
Comparison of two types of Quantum Oracles
based on Grover’s Adaptative Search Algorithm for

Multiobjective Optimization Problems

Gerardo G. Fogel
National University of Asuncion

Asuncion, Paraguay

Email: gerardofogel@gmail.com

Benjamı́n Barán
National University of Asuncion

Asuncion, Paraguay

Email: bbaran@pol.una.py

Marcos Villagra
National University of Asuncion

Asuncion, Paraguay

Email: mvillagra@pol.una.py

Abstract—Quantum Computing is a field of study in com-
puter science based on the laws of quantum physics. Quantum
computing is an attractive subject considering that quantum
algorithms proved to be more efficient than classical algorithms
and the advent of large-scale quantum computation. In partic-
ular, Grover’s search algorithm is a quantum algorithm that is
asymptotically faster than any classical search algorithm and it
is relevant for the design of fast optimization algorithms. This
article proposes two algorithms based on Grover’s adaptative
search for biobjective optimization problems where access to the
objective functions is given via two different quantum oracles.
The proposed algorithms, considering both types of oracles, are
compared against NSGA-II, a highly cited multiobjective opti-
mization evolutionary algorithm. Experimental evidence suggests
that the quantum optimization methods proposed in this work
are at least as effective as NSGA-II in average, considering an
equal number of executions. Experimental results showed which
oracle required less iterations for similar effectiveness.

I. INTRODUCTION

Q
UANTUM Computing is a field of study in computer

science since the 1980’s. It is based on the laws of quan-

tum physics as superposition, entanglement and interference,

which cannot be efficiently simulated by classical computers

[1]. In the middle of the 1990’s, after the development of an

efficient quantum algorithm for integer factorization [2], the

idea of quantum computers became more relevant, considering

that the quantum algorithms proved to be asymptotically faster

over classical algorithms. In a similar way, another milestone

was achieved with a quantum algorithm for search in unstruc-

tured databases developed by Grover [3]. This algorithm can

find a specific marked element from a finite set of N elements

with a computational complexity of order O(
√
N), instead of

O(N) required by classical computers.

After Grover’s search algorithm, several researchers pro-

posed diverse methods based on Grover’s algorithm applied

to global optimization. Dürr and Høyer [4] presented a

quantum algorithm for finding the minimum value of an

objective function. Another relevant contribution comes from

Baritompa, Bulger and Wood [5], who proposed an adaptive

search method for minimization problems. Furthermore, Barán

and Villagra [6] introduced the first quantum algorithm for

multiobjetive combinatorial optimization based on a quantum

adiabatic computer.

In this paper, we propose an application of Grover’s al-

gorithm to multiobjetive optimization problems. Two algo-

rithms are proposed that can query the objective functions

via so-called quantum oracles. For comparison purposes, two

different oracles are studied. The first oracle “marks” non-

dominated solutions from a known feasible solution of the

decision space. The second oracle also “marks” non-dominated

solutions as the first one but, the difference is that it marks

non-comparable solutions too. Both oracles are implement in

an algorithm called MOGAS from Multiobjective Optimization

Grover Adaptive Search, which is based on the Grover adaptive

search algorithm of Baritompa, Bulger and Wood [5].

The experimental results of this work suggest that the

proposed MOGAS algorithm (considering both types of or-

acles) was not only an effective approach for multiobjective

optimization problems, but it was also efficient when compared

against NSGA-II. In most of the studied cases, MOGAS

obtained better or equal results in average for the same number

of executions. It is important to note that in spite of the simple

adaptive strategies used by MOGAS (considering both types

of oracles), the results of this work present a remarkable per-

formance over NSGA-II. Therefore, the experimental results

show the efficiency of simple quantum algorithms with respect

to classical algorithms.

This paper is organized as follows. In Section 2, a brief

introduction to Grover’s algorithm is given. In Section 3,

an application of Grover’s search algorithm to optimization

problems and the algorithm of Dürr and Høyer is explained.

Section 4 reviews basic definitions of multiobjective opti-

mization. In Section 5 the proposed algorithm MOGAS is

presented and Section 6 shows the experimental results and

some discussions. Finally, Section 7 concludes the paper.

