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Abstract—We describe a stochastic method using Dirichlet

processes to derive mixture models that allow the numerical
description of outbreaks of diseases with multiple sources. We
show that existing disease models may be extended using this
method and how this may be used in a practical context to
support the simulated response to a mass casualty public health
emergency.

Index terms epidemiology, stochastic processes, clustering, mix-
ture models, Chinese restaurant process, non-parametric fitting.

I. INTRODUCTION

M
ODERN epidemiological practice during the investiga-

tion of the outbreak of a disease often involves the con-

struction of mathematical or computation models. Frequently,

these models are used to answer operational questions such as

forecasting where further cases are likely to occur, what the

total number of casualties are likely to be, and perhaps even

where the likely source of the disease may be found. To be of

greatest value such estimates need to be made from a small

number of cases early in the course of the outbreak so that

public health officials may prioritize resources.

Many of these epidemiological models use the approach of

representing the outbreak as a probability density function [1]–

[3]. As such, samples taken from this function should produce

a similar spread of cases as the real outbreak. These probability

density functions are usually parametrized by a fixed and finite

number of parameters e.g. spatio-temporal location, climatic

conditions, transmission rates, etc. [3]. The values of these

parameters are manipulated until a set is found which max-

imises the likelihood of the probability density function. This

optimisation process is a well known problem in mathematics

and computer science with a huge literature. Major reviews

may be found in [4]–[6] and also see Fletcher [7] for a partial

overview and introduction of current theory and techniques.

Diseases however may not be limited to a single source or

event. Examples where there may be multiple clusters within

an outbreak could include:

• A legionella outbreak where multiple cooling towers or

air conditioning units are responsible for the cases.

• A shipment of infected food distributed to a large number

restaurants, schools, canteens etc. over a region.

• A terrorist incident involving multiple covert releases of

a pathogen in a short period of time.

Where there are multiple sources, the scenario can be thought

of as several simultaneous, independent outbreaks in space

and time. Since we do not know a priori how many sources

there are, the process of determining the parameter values

becomes substantially more difficult. The problem now re-

quires a solution related to cluster analysis for which there are

many well-known algorithms such as k-means clustering [8],

[9], principal component analysis [10]–[12] and hierarchical
cluster analysis [13] which have been applied to problems

within the field of epidemiology [14]–[17].

Applying such clustering algorithms directly to a multi-

outbreak situation is complicated, especially as it may not be

clear many sources of exposure there are and consequently

what the ‘correct’ number of clusters should be. In this paper

we show how multiple solutions for the value of parameters

in the base model can be considered as a mixture model, i.e.
a weighted sum of several probability density functions each

with different parameter values. We show how such a mixture

model may be calculated by applying a Dirichlet process and

extend a single source disease plume model using Dirichlet

processes to encompass multiple sources to provide a concrete

example of this method in action during a table top exercise.
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II. MIXTURE DISTRIBUTIONS

A. Finite mixture models

In this paper we denote probability density functions by F

(or F∗) and probability mass functions by H (or H∗).

Given a finite collection of probability density functions, a

finite mixture distribution is the probability density function

for a random variable derived by first randomly selecting one

of the probability density functions and then drawing a sample

from that probability density function.

Formally, let F1, F2, . . . , Fn be probability density functions

with the same domain and w1, w2, . . . , wn, be positive real

numbers (weights) such that w1 + w2 + . . .+ wn = 1.

Then the probability density function for the derived mixture

distribution is given by:

F (x) =

n
∑

i=1

wiFi(x).

To sample from this distribution we first choose a distribution

Fk with probability P(k = i) = wi, then we draw from Fk.

From an epidemiology perspective, we can think of each

pair (Fi, wi) as distinct clusters and the probability that a case

belongs to that cluster. Here we take all the probability density

functions to be the same (e.g. all lognormal distributions), but

this is not necessary.

B. Infinite mixture models

The mixture model can be extended in a natural way to

an infinite mixture distribution. Infinite mixtures often have

much nicer theoretical properties than finite mixtures and in

the next section we describe a natural relationship between

infinite mixtures and Dirichlet processes. In particular, infinite

mixtures models are often used as they allow us to “by-pass the
need to determine the “correct” number of components in a
finite mixture model, a task fraught with technical difficulties”

[18].

An infinite mixture distribution is defined to be:

F (x) =

∞
∑

i=1

wiFi(x),

note that we still require that

∞
∑

i=1

wi = 1.

As before, we sample from this distribution by first choosing

a distribution Fk with probability P(k = i) = wi, then

sampling from Fk. In practice it is computationally impossible

to construct an infinite mixture model, instead we approximate

them with finite mixtures for some very large n.

III. DIRICHLET PROCESSES

A. A formal definition of a Dirichlet process

A stochastic process is a distribution over a function space.

Each sample path from the stochastic process is a function

drawn from the distribution. Dirichlet processes are a class

of stochastic process where the sample path is a probability

distribution with special properties. Less formally, a Dirichlet

process is a distribution over distributions, and draws from a

Dirichlet process are random probability mass functions.

