
Abstract—Managing a  one-way  vehicle  sharing  sys-
tem means periodically moving free access vehicles from
excess to deficit stations in order to avoid local shortages.
We perform a lower bound analysis for the static ver-
sion of the resulting operational decision problem, and
derive from this analysis two heuristic algorithms whose
main feature is to be vehicle oriented, which means that
they focus on the way vehicles are exchanged between
excess and deficit stations.  

I. INTRODUCTION

EHICLE Sharing systems [13, 16] are emerging

mobility systems which aim at compromising be-

tween purely individual mobility and rather rigid pub-

lic transportation. Such a system is composed of a set

of  stations, at which free access  vehicles  are parked.

Those  vehicles  can  be  bicycles  or  electric  cars.

There exists a special station called Depot, in which a

set of  carriers (trucks, self-platoon convoys, …) are

stored, which periodically exchange vehicles between

the  stations and eventually provide the system with

additional vehicles. A trend is to make the system be

a one-way system, which means that users are not im-

posed to give vehicles back at the station where they

have been picking up. This feature makes the system

more attractive.  But a drawback is that it  raises the

eventuality of unbalanced situations, in the sense that

some  stations may  become  overfilled  other  under-

filled, provoking local shortages or making users un-

able to give their vehicle back. In order to avoid such

a situation, managers have to periodically perform a

relocation process: carriers pick up vehicles from ex-

cess stations and transfer them to deficit stations. Per-

forming  this  process  while  meeting  both  economic

and quality of service purposes  means addressing a

Vehicle Sharing Relocation problem (VSR). Though

practically  this VSR problem has to be handled  on

line [13, 14], most related academic studies have been

involving static (see [5, 6, 13, 15, 19]), or eventually

dynamic formulations [11, 17].

V

Those  formulations,  which  differ  in  a  significant

way  from  an  author  to  another,  have  been  mostly

handled  through  hierarchical  decomposition  into  a

carrier  routing master model  and  a  vehicle

load/unload slave model, and through local search or

genetic  algorithms  (see  [6,  8,  10,  18]).   Their

common feature is that they are  carrier oriented, in

the sense that they focus on the construction of the

recollection tours which are run by the  carriers, and

consider the routing of the vehicles inside the carriers

as a kind of slave object. Such an approach may be

discussed because it cannot rely on a backward link

between  the  master  carrier  tour  collection  and  the

vehicle sub-problem, which would provide sensitivity

information  and  help  in  driving  the  search  for  the

master object. It comes that the search for the master

carrier  tour collection is very often performed in a

somewhat blind way.

We  adopt  here  the  opposite  point  of  view  and

consider that an efficient way to perform a relocation

process is to route the vehicles from excess stations to

deficit ones in a way which make them share, as often

as possible,  related  carriers.  So the purpose of this

work is to propose and test alternative approaches to

carrier oriented  ones,  which  we  shall  call  vehicle

oriented:  the  vehicle routing  strategy  becomes  the

master  object,  which determines  in turn the  carrier

routes.  

The  paper  is  organized  as  follows.  First  we

introduce a formal VSR model, generic in the sense

that it mixes different criteria: economic cost of the

relocation process  (number  of  carriers and  carrier

riding time), and quality of service (unavailability of

the  vehicles during the process). Next we perform a

lower bound analysis of this VSR model. The way we

obtain  lower  bounds  leads  us  to  the  design  of  2

heuristic VSR algorithm: the first one considers the

way  vehicles are distributed from  excess  stations to

deficit  ones as the master object and relies on a Min

Cost  Assignment/Pick  up  and  Delivery

decomposition;  the  second  one  considers  the

aggregated routing of  the  vehicles along the  station

network  as  a  main  object,  and  relies  on  a  lift

procedure  which  turns  an  aggregated  routing  of

vehicles and  carriers  into a feasible VSR solution.