II. GROVER’S SEARCH ALGORITHM

In this section we briefly explain Grover’s algorithm, which

is an integral part of the proposed algorithm of this work. For

details refer to the book by Nielsen and Chuang [1].

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 421–428

DOI: 10.15439/2017F259

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 421

The fundamental element of information in a quantum

computer is the quantum bit or qubit. These qubits may be in

a superposition state of classical states one and zero, that is, a

linear combination of zeros and ones with complex coefficients

(or amplitudes). Qubits are represented by basis vector states

|1〉 and |0〉, usually referred to as the computational basis1.

In quantum computing, quantum states are described using

the linear algebra of Hilbert’s spaces, and therefore, they are

represented using vectors over a complex number field [1].

In classical computation, finding a specific element out from

a set of N elements requires N tries; that is, the complexity

of finding a particular element is O(N), which is tight [1].

Grover’s search algorithm, however, can find a specific

element out from a finite set of N elements with complexity

O(
√
N). This is possible because of quantum interference,

which the algorithm exploits via a quantum operator G known

as the Grover operator. The Grover operator is constructed

from an oracle operator OG and a phase operator W.

The number of iterations r necessary to find a desired item

out of N alternatives is obtained from the equation

r =
⌊π

4

√
N
⌋

≈
√
N, (1)

which corresponds to a complexity O(
√
N) [3].

The input to Grover’s algorithm is a set of n qubits |0〉⊗n,

where 2n = N , and an ancilla qubit |1〉. The first input

|0〉⊗n is transformed to a superposition state using an n-fold

Hadamard transformation H
⊗n,

|ζ〉 = H
⊗n|0〉⊗n =

1√
N

∑

x∈{1,0}n

|x〉. (2)

A superposition of basis states is a particular case of

linear combination where the square moduli of the complex

coefficients (amplitudes) must sum to one. The second register

is transformed using a Hadamard gate according to

H|1〉 = |−〉 = |0〉 − |1〉√
2

. (3)

Grover’s algorithm is based on the ability of an oracle to

“mark” a desired solution, which is represented by one of the

basis states. Given a superposition state, the marking process

of an oracle is a change of the sign of the coefficient in the

basis state which corresponds to a desired solution; such a

marking process will only be possible if some interaction

exists between the oracle operator and the ancilla register.

After the marking process, the phase operator performs an

increase of the absolute value of the amplitude associated to

the solution state while decreasing amplitudes associated to the

other non-solution states. This will happen at each iteration,

and because of that, it is possible to observe/measure the

desired solution state with high probability [1].

1The ket notation |·〉 is simply a notation for a column vector of a vector
space.

III. DÜRR AND HØYER’S ALGORITHM

Grover’s algorithm is generally used as a search method to

find a set of desired solutions from a set of possible solutions.

However, Dürr and Høyer presented an algorithm based on

Grover’s method [4] for optimization. Their algorithm finds

an element of minimum value inside an array of N elements

using at most O(
√
N) queries to the oracle.

Baritompa, Bulger and Wood [5] presented an application

of Grover’s algorithm for global optimization, which they call

Grover Adaptative Search (GAS). Basically, GAS is based

on Grover’s search with an “adaptive” oracle operator in a

minimization context of the objective function. The oracle

operator marks all the solutions from a set below a certain

threshold value y given by

g(x) =

{

1, if f(x) < y

0, if f(x) ≥ y
, (4)

where x is a possible solution in the decision space and f(x)
is the value of the objective function (in this case, the value

of the objective function of a current known solution y). The

oracle marks a solution x if and only if the boolean function

g(x) = 1 [5].
The algorithm requires two extra parameters, a currently

known solution and an iteration count. This iteration count is

a value computed from the number of solutions that are better

than the currently known solution. Initially, the algorithm

randomly chooses a feasible solution from the decision space

which becomes the known solution; however, the number of

solutions that are better than this last solution is unknown and

an iteration count is required to perform the search. This is

due to the black box nature of the oracle [5].
When the algorithm finds a better solution, it becomes the

