. 9 we see that the growth of

supercombinator amount in the form is lower in the case of

our improved method. So these results confirm our hypothesis

that the resulting form would contain fewer supercombinators.

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Arity

T
h
e
 a

m
o

u
n
t
o
f
s
u
p
e
rc

o
m

b
in

a
to

rs

Fig. 10. The amount of supercombinators in the final form divided by their
arity.

TABLE III
AMOUNT OF SUPERCOMBINATORS SEPARATED BY THEIR ARITY.

Arity Amount Catalan no. Arity Amount Catalan no.

1 1 1 9 878 1430

2 1 1 10 1836 4862

3 2 2 11 3474 16796

4 5 5 12 5686 58786

5 14 14 13 8470 208012

6 42 42 14 11328 742900

7 128 132 15 13859 2674440

8 360 429 16 16099 9694845

C. Scalability of the Supercombinator Form

You may notice from the Fig. 9 that the growth of our form

seems to be linear. That is because the maximum arity of

our input samples is rather high. In the Fig. 10 we show the

amount of created supercombinators in the final set split by

their arity.

The intuition tells us that the amount of supercombinators

that can be created for each arity is limited. If we have a non-

redundant form, there must be some amount that cannot be

surpassed. The limit of theoretically possible supercombinators

created from CFGs with binary rules is known as the Catalan

number (9).

C(n) =
n∏

k=2

n+ k

k
(9)

This fact makes sense, since we are using binary CFG

rules, and one of the counting problems that Catalan number

describes is the number of successive applications of a binary

operator. Should we split our form by the arity, we see in

Fig. 11 that in each case the total amount never surpasses

the Catalan number. Note that 0th Catalan number equals to

our arity of 1. As Catalan number grows exponentially, we

use exponential y-axis in Fig. 11. Even with it, the Catalan

number (red line) rises steeply, quickly surpassing the amount

of created supercombinators of higher arities.

In Table. III4 we see the amount of supercombinators taken

4We do not show the entire set for brevity.

716 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

Supercombinators Catalan number

Arity

T
o
ta

l A
m

o
u

n
t

Fig. 11. Arity split supercombinator form with a logarithmic scale along with
the Catalan number limit.

from our set split by arity up to the number of 16. We obtain

all theoretically possible supercombinators up to the arity of

6. Then we see that the amount of supercombinators with

larger arities is orders lower than their corresponding Catalan

number.

Although our set shows linear growth (blue line in Fig. 9),

should we restrict the supercombinator creation process to

some arity, we should see logarithmic growth. Arity restriction

means that we do not allow any supercombinator with higher

arity to enter the final set. As we use grammars that do

not contain cycles, supercombinators cannot contain inside of

them any higher or equal arity supercombinators, therefore our

limiting does not require any special attention.

To demonstrate this limit, we have chosen to restrict arities

starting above the number 8. This number has been chosen

since it produces sizable amount of supercombinators yet the

Catalan number for it is not that much higher, as it is for

higher arities, see Table III. In Fig. 12 we see that our growth

is now logarithmic, it does not surpass the limit imposed by

the sum5 of the first 8 numbers of the Catalan number (red

line).

D. Identification of the Reoccurring Structures

Each supercombinator represents some part of a grammar

structure. It is reasonable to assume that some structures do

occur more often than others. That information is not available

in our final set, since the set is not redundant. However, we

can capture that information during the merge operation.

When we perform incremental growth of our form, we

merge a supercombinator set created from one grammar with

the rest of already created supercombinators. Therefore, we

just need to count how many times has any supercombinator

been merged. That would give us another parameter to our su-

percombinator form, the merge rate. In other words a number

designating how many times has a certain supercombinator

tried to enter the output set.

5We need to sum the first 8 numbers of Calatan number sequence, as the
set now contains supercombinators with arities of the range from 1 to 8.

2 34 66 98 13
0

16
2

19
4

22
6

25
8

29
0

32
2

35
4

38
6

41
8

45
0

48
2

51
4

54
6

57
8

61
0

0

100

200

300

400

500

600

700

Supercombinators Catalan Number (Max amount)

Iterations (each 10th)

A
m

o
u

n
t
o

f
S

u
p

e
rc

o
m

b
in

a
to

rs

Fig. 12. Cumulative sum of supercombinators constrained with the arity of
at most 8, along with the maximum limit, which is sum of the first 8 values
of Catalan number.