We end with numerical experiments.  
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II. THE VSR MODEL 

A.  Instances, Feasible Solutions and Models.  

VSR (Vehicle Sharing Relocation Problem) 

Instances: We consider here a set X of stations, one of 

them being a specific station Depot. Any station x is 

provided with a coefficient v(x), which tells us that 

v(x) vehicles are in excess at station x: if v(x) is strictly 

negative, then we need to bring - v(x) vehicles to 

station x (x is then said to be a deficit station); if v(x) 

is strictly positive, then x is an excess station and we 

need to remove v(x) from x;  if v(x) = 0 then x is said 

to be neutral.  We suppose that  x X v(x) = 0, which 

means that the Depot station may be used to bring 

additional vehicles to the system, or, conversely, to 

remove some of them. DIST denotes the X.X distance 

matrix: DISTx,y is the distance (time required for a 

carrier to go from x to y)  between station x to station 

y. Matrix DIST is not required to be symmetric, but 

should satisfy the Triangle inequality. T-Max is the 

maximal makespan of the relocation process, which 

means that the total duration of this process should not 

exceed T-Max.  By the same way, COST denotes the 

carrier cost matrix: COSTx,y is the cost which is 

induced for a carrier when it moves from x to y). All 

carriers are identical with capacity CAP and initially 

located at the Depot station. This defines a VSR 

instance (X, v, CAP, T-Max, DIST, COST).   

 

VSR Feasible Tours: A VSR tour  is a finite 

sequence Route = {x0 = Depot, x1, .., xn() = Depot} of 

stations, which is called a route, given together with a 

loading strategy, that means with 2 sequences  Load 

={L0, L1, .., Ln()} and Time ={T0 = 0, T1, .., Tn()} of 

coefficients whose meaning is: a carrier which 

follows the route  loads, at time Ti, Li vehicles at 

station xi (unloads in case Li  < 0). The COST-length 

L-COST() of such a tour is the sum   j  (COSTxj, xj+1) 

and its DIST-length L-DIST() is the sum   j  (DISTxj, 

xj+1). This VSR tour  is VSR feasible if: 

 For any i = 0, .., n()-1, T-Max  Ti+1   

  Ti + DISTxi,xi+1;        (E1) 

 For any i = 0, .., n()-1, 0 ≤ L*i =  

  j =0..i Lj   ≤ CAP;        (E2) 

  j = 0..n() Lj   = 0;          (E3) 

 For any j such that v(xj)   0,  

  then v(xj)  Lj     0;       (E4) 

 For any j such that v(xj) ≤ 0,  
  then v(xj) ≤  Lj   ≤ 0.      (E5) 

 

Explanation: (E1): A carrier needs at least 

DISTxi,xi+1 time units in order to go from xi to xi+1; 

(E2): L*i denotes its current load when it leaves xi, 

and this loads cannot exceed the capacity CAP; (E3): 

Any carrier is empty when its starts and finishes a 

tour; (E4, E5): loading (unloading) operations are 

respectively restricted to excess (deficit) stations, 

which also means that we impose a given vehicle to be 

moved from an origin station to a destination station 

by exactly one carrier (Non Preemption hypothesis). 

 

Given scaling coefficients  together with a 

VSR instance (X, v, CAP, T-Max, DIST), we set: 

 

VSR Model:{Compute a VSR feasible tour 

collection * = ((k), k = 1..K) such that: 

 For any station x:   

 k  i such that x(k)i = x L(k)i  = v(x).    (E6) 

 Minimize Cost(*) = .K + . k L-Cost((k)) 

+ .( k  j  (DISTx(k)j, x(k)j+1.L*j)}. 

 

Explanation: (E6): For any excess station x, v(x) 

vehicles have to be picked up in x, and for any deficit 

station x, - v(x) vehicles have to be delivered to x 

Minimize: Cost(*) is a weighted sum of the active 

carrier number .K, the carrier riding cost  k L-

Cost((k)) and the vehicle riding time (time vehicles 

spend into the carriers)  k  j  (DISTx(k)j, x(k)j+1.L*j). 

 

Remark 1 about MIP VSR models and 

Complexity: Modeling VSR through a MIP (Mixed 

Integer Linear Program) is possible, but difficult and 

inefficient. As for complexity, VSR is NP-Hard, even 

if we consider one carrier (very large) with capacity 

1, if every quantity v(x) is equal to 1 or -1, and if  = 

0. In such a case, solving the problem becomes 

equivalent to solving the Travelling Salesman 

problem on a bipartite graph (the excess stations on 

one side and the deficit ones on the other side), which 

is known to be NP-Hard. Also, we may notice that 

VSR contains the Uncapacitated Swapping Problem, 

which is also known to be NP-Hard (see [2]). 