new known solution. This solution is then used as a new

threshold for the next iteration of GAS and the sequence of

iteration counts must be computed again. In this way, GAS

can find improved solutions in an adaptive search framework

[5].
Dürr and Høyer introduced a strategy for the selection of the

iteration count based on a random selection of a number from

a set of integer numbers. This set starts with {0} as the only

element. When the search is unsuccessful in finding a better

solution, the algorithm adds more elements to a maximum

of {0, . . . , ⌈m − 1⌉} at each search step, until a solution

better than the current known solution is found. In this way,

the set incorporates more integer numbers as elements. Thus,

the probability of selecting the right iteration count for a

successful search increases.
The value of m is updated at each step by min{λim,

√
N},

where λ is given as a parameter, i represents the count of the

previous unsuccessful search steps and N = 2n is the number

of total elements from the decision space based on the number

of qubits n. Therefore, m is not allowed to exceed
√
N , which

is the optimal iteration number to find a specific element from

a set of N elements.
The pseudocode of Dürr and Høyer’s algorithm based on

the GAS algorithm is presented below. This corresponds to an

422 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

interpretation that has been described by Baritompa, Bulger

and Wood [5], where the parameter k represents the search

process count.

Algorithm 1 Dürr and Høyer’s Algorithm

1: Randomly choose x from the decision space.

2: Set x1 ← x.

3: Set y1 ← f(x1).
4: Set m← 1.

5: Choose a value for the parameter λ (8/7 is suggested).

6: For k = 1, 2, . . . until termination condition is met, do:

(a) Choose a random rotation count rk uniformly

from {0, . . . , ⌈m− 1⌉}.
(b) Perform a Grover search of rk iterations on

f(x) with threshold yk, and denote the outputs

by x and y.

(c) If y < yk set xk+1 ← x, yk+1 ← y and m← 1;

otherwise, set xk+1 ← xk, yk+1 ← yk and

m← min{λm,
√
N}.

IV. MULTIOBJECTIVE OPTIMIZATION

The goal of a multiobjective optimization problem is to

optimize several objectives (at least two) at the same time.

The objectives are frequently in conflict, and therefore, there

may exists several “optimal” solutions. The set of optimal

solutions is known as a Pareto-optimal set, where solutions

provide the best compromise relations between the objective

functions considering the entire feasible decision space [7],

[8].

The feasible decision space is the set of all feasible solu-

tions, which are compared against each other by means of

the Pareto dominance relation. Indeed, the relation makes

possible to determine if a solution is dominated or not by

another solution. One solution Y is dominated by a solution

Y ′, denoted by Y ′ ≺ Y , if Y ′ is better or equal in every

objective function and strictly better in at least one objective

function. Thus, a non-dominated solution is Pareto-optimal if

there is no solution that dominates it. The set of all non-

dominated solutions corresponds to the Pareto-optimal set and

its mapping to the objective space is known as the Pareto Front.

Furthermore, a solution Y is said to be non-comparable with

respect to a solution Y ′′ and it is denoted Y ∼ Y ′′ if neither

Y dominates Y ′′ (Y 6≺ Y ′′) nor Y ′′ dominates Y (Y ′′ 6≺ Y)
[7].

V. MULTIOBJECTIVE GROVER ADAPTIVE SEARCH

(MOGAS)

In this work, a new adaptative search algorithm based on the

heuristic of Dürr and Høyer is proposed named Multiobjetive

Grover Adaptive Search (MOGAS). MOGAS uses two differ-

ent oracle operators based on the Pareto dominance relation.

The first oracle marks all the non-dominanted solutions with

respect to a known (current) solution. The second oracle marks

all the non-dominated and non-comparable solutions. These

oracles are based on the boolean functions

h1(x) =

{

1, if F(x) ≺ Y

0, otherwise
, (5)

h2(x) =

{

1, if F(x) ≺ Y ∨ F(x) ∼ Y

0, otherwise
, (6)

where x is a feasible solution of the decision space, F(x) is a

vector where each element represents the value of the objective

function with respect to solution x, and Y is a vector where

each element is the value of each objective function for the

current known solution.

The first oracle marks a non-dominated solution if and only

if the boolean function h1(x) = 1. In a similar way, the second

oracle marks a non-dominated or non-comparable solution if

and only if the boolean function h2(x) = 1.

The pseudocode of the MOGAS algorithm, where the

parameter k represents the search process count, is presented

below:

Algorithm 2 MOGAS Algorithm

1: Randomly choose x from the decision space.