TABLE IV
FREQUENCY OF OCCURRENCE OF STRUCTURES.

Frequency interval Amount % After merge % Before merge

≥ 1000 59 0.024 47.07

< 1000, ≥ 500 43 0.018 3.38

< 500, ≥ 100 317 0.129 7.33

< 100, ≥ 50 348 0.141 2.77

< 50, ≥ 10 2717 1.103 6.08

< 10, ≥ 5 3794 1.54 2.78

< 5, ≥ 2 19142 7.77 5.38

=1 219894 89.252 25.2

With this information, we can find out the most reoccurring

structures inside the input data. We have split our final su-

percombinator set by the merge rate, see Table. IV. For better

representation, we have split the set to intervals, so it could be

more evident how many times has a unique supercombinator

tried to enter the final set. In the second to last column

that represents actual percentage of supercombinators in the

final set after merge operation, we see that the majority of

supercombinators are unique in the first place, as 89% have

never been merged. Around 7.77% of supercombinators have

been merged only once. Therefore we can conclude that only

a fraction of supercombinators present in the final form occur

frequently as structures in input grammars.

Now let’s focus on that fraction. In the last column of the

Table IV we see the actual rate of occurrence before merge

operation. It is no wonder that the supercombinators that have

been merged more than 1 000 times have more than 47% of

the share. These are the most occurring structures in the input

set after all. In the Table V we show ten supercombinators

that have been merged the most times. The number in the

first (and fourth) row means its order in sequence and next

to it is its composition, therefore (0, 1) means that this

supercombinator is composed of identity L0 supercombinator

and the supercombinator in that table with the rank of 1,

MICHAL SIČÁK, JÁN KOLLÁR: PROPERTIES AND LIMITS OF SUPERCOMBINATOR SET ACQUIRED FROM CONTEXT-FREE GRAMMAR SAMPLES 717

TABLE V
TEN MOST MERGED SUPERCOMBINATORS.

Rank Arity Merged Rank Arity Merged

1 (0,0) 2 62008 6 (0,4) 6 16025

2 (0,1) 3 60114 7 (1,1) 4 14602

3 (0,2) 4 48851 8 (2,3) 5 12651

4 (0,3) 5 30343 9 (0,8) 5 8433

5 (1,0) 3 17028 10 (0,6) 7 7995

which is L1 = λx1.λx2.L
0 x1+L0 x2

6. We see that L1 exists

in each set created from input grammars, as its merge rate

equals the amount of grammars processed. Should we look at

it from the CCG perspective, it represents a basic application

of two elements. L0 also exists in all input grammars sets,

yet it is not present in the table due to the implementation

simplifications. It has the arity of 1 and it is always present

in every supercombinator that we create.

Note that the supercombinator L1 has its rate of occurrence

equal to the amount of grammars. We have not been counting

how many times has this supercombinator been created while

creating a single set from one grammar, we are only counting

merge rate when merging already created supercombinator

sets (created from input grammars) with the final set. This

might be a threat to validity of this results, but we argue that

even in the current state our process is able to identify the

most reoccurring structures, as we are identifying structures

in between the input CCG trees.

The second most occurring supercombinator has the arity

of 3. It does not occur in all grammars however, as its merge

rate is 60 114. This is possible due to the fact that there

exists another supercombinator with the arity of 3 that has the

occurrence of 17 028. Both of those supercombinators might

be present in a single input set, since their arity is rather low.

Yet we see that the first one occurs around three times more

often than the second one.

We can say that we have found a way to identify the

most reoccurring structures in our input samples. Each su-

percombinator directly translates to the structure. For better

explanation, we present the Fig. 13 that contains two most

occurring structures with the arity of 8. There are 429 possible

permutations of supercombinators with the arity of 8, out of

which only 360 exist in our set. Supercombinators in Fig 13

are the most occurring with that arity. We see that these

structures are plain binary trees, the black nodes mark the spot

where the arguments enter our supercombinator form, i.e. they

represent the L0 supercombinator. Next to each tree is their

merge rate. We see that the most occurring structure with the

arity of 8 is the deepest possible tree for that amount of leaf

nodes. Tree structure like that can represent a list structure.