  

B. Loading Strategy Flow Model. 

Let us suppose now that we are provided with a 

collection Route= {Route,1, .., Route,K} of K carrier 

routes, all with length ≤ T-Max.  We define a network 

H(Route) as follows: 

 Nodes of H(Route)  are :    

o copies of the nodes x
k
j of Route,1, .., Route,K, 

considered as being all distinct; 

o a source s and a pit p; 

o nodes Exc(x), x  X, excess nodes; 

o nodes Def(x), x  X, deficit nodes. 

 Arcs e of H(Route)  and related costs Ce are :   

o tour-arcs  e = (x
k
j , x

k
j+1) of the routes Route,k, 

with cost Ce = DISTxkj, xkj+1 ; 

o load-arcs e = (Exc(x), x
k
j), x  X, x excess, such 

that the image in X of x
k
j is x, with Ce = 0; 

ounload-arcs e = (y
k
j, Def(y)), y deficit, such that 
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the image in X of y
k
j  is y, with Ce = 0; 

oexcess-arcs e = (s, Exc(x)), x excess, with Ce = 0;  

odeficit-arcs e = (Def(y), p), y deficit, with Ce = 0. 

 

Then we set:    

 

Load-VSR Model:{Compute on the network 

H(Route) a non negative integral arc indexed flow 

vector Z such that: 

o for any arc-tour e, Ze  CAP ; 
o for any arc e =  (s, Exc(x)), x excess, Ze = v(x); 
o for any arc e =  (Def(y), p), y deficit, Ze= -v(x); 

o C.Z =  e Ce .Ze is the smallest possible} 

 

Lemma 0: Any optimal solution (if it exists) of Load-

VSR provides us with an optimal loading strategy 

related to the route collection Route   
 

Proof: Any loading strategy related to the tour 

collection  may be turned into a feasible solution of 

Load-VSR whose cost is exactly the vehicle riding 

time:  k  j  (DIST(x(k)j, x(k)j+1).L*j). Conversely, any 

flow vector Z which is a feasible solution of Load-

VSR can be interpreted as a loading strategy. ฀ 

  

We deduce the following VSR Route Oriented 

reformulation: {Compute a route collection *Route = 

{Route,1, .., Route,K}, and a feasible solution Z of the 

related Load-VSR model, such that: .K + . C.Z  + 

 k L-Cost(route,k)  is the smallest possible}.  

 

III. VSR LOWER BOUNDS 

 

We propose here 2 classes of VSR lower bounds: 

the first one relies on Min-Cost Assignment models 

which separately bound the active carrier number K, 

the carrier riding cost k L-COST((k)) and the 

vehicle riding time  k  j (DISTx(k)j, x(k)j+1.L*j). The 

second one, more complex, embraces the 3 quantities 

in a same Network-Flow model.  

 

A. Min-Cost Assignment Based Lower Bounds.  

We set the following ILP models: 

 

VMC Vehicle-Min-Cost: {Compute integral vector 

Q = (Qx,y, x excess, y deficit stations)  0, such that: 

o For any excess station x, y deficit Qx,y = v(x); 

o For any deficit  station y, x excess Qx,y = - v(y) 

o Minimize  x,y DISTx, y.Qx,y } 

 

We denote by LB-VMC the related optimal value, 

which may be computed while relaxing the 

integrality constraint on the vector Q.   

 

UCMC Unit-Carrier-Min-Cost:{Compute rational 

vector R = (Rx,y, x, y  X)  0, such that: 

o For any excess station x,  

y deficit station Ry,x = y deficit station Rx,y  =  v(x) 

o For any deficit  station y,   

x excess station Ry,x =  x excess station Rx,y = - v(y) 

o y   RDepot,y   = y   Ry,Depot   1 

o For any subset A, which is not empty and does 

not contain Depot,  x A y, y A Rx,y    1 (No 

Subtour Constraint) 

o Minimize  x,y COSTx, y.Rx,y } 

LB-UCMC is the related optimal value. 