2: Set S ← {x1 ← x}
3: Set Y1 ← F(x1).
4: Set m← 1.

5: Choose a value for the parameter λ (8/7 is suggested).

6: For k = 1, 2, . . . until termination condition is met, do:

(a) Choose a random rotation count rk uniformly

from {0, . . . , ⌈m− 1⌉}.
(b) Perform a Grover search of rk iterations on

F(x) with threshold Yk, and denote the outputs

by x and Y.

(c) If Y 6≺ Yk set xk+1 ← xk, Yk+1 ← Yk and

m← min{λm,
√
N}.

Otherwise, set m← 1, xk+1 ← x, Yk+1 ← Y

and with respect to all elements of the set S,

where j = 1, . . . , |S|, do:

If ∃ xj ∈ S : F(x) ≺ F(xj), then, set

S ← S − {xj} and finally set S ← S ∪ {x}.
7: Set PF ← {F(xj) : j = 1, . . . , |S|}, ∀ xj ∈ S.

The operation of MOGAS is based on the oracle operator.

Then, using any of the presented oracles, h1 or h2, MOGAS

can find a non-dominated solution with respect to a known

solution. In this way, the algorithm can reach the Pareto-

optimal set by finding new non-dominated solutions at each

iteration. Therefore, with the proposed search process it is

possible to incorporate a new element into the Pareto-optimal

set or replace some old elements from it each time a non-

dominated solution is found.

GERARDO G. FOGEL ET AL.: COMPARISON OF TWO TYPES OF QUANTUM ORACLES 423

TABLE I
TEST SUITES USED FOR THE EXPERIMENTS.

Function m xi, xj f1 f2
i, j = 1, . . . , 210

RG1,2,3 − xi ∈ [1, 103] xi xj

xj ∈ [1, 103]
xi, xj ∈ N

ZDT1 20 xi ∈ [0, 1] xi g1(xi)⌊1−
√

xi/g1(xi)⌋,

g1(xi) = 1 + 9
(
∑

m

k=2
xik

)

(m−1)

ZDT3 20 xi ∈ [0, 1] xi g3(xi)⌊1−
√

xi/g3(xi)
− xi

g3(xi)
sin(10πxi)⌋,

g3(xi) = 1 + 9
(
∑

m

k=2
xik

)

(m−1)

ZDT4 20 xi ∈ [0, 1] xi g4(xi)⌊1−
√

xi/g4(xi)⌋,

g4(xi) = 1 + 10(m− 1)+
∑m

k=2(x
2
ik

− 10cos(4πxik))

VI. EXPERIMENTAL RESULTS

Currently, a general purpose quantum computer has not

been implemented. Nevertheless, the basic ideas of quantum

algorithms can be fully explored using linear algebra, and

therefore, computational performances of quantum algorithms

are possible by executing linear algebra operations [9].

To verify the effectiveness of the proposed algorithm, we

have tested it by means of simulations against one of the most

cited optimization algorithms for multiobjective problems, the

Non-dominated Sorting Genetic Algorithm - version two [7],

[8] known as NSGA-II. The tests were made considering some

biobjective problems based on the well known ZDT test suite

[10] and on randomly generated instances.

The randomly generated problems (RG) consist of a random

selection of numbers from a set of integer numbers between

1 and 1000 for each of the two objective functions. Then,

three different suites of this type of random instances were

established for testing. With respect to the ZDT test suite,

the ZDT1, ZDT3 and ZDT4 were selected considering two

objective functions. For each of these functions, a total of

twenty decision variables were used and to each of these

decision variables a random real number from the interval

[0, 1] was assigned.

The decision space for each instance consist in a set of

1024 = 210 points. The amount of points is based on the

number of qubits (n = 10) selected for the proposed MOGAS

algorithm. Since the problem has two objective functions that

should be minimized, the vector dimension (for F(x) and Y)

is p = 2. Table I presents the main characteristics of the

considered test suites.

The testing procedure was based on ten executions of both

algorithms, that is, MOGAS (considering the two different

TABLE II
RESULTS OF THE TESTING PROCEDURE - MOGAS (AFTER 400

CONSULTATIONS AND THE ORACLE BASED ON THE BOOLEAN FUNCTION

h1).