The second most occurring supercombinator with the arity of

8 contains the same structure with the arity of 5, and it contains

above mentioned supercombinator L1 twice.

6The composition of L1 is therefore (0, 0).

3974 2606

Fig. 13. Two most occurring supercombinators with the arity of 8.

V. DISCUSSION

We have presented large scale experiments on CFGs that

have been taken from the structure of CCGs samples from

GMB corpora. This is in contrast to our previous work [4]

where we have used generated Sequitur grammars. These

grammars are representable by trees, like our current samples,

but Sequitur CFG tree nodes can have zero-to-n subtrees,

where the trees of CFGs presented in this paper are binary.

This means that current grammars tend to be narrower but they

are also deeper. The largest supercombinator is represented by

a tree with the depth of 22. It has the arity of 104, which means

that it has 104 leaf nodes. It represents the longest sentence

in the original GMB source.

Restriction to binary trees has allowed us to pinpoint the

theoretical limit of our resulting form. In case of binary

trees it is the Catalan number, and as we show, the amount

of created supercombinators never surpasses the maximum

possible amount set by this mathematical sequence. In fact,

only supercombinators with the arity up to 6 are fully present

in our final set. This result has been expected. A single

natural language sentence can be parsed by CCG in multiple

ways, caused by what is known as spurious ambiguity. Yet

the final selected tree form is usually the most simple one.

Therefore it is logical to expect that we won’t have all possible

supercombinators in our final form. Yet we have found out

that a fraction, specifically 0.024% of supercombinators in

the final form represents 47.04% of all structures in the input

grammars that we have processed. This shows that natural

language parsed with CCG tends to create similar structures

rather than to create arbitrary ones. This conclusion is in order

with the CCG spurious ambiguity property mentioned above.

The results presented in the section IV-D show that we can

find the most used structures in the entire input set. This might

be a little contribution to the filed of grammar metrics as

we can now measure, observe and locate the substructures of

grammars. However, the purpose of this paper is not a creation

of a new metric. This might be the topic of our future research.

The results from section IV-B show that we might obtain

smaller final forms, should we allow the identical arguments to

be treated individually. This reduces the amount of supercom-

binators, as we reuse already created supercombinators. The

718 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

downside of this approach is larger amount of connections

between arguments and supercombinators. The main feature

of our form, the non-redundancy, still stands, as no two

supercombinators in the resulting set are equal.

VI. RELATED WORK

As our algorithm processes grammars, our work relates

with the filed of grammar inference. Inference methods can

transform linear text into a grammar form that we can further

process and convert into non-redundant supercombinator set.

There exist various methods of CFG (or their subset) inference,

even from the positive samples only. Although due to Gold’s

theorem, it is not possible to infer grammar from positive

samples purely algorithmically. Hrnčič, Mernik, Bryant and

Javed used evolution algorithms [13] to circumvent that prob-

lem. Another methods might include the use of minimal

adequate teacher, as used by Clark [14] or a rule based system

presented by Dubey, Jalote and Aggarwal [15]. There are other

methods to achieve that, De Higuera presents extensive survey

of various grammar inference methods in [16]. Stevenson

and Cordy in [9] describe methods of inference used in the

software engineering.

As our results from the section IV-D indicate, our work

might contribute to grammar metrics field. Grammar metrics

are formal measurements of a grammar quality. Power and

Malloy in [17] describe metrics and they split them into two

types, size metrics and structure metrics. Črepinšek et al. build

upon that and in [18] propose new metrics based on LR

parsing. However, deriving new grammar metrics is not the

purpose of this paper and would require additional research.

But we believe that we might contribute this field in the future.

The algorithm from our work might be used to store gram-

mars that are processed in a data-flow manner. This relates to

the field of conceptualization [19], as supercombinators might

represent concepts. Data obtained by such a process [20] can

be transported into grammar forms and and then processed

with our algorithm. As our research is grammar based, it

might also prove useful to the Domain specific language (DSL)

field [21]. DSLs are useful small languages that work with the

abstraction rather well. They are primarily targeted for human-

computer communication [22], and the structure containing

data non-redundantly might prove to be useful.