 

CMC Carrier-Min-Cost:{Compute rational vector 

R = (Rx,y, x, y stations)    0,  such that: 

o For any excess station x,  

CAP.y Rx,y = CAP.y   Ry,x   v(x) 

o For any deficit  station y,  

CAP.x  Rx,y = CAP.x   Ry,x   - v(y) 

o y   RDepot,y   = y   Ry,Depot   1 

o For any subset A, which is not empty and does 

not contain Depot,  x A y, y A Rx,y    1 

o Minimize  x,y COSTx, y.Rx,y,} 

 

LB- CMC is the related optimal value. We denote 

by LB-Time-CMC the value of the model which 

derives from CMC by replacing COST by DIST.  

 

Theorem 1:LB-MC =LB-Time-CMC/T-Max + 

LB-CMC + LB-VMC is a VSR lower bound. 

 

Proof: We see that VLB-A is a lower bound for the 

vehicle riding time:  k  j (DISTx(k)j, x(k)j+1.L*j). Also 

LB-CMC is clearly a lower bound for the carrier 

riding cost  k T(k)n((k)) .We conclude by noticing that 

the number of carriers K must be at least equal to the 

quantity (Carrier Riding Time/T-Max).฀ 

  

Theorem 2: A Non Preemptive VSR lower bound is 

given by LB-UMC =  LB-Time-UCMC/(CAP.T-

Max) +   LB-UCMC/CAP + LB-VMC.   

 

Proof:  We notice that any tour  which satisfies (E1, 

E2, E3) may be split into CAP tours 1, .., CAP, with 

same lengths, which globally perform the relocation 

process when related CAP = 1. So, if Carrier-Ride-

Time1 and Carrier-Ride-Cost1 respectively denote the 

smallest possible values for the carrier riding time 

and the carrier riding cost  related to the case when 

CAP = 1 and T-Max = + , we see that: the Riding 

Time (Riding Cost) of any VSR solution   is at least 

equal to Carrier-Ride-Time1/CAP (Carrier-Ride-

Cost1/CAP). We deduce that  Carrier-Ride-

Time1/CAP.T-Max  +    Carrier-Ride-Cost1/CAP + 

LB-VMC is a VSR lower bound.  But Carrier-Ride-
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Time1 corresponds to a kind of TSP carrier tour 

starting and ending from depot, according to which 

the carrier alternatively moves from excess to deficit 

nodes. Clearly LB-Time-UCMCA provides us with a 

lower bound for the DIST-length of such a tour.  The 

same reasoning holds with Carrier-Cost-Time1. We 

conclude. ฀ 

 

B. A Network Flow Based Lower Bound.  

One may reinforce the above lower bounds 

according to the following construction. We first 

define a network G* = (X*, E*) as follows: 

o X* = X  {s, p} where nodes s and p are 

additional nodes source and pit; 

o The restriction of G* to X is a complete network: 

any related arc e = (x, y) is provided with a 

carrier cost CCe = COSTx, y.(+ /T-Max) and to 

a vehicle cost CVe  =  .DISTx, y. 

o There is an arc (s, x) from s to any excess station 

x, with null carrier and vehicle costs; 

o There is an arc (y, p) from any deficit station y to 

p, with null carrier and vehicle costs; 

o There is a backward arc (p, s), with null carrier 

and vehicle costs. 

     
 Figure 1: A network G* derived from 3 excess 

stations and 5 deficit stations. 

  

Then we set: 

VSR-Flow Model: {Compute on the network G* 

two integral flow vectors F and f such that: 
o For any arc e = ((x, y), x, y ≠ s, p,  

 fe ≤  CAP.Fe;         (E7) 
o For any excess (or neutral) station x,   

f(s, x) = v(x)           (E8) 
o For any deficit deficit station y,  

f(y p) =  - v(x)           (E8-1) 

o y  FDepot,y   = y   Fy,Depot   1    (E9) 

o Minimize  arcs e CCe.Fe +  arcs e CVe.fe.} 

 

We denote by LB-Flow the related optimal value 

of this program. Then we may state: 

 

Theorem 3: LB-Flow is a VSR lower bound  
 

Proof : Any VSR feasible solution may be represented 

as a tour collection  (it is enough to consider the 

related route collection Route) given together with a 

feasible solution Z of the linear program Load-VSR. 