Test suites
RG1 RG2 RG3 ZDT1 ZDT3 ZDT4

Executions [%] [%] [%] [%] [%] [%]
1 98.4 98.4 98.8 51.4 57 61.2
2 99 98.4 99.1 52.8 57.3 60.2
3 99 98.6 98.6 52.7 58.1 60.5
4 99 98.7 99.1 52.1 58.2 60.7
5 98.9 98.9 99.1 52.7 58.2 60.5
6 99.1 98.5 98.7 52.4 58.3 60.7
7 98.9 98.5 99 52.9 57.1 61.3
8 99.1 98.7 99.1 53.1 56.5 58.8
9 98.9 98.7 99.1 52.3 58.2 59.7

10 98.9 98.7 98.4 53.2 57.7 58.9
Average 99 99 99 53 58 60

TABLE III
RESULTS OF THE TESTING PROCEDURE - MOGAS (AFTER 400

CONSULTATIONS AND THE ORACLE BASED ON THE BOOLEAN FUNCTION

h2).

Test suites
RG1 RG2 RG3 ZDT1 ZDT3 ZDT4

Executions [%] [%] [%] [%] [%] [%]
1 98 98.7 99 51 55.4 57.4
2 96.6 98.4 99.1 49 56.4 59.9
3 98.7 98.7 99.1 50.7 53.2 60.4
4 97.3 98.2 99.2 50.4 53.8 61.1
5 98.7 98.7 98.7 50.9 55.4 55.1
6 99.2 98.9 96.7 50.7 54.2 58
7 98.4 98.7 99 49.7 52.7 59.8
8 98.8 98.2 98.6 49 52 59.1
9 98.1 98.8 97.6 47.7 52.3 61.3

10 97 98.6 99.2 49.1 53.2 58.9
Average 98 99 99 50 54 59

types of oracles) and NSGA-II, over all test suites. At each

execution, the termination criteria was to complete two hun-

dred generations (with a population size equal to fifty) for

NSGA-II and a total of four hundred algorithm consultations

for MOGAS. Where the algorithm consultation is exactly to a

performed Grover search with regard to rk iterations on F(x)
considering a threshold Yk, and denoting the outputs by x

and Y respectively.

The hypervolume was used as the metric for the comparison

of the results, considering that it is the most used comparison

metric in multiobjective optimization [8]. The hypervolume

is an indicator used in the multiobjective optimization of

evolutionary algorithms to evaluate the performance of the

search, which was proposed by Zitzler and Thiele [11]. It is

based on a function that maps the set of Pareto-optimal to a

scalar with respect to a reference point. In tables II, III and IV,

the obtained experimental results from the testing procedure

are presented considering the hypervolume.

The tables are composed of six columns that correspond

to each test suite and a column for the order of execution.

424 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

TABLE IV
RESULTS OF THE TESTING PROCEDURE - NSGA-II (AFTER 200

GENERATIONS AND A POPULATION SIZE EQUAL TO 50).

Test suites
RG1 RG2 RG3 ZDT1 ZDT3 ZDT4

Executions [%] [%] [%] [%] [%] [%]
1 98.1 97.3 98.4 52.1 55.7 60.2
2 99 96.8 97.7 51.2 56.4 60.1
3 97.8 98.6 97.5 51.1 56.9 60.1
4 97.1 98.1 99.1 51.9 55.6 59.6
5 97.5 97.1 98.3 51.9 58.4 60.4
6 98.2 96.6 98.5 52.7 56.6 59.7
7 97.9 98.2 98.8 53.2 57.6 60.7
8 97.6 97.7 98.8 51.5 57.2 60.6
9 97.8 96.1 98.8 51.9 55.9 60

10 98.7 97.3 98.5 52.8 58 59.6
Average 98 97 98 52 57 60

TABLE V
AVERAGE RESULTS OF THE TESTING PROCEDURE - MOGAS (FROM

100 TO 400 EVALUATIONS AND THE ORACLE BASED ON THE BOOLEAN

FUNCTION h1).

Test suites
RG1 RG2 RG3 ZDT1 ZDT3 ZDT4

Evaluations [%] [%] [%] [%] [%] [%]
100 97.7 97.4 98.2 49.2 54.8 57.9
200 98.5 98.2 98.6 51.4 56.8 58.9
300 98.9 98.5 98.8 52.3 57.5 59.7
400 98.9 98.6 98.9 52.5 57.7 60.2

In these six columns, the result of the hypervolume metric in

percentage for each execution is given. In this way, each row

summarizes the experimental results for every test suite with

respect to a specific execution order denoted in the left column.