Dirichlet processes can be thought of as an infinite dimen-

sional generalization of the Dirichlet distribution. Recall (from

[19]) that the Dirichlet distribution Dir(α) is a continuous

multivariate probability density function parametrized by K,

the number of dimensions and a vector of K positive reals

α = (α1, . . . , αK), the concentration parameters.

Let F (the base distribution) be a probability density

function with support S, and α (the concentration parameter)

be a positive real number. We denote the Dirichlet process by

DP (F, α). F is the expected value of the Dirichlet process

and draws from DP (F, α) are ‘around’ F (in the same

way that draws from a normal distribution are around the

mean). It is impossible to describe DP (F, α) itself or any

probability mass function H drawn from DP (F, α), both

would require an infinite amount of information. However

there are properties of DP (F, α) and H ∼ DP (F, α) that

can be precisely stated.

Let {Si}
n
i=1 be a measurable finite partition of S and H

be a random probability mass function distributed according

to DP (F, α) (remember that DP (F, α) is a ‘distribution of

distributions’). Then the random vector

(H(A1), . . . , H(AK)) (1)

is distributed according to the multivariate distribution

Dir(αF (A1), . . . , αF (AK)). (2)

Note that we have made no assumptions on the base proba-

bility density function F , in particular we have not assumed

that it is parametrized, or even finitely parametrisable.

The concentration parameter α controls the ‘discreteness’ of

the distributions drawn from DP (F, α). As α → 0 the drawn

distribution becomes more concentrated at a single value and at

the limit the distribution is a Dirac delta function. As α → ∞
the drawn distribution becomes ‘more continuous’, and in the

limit, the distributions are continuous i.e. they are probability

density functions. Note that for finite α any distribution drawn

from DP (F, α) will almost surely be a probability mass

function.

We cannot draw a distribution H explicitly from DP (F, α).
Instead we use a method that allows us to draw a large number

of observations X1, X2, . . . from H without ever describing

H concretely.

Given F and α as above, we sample X1, X2, . . . from H

as follows:

1) Sample X1 from F .

2) For n > 1:

a) With probability α
α+n−1

draw Xn from F .

b) With probability ni

α+n−1
set Xn = Xi, where ni

is the number of Xj , j < n such that Xj = Xi.

It can be shown rigorously, using de Finetti’s theorem, that

this process is the same as drawing a probability mass function

from DP (F, α), then sampling X1, X2, . . . from H (see, for
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example, Aldous [20]). This construction is often called the

Chinese restaurant process.

B. From mixture models to Dirichlet processes

Our assumption was that complex multi-source disease

outbreaks can be approximated by samples from finite mixture

models, a weighted sum of finitely many parametrized distri-

butions. Our goal is to find the parameters and the weights

based on a small number of observations.

Example Consider a mixture model where the probability

density function F is given by a sum of three 1-dimensional

Gaussians with means and standard deviations µ1, µ2, µ3 and

σ1, σ2, σ3 respectively. As µi are real numbers and σi are pos-

itive real numbers, the parameter space for F is (R× R>0)
3

and the probability mass function is:

H(x) =















w1, if x = (µ1, σ1) ;
w2, if x = (µ2, σ2) ;
w3, if x = (µ3, σ3) ;
0, otherwise.

(3)

Given no information about F except for a small number of

values sampled from it, we seek to recover H . However it is

not possible to do this directly. In the next section we describe

a method for approximating H using Dirichlet processes.

IV. GIBBS SAMPLING IN A MONTE CARLO MARKOV

CHAIN

The approach used here is that of a modified Gibbs sampling

algorithm on a Monte Carlo Markov chain (MCMC) and

follows from algorithm 5 as described by Neal [18]. This

method is specifically for use when we believe the unknown

probability density function is a mixture model where all

the components are from the same family of parameterized

probability density functions.

Our hypothesis is that there exists a mixture distribution

that explains the data. Since there is a bijection between mix-

ture models and probability mass functions on the parameter

space, we use Dirichlet processes to find the probability mass

function corresponding to the ‘best’ mixture model.

Let y1, . . . , yn be our data and Fθ a distribution parameter-

ized by θ and let G0 be a base distribution on the parameter

space Θ. Then our hypothesis can be restated as the data yi are

distributed identically to samples from the mixture distribution

F (y) =
∞
∑

i=1

wiFθi(y).

The goal is to find the mixture, i.e. the pairs (wi, θi), that best

explain the data. This is equivalent to finding a probability

mass function H over Θ.

The likelihood function is defined to be F(yi, θ) = Fθ(yi).
We initialize the Markov chain by randomly sampling n times

from G0, i.e. we draw n sets of parameters {θi}
n

i=1
from Θ

parameter space.