Clearly,  gives rise to a flow vector F. By the same 

way, Z may be turned into a flow vector f which 

satisfies (E8), and one easily checks that (E7) is 

satisfied by the two projections of and Z as flow 

vectors F, f on the network G*. It comes that any VSR 

feasible solution  Z  may be turned into a feasible 

solution (F, f) of VSR-Flow. But the cost of (, Z) is 

equal to: .K + . k L-COST(k) + C.Z, where C is 

the cost vector of the Load-VSR model. Proceeding as 

in the proof of Theorem 1, we see that this quantity is 

at least equal to:  .(k L.DIST(k))/T-Max + . k L-

COST(k) + C.Z, which coincides with the quantity 

CC.F + CV.f. We conclude.  ฀ 

 

Remark 2: The above VSR-Flow model does not 

solve our VSR problem. On may consider as example, 

a station set X = {Depot, A, B, C}, a carrier flow F 

which describes the route (Depot, A, B, C, A, Depot) 

followed by 1 carrier with capacity 1, and a vehicle 

flow f which routes 1 flow unit from excess station C 

to deficit station B. Then the carrier cannot deliver its 

load in B before picking it up in C. 

 

Remark 3: LB-Flow value provides us with a 

better lower bound than the LB-MC lower bound of 

Theorem 3. Still, VSR-Flow is a complex NP-Hard 

model, whose rational relaxation yields a poor lower 

bound as soon as CAP is large. The Lagrangean 

relaxation of the coupling constraint (E7) yields a 

Lagrangean value Sup Inf h  (CV + ).h) + Inf H 

(CC - ).H) where: 

o Vector flow h is subject to (E8) and vector flow H 

is subject to (E9);  

o ={such that the restriction of the graph GProj to 

X does not contain any negative (CC –)-circuit}.   

But, because of total unimodularity of flow constraint 

matrices, this value is the same as the value obtained 

by performing Lagrangean relaxation of (E7) on the 

rational relaxation of VSR-Flow. That means that the 

above Lagrangean value does not improve the 

standard relaxation of the integrality constraint.  

 

IV. VSR HEURISTICS 

A. Min-Cost Assignment Based Heuristic.  

 

We decompose here the VSR Problem into a 

Master Min-Cost Assignment problem and a Slave 

Pick&Delivery (PDP) Problem. Let us recall that a 

Pick&Delivery instance (see [1, 3, 15]) is defined by: 

o a set J of requests j = (o(j), d(j), (j)), where o(j), 

d(j) and (j) are respectively the origin, the 

destination and the load of j; 

o a maximal duration D-Max of the routes 

followed by the trucks, all with capacity CH; 

o a Depot node, where all trucks are initially 
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located; 

o a distance matrix D, defined on the set N of all 

nodes o(j), d(j), j   J, augmented with the 

Depot node. 

A collection  of truck routes (m), m = 1..M  defined  

on the set N is a feasible PDP solution if: 

o Every request j is serviced by some truck m: m 

first loads (j) in o(j) and unloads it in d(j); 

o The load of a truck never exceeds capacity CH; 

o The length (for the D matrix) of any route (m), 

m = 1..M, never exceeds D-Max. 

The length, in the sense of the D matrix, of route 

(m), is denoted by L-D((m)). Then solving our PDP 

instance means computing such a feasible route 

collection  which minimizes a quantity:   

A.M + B.  m L-D((m)) + C.  j  (j).Ride(j),  

where Ride(j) is the time spent by load (j) inside a 

truck. A Load-Split PDP instance is defined the same 

way, but loads (j) may be split it into several sub-

loads, which are separately handled.   

  

Let us come back to our VSR instance, and 

suppose that we know, for every pair of stations (x, y), 

where x is an excess station and y is a deficit station, 

which quantity Qx,y had to move from x to y in order 

to achieve the Relocation process. Then, we only need 

to solve the Load-Split PDP instance defined by: 

o Requests j = (o(j)= x, d(j) = y, (j) = Qx,y), 

taken for all pairs x, y such that Qx,y≠ 0; 

o D-Max = T-Max; D = DIST; CH  = CAP;   

o A = , B= b, C = . 