Also, in the last row, an average of these ten executions for

all test suites is presented.

Tables II and III correspond to results obtained for MOGAS

using h1 and h2 respectively. Table IV corresponds to results

obtained using NSGA-II with a population size equal to fifty.

From the experimental results obtained, MOGAS presents

similar results compared to NSGA-II with a population size

of fifty with respect to RG problems; in most cases, however,

MOGAS delivers better or equal results. Nevertheless, consid-

ering the structured ZDT test suites and compared to NSGA-

II results, only MOGAS based on the boolean function h1

as oracle presents equal or better results, whereas MOGAS

based on the boolean function h2 as oracle presents nearly

equal results but not equal or better results.

Nevertheless, considering the algorithm consultations of

MOGAS as a single evaluation of the objective function, the

results present an important fact to note: MOGAS used only

four hundred evaluations of the objective function vector F(x),
whereas NSGA-II (with a population size of fifty) used 10000

(pop∗gen= 50∗200) evaluations of the same vector to deliver

similar results.

Tables V, VI and VII summarize the average results of both

TABLE VI
AVERAGE RESULTS OF THE TESTING PROCEDURE - MOGAS (FROM

100 TO 400 EVALUATIONS AND THE ORACLE BASED ON THE BOOLEAN

FUNCTION h2).

Test suites
RG1 RG2 RG3 ZDT1 ZDT3 ZDT4

Evaluations [%] [%] [%] [%] [%] [%]
100 94.2 95.1 92.9 44.7 47 55.1
200 97 97.7 97 47.6 50.2 57.4
300 97.9 97.7 98.2 48.7 52.7 58.4
400 98.1 98.6 98.6 49.8 53.9 59.1

TABLE VII
AVERAGE RESULTS OF THE TESTING PROCEDURE - NSGA-II (FROM

100 TO 10000 EVALUATIONS CORRESPONDING TO A POPULATION SIZE

EQUAL TO 50).

Test suites
RG1 RG2 RG3 ZDT1 ZDT3 ZDT4

Evaluations [%] [%] [%] [%] [%] [%]
100 94.6 94.5 95.6 47.4 51 54.9
200 95.9 95.1 96.2 49 51.9 56.8
300 96.5 95.3 96.5 49.4 53 57.3
400 96.5 95.9 96.8 49.9 53.4 57.7
4000 97.7 97.2 98.1 51.5 56.5 60

10000 98 97.4 98.4 52 56.8 60.1

MOGAS algorithms and NSGA-II, considering objective func-

tion evaluations. These tables are composed of six columns

that correspond to each test suite and a column for the number

of evaluations. In these six columns, the average results of

the hypervolume metric in percentage corresponding to ten

executions are presented. In this way, each row summarizes

the average results for every test suite with respect to a specific

number of evaluations given in the left column.

The obtained experimental results are presented in figures

1 to 6 as the performance in the hypervolume metric (in

percentage) versus the number of evaluations of the objective

function vector.

Considering the average number of iterations of the Grover

operator needed for MOGAS using both oracles, the presented

experimental results reveal that MOGAS using h2 as oracle,

in most cases, uses less iterations compared to MOGAS using

h1 as oracle.

Certainly, the oracle based on h2 marks more solutions from

the decision space. Therefore, the probability to change the

threshold at every consultation performed increases. This way,

the parameter m is set to one more often and the iteration

number chosen corresponds to a lower number. Thus, the total

number of iterations for MOGAS using h2 is smaller when

compared to the oracle based on h1.

Tables VIII to XIII summarize the average results of the

number of iterations used by MOGAS, considering the number

of times the Grover operator is invoked. These tables have two

columns that correspond to each different type of oracle and a

column for the number of evaluations. In these two columns,

GERARDO G. FOGEL ET AL.: COMPARISON OF TWO TYPES OF QUANTUM ORACLES 425

99 98

hv
[%]

eval [#]0 100 200 300 400 4000 10000

100

90

RG1

MOGAS-h1

MOGAS-h2

NSGA-II (pop=50)

Fig. 1. Graphs of the hypervolume metric in percentage (hv) versus the
number of evaluations of the objective function vector (eval) made by each
algorithm (MOGAS and NSGA-II) with respect to the RG1 suite test.