VII. CONCLUSION

We have presented an improved version of supercombinator

set acquisition algorithm in this paper. As in our previous

version, this algorithm is capable to convert any CFG into

a set of supercombinators accompanied with the arguments

(terminal symbols). By application of arguments we obtain

the input grammar back. The improvements presented here

include non-removal of identical terminals in the creation of a

supercombinator, using more efficient data structures and the

unification of a merge process. Keeping the identical terminal

symbols results into more compact form with less amount of

supercombinators. Only drawback is the increased number of

argument references.

We have performed experiments on a set of 62 008 sen-

tences, taken from 10 000 news articles that are included in

the Groningen Meaning Bank. The goal of our experiments

was to prove that the supercombinator set is upper bound.

We have found that in the case of binary CFGs, the limit

is a mathematical sequence called Catalan number. Should we

limit the supercombinators entering the final set by a relatively

low arity (we have presented results limited with the arity of

8), the growth of that set is logarithmic and never surpasses

the limit posed by the Catalan number.

Another experiments showed that our process can identify

most reoccurring structures in input grammars. This might be

a contribution to the field of grammar metrics. The results

presented here show that supercombinator set obtained from

natural language sentences contains only a small fraction of

supercombinators that represent majority of structures in the

input set, as our final set is non-redundant.

REFERENCES

[1] R. J. M. Hughes, “Super-combinators a new implementation method
for applicative languages,” in Proceedings of the 1982 ACM

symposium on LISP and functional programming. ACM, 1982.
doi: 10.1145/800068.802129 pp. 1–10. [Online]. Available: http:
//dx.doi.org/10.1145/800068.802129

[2] P. Klint, R. Lämmel, and C. Verhoef, “Toward an engineering discipline
for grammarware,” ACM Trans. Softw. Eng. Methodol., vol. 14, no. 3,
pp. 331–380, Jul. 2005. doi: 10.1145/1072997.1073000. [Online].
Available: http://doi.acm.org/10.1145/1072997.1073000

[3] J. Kollár, M. Sičák, and M. Spišiak, “Towards machine mind
evolution,” in Computer Science and Information Systems (FedCSIS),

2015 Federated Conference on. IEEE, 2015. doi: 10.15439/2015F210
pp. 985–990. [Online]. Available: http://dx.doi.org/10.15439/2015F210

[4] M. Sičák and J. Kollár, “Supercombinator set construction from
a context-free representation of text,” in Computer Science and

Information Systems (FedCSIS), 2016 Federated Conference on. IEEE,
2016. doi: 10.15439/2016F334 pp. 503–512. [Online]. Available:
http://dx.doi.org/10.15439/2016F334

[5] C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical strcture
in sequences: A linear-time algorithm,” J. Artif. Intell. Res.(JAIR),
vol. 7, pp. 67–82, 1997. doi: 10.1613/jair.374. [Online]. Available:
http://dx.doi.org/10.1613/jair.374

[6] V. Basile, J. Bos, K. Evang, and N. Venhuizen, “Developing a large
semantically annotated corpus,” in LREC 2012, Eighth International

Conference on Language Resources and Evaluation, 2012. [Online].
Available: https://hal.inria.fr/hal-01389432

[7] E. M. Gold, “Language identification in the limit,”
Information and control, vol. 10, no. 5, pp. 447–474,
1967. doi: 10.1016/S0019-9958(67)91165-5. [Online]. Available:
http://dx.doi.org/10.1016/S0019-9958(67)91165-5

[8] L. Onnis, H. R. Waterfall, and S. Edelman, “Learn locally, act globally:
Learning language from variation set cues,” Cognition, vol. 109, no. 3,
pp. 423–430, 2008. doi: 10.1016/j.cognition.2008.10.004. [Online].
Available: http://dx.doi.org/10.1016/j.cognition.2008.10.004

[9] A. Stevenson and J. R. Cordy, “Grammatical inference in software
engineering: an overview of the state of the art,” in Software Language

Engineering. Springer, 2013, pp. 204–223. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36089-3_12

[10] J. Kollár, M. Spišiak, and M. Sičák, “Abstract language of the
machine mind,” Acta Electrotechnica et Informatica, vol. 15, no. 3,
pp. 24–31, 2015. doi: 10.15546/aeei-2015-0025. [Online]. Available:
http://dx.doi.org/10.15546/aeei-2015-0025

[11] M. Sičák, “Higher order regular expressions,” in Engineering of

Modern Electric Systems (EMES), 2015 13th International Conference

on. IEEE, 2015. doi: 10.1109/EMES.2015.7158427 pp. 1–4. [Online].
Available: http://dx.doi.org/10.1109/EMES.2015.7158427

[12] M. Steedman and J. Baldridge, “Combinatory categorial grammar,” Non-

Transformational Syntax: Formal and Explicit Models of Grammar.