 

One easily checks that it is possible to impose 

assignment vector Q to be an optimal solution, for 

some cost vector U = (Ux,y, x Excess, y Deficit)  0, of 

the following MCA(U) (Min-Cost Assignment) model:  

 

MCA(U):{Compute integral vector Q = (Qx,y, x 

excess, y deficit stations)  0,  such that: 

o For any excess station x, y deficit  Qx,y = v(x); 

o For any deficit station  y, x excess Qx,y = - v(y) ; 

o Minimize  x,y Ux, y.Qx,y, .} 

 

This yields the following decomposition scheme 

VSR-MCA for the handling of the VSR Problem:   

 

 VSR-MCA(N-Rep: Replication Number, N: Loop 

Number) 

For j = 1..N-Rep do 

Initialize cost vector U = (Ux,y, x Excess, y 

Deficit)  0;  

For j = 1..N do  (*Local Search Loop*) 

Derive a PDP Assignment vector Q through 

optimal resolution of MCA(U); 

Solve (in a heuristic way) the related Load-

Split PDP instance; 

Update cost vector U; 

Apply to the resulting route collection 

Route= {Route(1), .., Route(K)} the Load-

NP-VSR model, and remove from the routes 

Route(k) all stations which do not correspond 

to any effective load/unload transaction; 

Keep the best result ever obtained. 

 
We deal with Load-Split PDP through a GRASP-

VNS (Variable Neighborhood Search) process based 

upon Insert/Remove operators: 

- Insert operator: Inserting request  

j = (o(j), d(j), (j))  into some route (m) means: 

o  computing 2 insertion nodes x and y in 

(m), and some sub-load   ≤ (j); 

o  inserting o(j) (d(j)) between x (y) and its 

successor in (m); 

o adding  to the current load of (m) 

between x and y, and updating  (j); 

- Remove operator: Delete o(j) and d(j) from (m) 

and update the load of m accordingly.   

 

Cost vector U initialization: Because of Theorem 1 

about LB-MC lower bound, we initialize U according 

to the Shortest Cost/Distance Strategy, that means by 

setting, for any x, y,  x Excess, y Deficit, Ux,y =DISTx,y. 

+ . (COSTx,y. + COSTy,x) where  is some randomly 

generated non negative coefficient. 

 

“Update cost vector U” instruction:   

Let us denote by U
0
 the initial cost vector and let us 

consider that we are provided with a current cost 

vector U. We derive from U a request vector Q, a 

request set Req(U) = {r = (x, y, Qx,y) such that Qx,y ≠ 
0}and a VSR feasible solution *, whose global cost 

Global-Cost(*) may be distributed among requests 

(x, y, Qx,y) in a natural way: 

 The carrier cost  + .L-COST((k)) related to a 

given carrier k is shared between the requests 

which are served by this carrier, proportionally to 

the value L-COST((k)x,y).Qx,y, where (k)x,y is the 

sub-route  which is induced by the restriction 

(k)x,y of (k) between x and y (in case Qx,y is split 

into sub-loads, we deal separately with those sub-

loads); 

 Every request r = (x, y, Qx,y) is assigned its part L-

DIST((k)x,y).Qx,y of the vehicle riding time. It 

comes that Global-Cost(*) may be written  

Global-Cost(*) =  r  Req(U) Partial-Cost(r, *), 

where Partial-Cost(r, *) is the part of  Global-

Cost(*) which is charged this way to request r. 

Then, for every request r =  (x,y, Qx,y ≠ 0) we set 
Vx,y  = Partial-Cost(r, *) Qx,y and update U as 

follows: 

 If Qx,y ≠ 0, Ux,y is replaced by (Ux,y + Vx,y 

)/2 else Ux,y is unmodified; 

 When U = U
0
, U values may be very different 
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from V values. So we compute the mean value 

 of the ratio Vx,y /Ux,y , x,y such that Qx,y ≠ 0, 
and replace every value U

0
x,y by = .U0

x,y. 

 

A natural question comes about the quality of the 

Shortest Distance strategy. We may state: 

  

Shortest Cost/Distance Theorem 4:  If = = 0 

(carrier riding time minimization) and T-Max = + , 

then the Shortest Cost/Distance Strategy induces an 

approximation ratio of (1+CAP). This is the best 

possible ratio. 

  

Sketch of the Proof.  We first notice that we may, 

sinceT-Max = + , deal with only one carrier.  In 

order to check that there is no ratio better than 

(1+CAP), we build a VSR instance as follows: 

- K = 1;  

- X = {Depot}  {on,c, dn,c, n = 0..N-1, c = 1..CAP - 

1} where N is a large number; function v is equal 

to 1 for on,c stations and to – 1 for dn,c, stations.   