99
97

hv
[%]

eval [#]0 100 200 300 400 4000 10000

100

90

RG2

MOGAS-h1

MOGAS-h2

NSGA-II (pop=50)

Fig. 2. Graphs of the hypervolume metric in percentage (hv) versus the
number of evaluations of the objective function vector (eval) made by each
algorithm (MOGAS and NSGA-II) with respect to the RG2 suite test.

the average results of the number of iterations corresponding to

ten executions are presented. In this way, each row summarizes

the average result for both oracles with respect to a specific

number of evaluations presented in the left column.

TABLE VIII
AVERAGE ITERATION NUMBERS USED ON THE RG1 (FROM 100 TO

400 EVALUATIONS).

Oracle Types
MOGAS-h1 MOGAS-h2

Evaluations [#] [#]
100 815 352
200 2162 1299
300 3588 2277
400 5149 3474

TABLE IX
AVERAGE ITERATION NUMBERS USED ON THE RG2 (FROM 100 TO

400 EVALUATIONS).

Oracle Types
MOGAS-h1 MOGAS-h2

Evaluations [#] [#]
100 748 343
200 2078 991
300 3483 2373
400 4975 3485

TABLE X
AVERAGE ITERATION NUMBERS USED ON THE RG3 (FROM 100 TO

400 EVALUATIONS).

Oracle Types
MOGAS-h1 MOGAS-h2

Evaluations [#] [#]
100 838 349
200 1952 888
300 3344 1947
400 4848 3274

TABLE XI
AVERAGE ITERATION NUMBERS USED ON THE ZDT1 (FROM 100 TO

400 EVALUATIONS).

Oracle Types
MOGAS-h1 MOGAS-h2

Evaluations [#] [#]
100 219 280
200 602 801
300 1182 1517
400 2094 2385

TABLE XII
AVERAGE ITERATION NUMBERS USED ON THE ZDT3 (FROM 100 TO

400 EVALUATIONS).

Oracle Types
MOGAS-h1 MOGAS-h2

Evaluations [#] [#]
100 255 259
200 863 668
300 1635 1319
400 2571 2247

TABLE XIII
AVERAGE ITERATION NUMBERS USED ON THE ZDT4 (FROM 100 TO

400 EVALUATIONS).

Oracle Types
MOGAS-h1 MOGAS-h2

Evaluations [#] [#]
100 407 410
200 1260 1255
300 2676 2273
400 3858 3474

426 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

99 98

hv
[%]

eval [#]0 100 200 300 400 4000 10000

100

90

RG3

MOGAS-h1

MOGAS-h2

NSGA-II (pop=50)

Fig. 3. Graphs of the hypervolume metric in percentage (hv) versus the
number of evaluations of the objective function vector (eval) made by each
algorithm (MOGAS and NSGA-II) with respect to the RG3 suite test.

53

50

52

hv
[%]

eval [#]0 100 200 300 400 4000 10000

60

50

ZDT1

MOGAS-h1

MOGAS-h2

NSGA-II (pop=50)

Fig. 4. Graphs of the hypervolume metric in percentage (hv) versus the
number of evaluations of the objective function vector (eval) made by each
algorithm (MOGAS and NSGA-II) with respect to the ZDT1 suite test.

VII. CONCLUDING REMARKS

This work compared two different types of oracles used in a

quantum algorithm for multiobjective optimization problems.

The presented multiobjective quantum algorithm, called MO-

GAS, is a natural extension of previous quantum algorithms

for single-objective optimization based on Grover’s search

method. The experimental results of this work suggests that

MOGAS (considering both types of oracles) was not only an

effective approach for multiobjective optimization problems,

but it was also efficient as was observed when MOGAS

was compared against NSGA-II, which is one of the most

cited multiobjective optimization algorithms [8]. In most of

the studied cases, MOGAS obtained better or equal results

in average after comparing it against NSGA-II for the same

number of executions especially with respect to the oracle

based on the boolean function h1; in regard of h2, the results

presented in this work are almost equal compared to NSGA-II.