Wiley-Blackwell, 2011.

MICHAL SIČÁK, JÁN KOLLÁR: PROPERTIES AND LIMITS OF SUPERCOMBINATOR SET ACQUIRED FROM CONTEXT-FREE GRAMMAR SAMPLES 719

[13] D. Hrnčič, M. Mernik, B. R. Bryant, and F. Javed, “A memetic grammar
inference algorithm for language learning,” Applied Soft Computing,
vol. 12, no. 3, pp. 1006–1020, 2012. doi: 10.1016/j.asoc.2011.11.024.
[Online]. Available: http://dx.doi.org/10.1016/j.asoc.2011.11.024

[14] A. Clark, “Distributional learning of some context-free languages with
a minimally adequate teacher,” in Grammatical Inference: Theoretical

Results and Applications. Springer, 2010, pp. 24–37. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-15488-1_4

[15] A. Dubey, P. Jalote, and S. K. Aggarwal, “Learning context-free
grammar rules from a set of program,” IET software, vol. 2, no. 3,
pp. 223–240, 2008. doi: 10.1049/iet-sen:20070061. [Online]. Available:
http://dx.doi.org/10.1049/iet-sen:20070061

[16] C. De La Higuera, “A bibliographical study of grammatical
inference,” Pattern recognition, vol. 38, no. 9, pp. 1332–1348,
2005. doi: 10.1016/j.patcog.2005.01.003. [Online]. Available: http:
//dx.doi.org/10.1016/j.patcog.2005.01.003

[17] J. F. Power and B. A. Malloy, “A metrics suite for grammar-based
software,” Journal of Software Maintenance and Evolution: Research

and Practice, vol. 16, no. 6, pp. 405–426, 2004. doi: 10.1002/smr.293.
[Online]. Available: https://doi.org/10.1002/smr.293

[18] M. Črepinšek, T. Kosar, M. Mernik, J. Cervelle, R. Forax, and
G. Roussel, “On automata and language based grammar metrics,”
Computer Science and Information Systems, vol. 7, no. 2, pp.
309–329, 2010. doi: 10.2298/CSIS1002309C. [Online]. Available:

https://doi.org/10.2298/CSIS1002309C
[19] N. Carvalho, J. J. Almeida, M. J. Pereira, and P. Henriques,

“Probabilistic synset based concept location,” in SLATe’12—Symposium

on Languages, Applications and Technologies. Alberto Simões and
Ricardo Queirós and Daniela da Cruz, 2012. doi: 10198/7062 pp.
239–253. [Online]. Available: http://hdl.handle.net/10198/7062

[20] S. Ristić, S. Kordić, M. Čeliković, V. Dimitrieski, and I. Luković,
“A model-driven approach to data structure conceptualization,” in
Proceedings of the 2015 Federated Conference on Computer Science

and Information Systems, ser. Annals of Computer Science and
Information Systems, M. Ganzha, L. Maciaszek, and M. Paprzycki,
Eds., vol. 5. IEEE, 2015. doi: 10.15439/2015F224 pp. 977–984.
[Online]. Available: http://dx.doi.org/10.15439/2015F224

[21] D. Lakatos, J. Poruban, and M. Bacikova, “Declarative specification
of references in dsls,” in Computer Science and Information Systems

(FedCSIS), 2013 Federated Conference on. IEEE, 2013, pp. 1527–
1534.

[22] S. Chodarev, “Development of human-friendly notation for xml-based
languages,” in Proceedings of the 2016 Federated Conference on

Computer Science and Information Systems, ser. Annals of Computer
Science and Information Systems, M. Ganzha, L. Maciaszek, and
M. Paprzycki, Eds., vol. 8. IEEE, 2016. doi: 10.15439/2016F530 pp.
1565–1571. [Online]. Available: http://dx.doi.org/10.15439/2016F530

720 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