- X is the node set of a graph G = (X, E) whose arc 

set E = E1   E2  E3  E4 comes as follows: 

o E1 = {(Depot, o0,1 ), (oN-1,1, Depot)}}, both arcs 

with length equal to ½; 

o E2 = {(on,c, on,c+1), (dn,c+1, dn,c), n = 0..N-1, c = 

1..CAP - 1}, all arcs with length , where  is a 

small number;   

o E3 = {(on,CAP, dn,CAP), n = 0..N-1} 

     {(dn,1, on+1,1), n = 0..N-2},  

   all arcs with length 1; 

o E4 = {{(on,c, dn+c-CAP-1,c), }, n = 0..N-1, c = 

1..CAP} addition being performed modulo N, 

all arcs with length 1- , where  is a small 

number}. 

Then we see that the length of a carrier tour is equal 

to 2n.(1+ (CAP-1)). But the vector Q which derives 

from the Shortest Cost/Distance Strategy Distance 

strategy is provided by E4, and the length of a related 

optimal PDP solution is equal to 2n.(1+ (CAP-1)) +  

 c ((2 –  + 2(c-1)).    

In order to check that (1+CAP) provides us with an 

approximation ratio, we denote by Q
Dist

 some vector 

Q which implements the Shortest Cost/Distance 

Strategy, and prove that it is possible to derive, from 

any VSR solution (with only 1 carrier)  another 

feasible solution  consistent with the Shortest 

Cost/Distance Strategy. We do in such a way, while 

using matching techniques, that Length) ≤ 
CAP.Length(), and we conclude. ฀ 

   

B. A Vehicle Flow Based Heuristic.  

 

We derive from the VSR flow model the following 

heuristic scheme:   

 

Vehicle-Flow Algorithm. 

Route collection Route← Nil; 

While coefficients v(x), x  X are not null do 

Compute an optimal solution (F*, f*) of the 

VSR-Flow model;          (I1) 

Turn F* into an Eulerian route ;    (I2) 

Split into VSR feasible sub-routes  

1, .., s and insert them into Route;  (I3) 

Apply the Load-VSR flow model with 

feasibility oriented objective function:  

“Maximize Zp,s“ in order to minimize 

residual excesses and deficits; 

Accordingly update coefficients v(x), x X; 

Apply to the resulting collection Route the 

Load-VSR flow model and derive related tour 

collection  
 

We must detail some instructions inside this 

algorithmic scheme: 

 

- (I1): Handling of the VSR-Flow model: Since VSR-

Flow is difficult to handle, we use an ILP library 

and impose a threshold on the CPU-Time 

allowed for LB-Flow computation as soon as the 

number of stations exceeds 30. 

   

- (I2): Deriving an Eulerian route from F*: Flow 

vector F*defines a collection of arcs (x, y), each 

of them taken F*(x,y) times, in such a way that for 

any node x, there exists as many arcs which enter 

into x as arcs which come out x. So, every 

connected component Xj, j = 1..s, of the resulting 

graph gives rise to some Eulerian route j. We 

build  by starting from Depot, reaching the 

closest Xj into some node xj, running j until 

being back to xj and then reaching the next 

closest Xj and so on.   As a matter of fact, since 

there exists several ways to perform this route 

construction process, we do it while simulating 

related loading/unloading transactions and trying 

to maximize them.   

- (I3): Splitting the tour  into feasible sub-tours: 

Since L-DIST() may exceed T-Max, we run 

along  (starting from Depot), and every time we 

arrive to some station x such that: 

o interrupting current sub-route j by going 

from x to Depot maintains the feasibility of 

j, 

o going to the successor y of x according to  
and next to Depot makes L-DIST(j) exceed 

T-Max,  

then we close j by going from x to Depot, and 

start j+1 by going from Depot to y and so on. 
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V. NUMERICAL EXPERIMENTS

Our purpose is to get a comparative evaluation of
both  the  lower  bounds  which  were  described  in
Section III and the two heuristic scheme described in
Section  IV,  and  at  testing  the  influence  of  scaling
coefficients , ,  

Algorithms were implemented in C, on PC AMD
Opteron 2.1GHz, while using gcc 4.1 compiler. We
used the CPLEX12 library for the handling of linear
models.