In spite of the simple adaptive strategy used by MOGAS

58
54

57

hv
[%]

eval [#]0 100 200 300 400 4000 10000

60

50

ZDT3

MOGAS-h1

MOGAS-h2

NSGA-II (pop=50)

Fig. 5. Graphs of the hypervolume metric in percentage (hv) versus the
number of evaluations of the objective function vector (eval) made by each
algorithm (MOGAS and NSGA-II) with respect to the ZDT3 suite test.

60
59

60

hv
[%]

eval [#]0 100 200 300 400 4000 10000

60

50

ZDT4

MOGAS-h1

MOGAS-h2

NSGA-II (pop=50)

Fig. 6. Graphs of the hypervolume metric in percentage (hv) versus the
number of evaluations of the objective function vector (eval) made by each
algorithm (MOGAS and NSGA-II) with respect to the ZDT4 suite test.

(considering both types of oracles), the experimental results

of this work present a remarkable performance over NSGA-

II. Therefore, the presented experimental results show the

efficiency of a simple quantum algorithm with respect to a

classical more elaborated algorithm.

Another interesting fact to note is the difference between

the number of iterations used by MOGAS. The oracle based

on the boolean function h2, in most cases, employed a smaller

number of iterations than the one using h1. Hence, h2 is more

efficient than h1, which represents a saving in the number of

queries to the quantum oracle.

For future research, it is interesting to study other different

definitions of oracles for multiobjective problems. It is also

very important to lay some theoretical foundations that can

show the convergence of MOGAS to the set of Pareto-optimal

solutions.

GERARDO G. FOGEL ET AL.: COMPARISON OF TWO TYPES OF QUANTUM ORACLES 427

ACKNOWLEDGMENT

The authors acknowledge support from Conacyt grant 14-

POS-008.

REFERENCES

[1] Nielsen, M. A. and Chuang, I. L., Quantum computation and quantum

information, Cambridge university press, 2010.
[2] Shor, P. W., Algorithms for quantum computation: Discrete loga-

rithms and factoring, In Foundations of Computer Science, 1994 Pro-
ceedings, 35th Annual Symposium on (pp. 124-134). IEEE, 1994.
doi:10.1109/SFCS.1994.365700

[3] Grover, L. K., A fast quantum mechanical algorithm for database search,
In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing (pp. 212-219), ACM, 1996. doi:10.1145/237814.237866

[4] Dürr, C. and Høyer, P., A quantum algorithm for finding the minimum,
arXiv preprint quant-ph/9607014, 1996. doi:10.1.1.57.2796

[5] Baritompa, W. P., Bulger, D. W., and Wood, G. R., Grover’s quantum

algorithm applied to global optimization, SIAM Journal on Optimization,
15(4), 1170-1184, 2005. doi:10.1137/040605072

[6] Barán, B. and Villagra, M., Multiobjective Optimization in a

Quantum Adiabatic Computer. In Proceedings of the 42nd Latin
American Conference on Informatics (CLEI), Symposium on The-
ory of Computation, ENTCS 329, pp.27–38, Valparaiso-Chile, 2016.
doi:10.1016/j.entcs.2016.12.003

[7] von Lücken, C., Barán, B. and Brizuela, C., A survey on multi-objective

evolutionary algorithms for many-objective problems, Computational Op-
timization and Applications, 58(3), 707-756, 2014. doi:10.1007/s10589-
014-9644-1

[8] Riquelme, N., Baran, B., and von Lücken, C., Performance metrics in

multi-objective optimization, Computing Conference (CLEI), 2015 Latin
American. IEEE, 2015. doi:10.1109/CLEI.2015.7360024

[9] Lipton, R. J., and Regan, K. W. Quantum Algorithms Via Linear Algebra,
MIT Press, 2014.

[10] Chase, N., et al., A benchmark study of multi-objective optimization

methods, BMK-3021, Rev 6, 2009. doi:10.1.1.520.1343
[11] E. Zitzler and L. Thiele., Multiobjective evolutionary algo-

rithms: a comparative case study and the strength Pareto approach.
IEEE Transactions on Evolutionary Computation, 3(4):257-271, 1999.
doi:10.1109/4235.797969

428 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