We repeatedly sample from the MCMC as follows:

1) For each data point yi, i = 1, . . . n, update θi. First

generate a candidate θ∗i as follows:

a) With probability α
α+n−1

, use θ∗i from G0.

b) With probability ni

α+n−1
set θ∗i = θj , where i 6= j.

The acceptance probability is

θa(θ∗i , θi) = min

{

1,
F(yi, θ

∗

i )

F(yi, θi)

}

.

With probability θa(θ∗i , θi), set θi to be equal to θ∗i ,

otherwise leave θi unchanged. Repeat this step ‘several

times’ (to ensure thorough mixing and thinning).

2) Update each distinct θi by drawing a new value from

θi|yi.

After sampling from the MCMC chain a large number of

times, normalize to get a probability mass function H over Θ.

We then map this to a finite mixture model F . The probability

mass function H , and consequently the mixture model, arising

from this process is very likely to have a large number of

components. This reflects the uncertainty arising from the

small number of cases and the limitation of the models. The

resulting probability mass function H is likely to have many

thousands of components depending of the length of the chain.

If the MCMC has converged we would expect the components

of H to be grouped around the components of the ‘true’

mixture model where the ‘true’ mixture model is likely to

consist of a small number of components, reflecting the small

number of sources.

Since each state of the MCMC is an assignment of a set

of parameters to each observed data point, we can take a

‘vertical slice’ through the MCMC chain. That is, we can

isolate individual data points or subsets of data points and

produce probability mass functions for data points of particular

interest. This could also allow the additional weighting for

specific data points. e.g. in an epidemiological context, we may

be unsure about the diagnosis of some patients, while being

sure about others. We could use this information to weight the

more certain cases more heavily.

V. EXAMPLE OF USE

This optimization method was developed to extend existing

disease models to respond to the challenge of multiple source

disease outbreaks. To ensure greatest utility of this method in

genuine emergency situations the Dirichlet process optimizer

was implemented as part of a wider suite of large-scale

emergency response tools constructed as part of the IMPRESS

system [21]. The IMPRESS system’s components cover the

range of emergency response disciplines from field triage

through to strategic oversight of a broad scale biological

incident. These capabilities are designed to strengthen coordi-

nation between response organizations and emergency medical

services, including requests for international support.

Here the method was applied to an implementation of

the Anthrax infection model presented in Legrand’s 2009

paper [3]. The model describes a covert, aerosolized release

of Anthrax in a populated area. The model parameters to

be optimized are: the location of the release, the time of

the release, the amount of Anthrax released, and parameters

related to wind speed and wind direction at the time of release.
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Fig. 1. A simulated example of the plume output from SorLoc. Input case
locations are marked as triangles with output plume density shaded.

The optimizer combined with the disease model forms the

SorLoc (source location) module.

The SorLoc module was tested and validated in the last

phase of the IMPRESS project life cycle as part of a wider

Greek-Bulgarian table top exercise. The Table Top Exercise

was held in Sofia, Bulgaria on 16th March 2017. The exercise

was operated by Greek and Bulgarian actors drawn from public

services and hospitals across the two countries.

The exercise was based on a scenario where a combination

of heavy rainfall and a strong earthquake had struck Southern

Bulgaria. As a result, extensive damage was caused to build-

ings and infrastructure along with a landslide which damaged

the road beside the Struma(BG)/Strimon(GR) River causing

the river to overflow and flood part of the E79 Highway. These

incidents were coupled with multiple car accidents caused

by rockfalls along this segment of the E79 near the Greek-

Bulgarian border. This situation generated many fatalities and

injuries requiring immediate response, pre-hospital medical in-

tervention and transportation of casualties to nearby hospitals.

Victims’ transportation via the collapsed E79 connecting the

southern part of Bulgaria with the rest of the country caused

the Bulgarian authorities to request international medical as-

sistance, activating the standard procedures via the European

Emergency Response Centre (EERC) in Brussels.

In order to facilitate the SorLoc module demonstration

within this exercise, a scenario for aerosol released Anthrax

was run in parallel to the main exercise. An outbreak was

simulated for Shoreditch, London. We presented the course of

the epidemic (as home locations and time at which each person

fell ill) to SorLoc at a simulated five days from the first case

and ran the optimization so that predictions of further evolution

of the disease, numbers and locations of affected people and

the original source of the outbreak might be calculated.

An illustrative input and result from the SorLoc module may

be found in Figure 1. The output is provided as the inhalational

dose generated by the plume(s) on a raster grid. This allows

direct and immediate interpretation of size and the scale for

the outbreak. It also provides a foundation for the mitigation

effort and delivery of countermeasures to the population.

VI. CONCLUSION

Within this paper we have shown that a model which

has been formulated as a probability density function and

which would ordinarily be solved by standard optimization

techniques may be extended to support multiple versions of

the modeled process through the use of mixture models and

Dirichlet processes. In addition we have explicitly shown the

use of this within the field of disease modeling where it is

directly applicable to existing models. We also constructed

and demonstrated a production-ready implementation which

was used to support a simulated response to a mass casualty,

public health emergency.
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