Instances:  No  standardized  benchmarks  exist  for
generic VSR. So we built instances as follows:
- The station set X is randomly generated as set of n

+ 1 points x0,  x1, .., xn,  inside the [0,10] × [0,10]
sub-square of the Euclidean 2D-space ;

- DIST corresponds to the Euclidean Distance;
- COST corresponds either  to a multiple of either

the Euclidean distance or the Sum distance DIST-
S: COST(x,y),(x’,y’) =  x’ - x+y’ - y;

- Each station but Depot = x0 is assigned a random
v(x) value chosen between -10 and 10, in such a
way  that  the  sum  of  demands  over  all  stations
equal to 0;

- T-Max is  randomly  chosen  between   =  30
and 100.

A. Testing the Impact of Scaling Coefficients 
,, .   

On a given instance (X, v, CAP, T-Max, DIST), we fix
α = 10, make vary β, δ with β+δ = 1, and compute
solutions through the Shortest Distance Strategy.  We
obtain the Pareto frontier of figure 2, with ts denoting
the  carrier  riding  cost and  tind the  vehicle  riding
time.

 

Figure 2: Pareto frontier carrier riding cost versus 

vehicle riding time

Comment: Carrier riding cost and vehicle riding
time behave like antagonistic criteria.

B. Comparing the Lower Bounds of Section III

For several groups of 10 instances each related to
a given size n, we compute the mean value of:   

- LB-Flow: as defined in Theorem 3;
- LB-MC and LB-UMC as defined in Theorem

1 and 2.
We get the following results:

TABLE 1: LOWER BOUNDS WITH Α =10, Β =1,∆ =0

n LB-Flow LB-MC LB-UMC

20 84.8 82.3 73.6

30 96.5 84.6 77.2

40 108.4 92.2 89.7

50 135.1 117.8 112.7

60 141.5 130.1 115.2

TABLE 2: LOWER BOUNDS WITH Α =10, Β =0,∆ =1

n LB-Flow LB-MC LB-UMC

20 182.7 176.9 160.0

30 228.2 216.2 210.0

40 235.6 218.7 205.9

50 299.9 288.3 269.7

60 297.3 270.1 261.4

 Comment:   Experiments  confirm  Theory

(Theorem 3).  We  notice  the  quality  of  the  lower

bound LB-LF.  

C. Testing the Heuristics of Section IV   

 We compute, for the same groups of 10 instances as
above, the average of the following Cost values:
 SD (SD(50))  obtained  through  1  (50)

replications  (N-Rep =  1  and  N-Rep =  50)  of
Shortest Cost/Distance Strategy initialization of
VSR-MCA => CPU-SD is the related CPU time
(s).

 LS(50): obtained through 50 iterations (N = 50,
N-Rep = 1) of the  Local Search loop of  VSR-
MCA,  after initialization through  SD =>  CPU-
LS is the related CPU time.

 VF: obtained through the Vehicle-Flow heuristic
=> CPU-VF is the related CPU time.

 LB denotes here the LB-Flow lower bound of the
previous  experiment.  For  n  =  40  (50,  60)  we
force the CPLEX computation to stop after 150
s (150 s, 500 s, 1000 s)

We get:

TABLE 3: VALUES SD, RSD(50) WITH Α =10, Β =1,∆ =0

n LB SD CPU-SD SD(50)

20 84.8 99.5 0.1 94.7

30 96.5 120.5 0.3 113.6

40 108.4 152.6 0.9 166.1

50 135.1 182.3 1.4 169.0

60 141.5 200.1 1.8 178.5
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TABLE 4: VALUES PI(50), VF WITH Α =10, Β =1,∆ =0

n LB LS(50) CPU-LS VF CPU-VF

20 84.8 96.3 5.2 92.3 4.7

30 96.5 112.5 12.6 108.9 9.6

40 108.4 139.7 40.4 132.0 140.1

50 135.1 164.0 61.5 161.8 549.3

60 141.5 176.7 80.2 169.3 1086.0

  

TABLE 5: VALUES SD, RSD(50) WITH Α =10, Β =0,∆ =1

n LB SD CPU-SD SD(50)

20 182.7 220.0 0.1 212.1

30 228.2 273.1 0.2 264.6

40 235.6 297.5 0.6 277.7

50 299.9 372.2 1.0 346.3

60 297.3 378.4 1.4 348.9

TABLE 6: VALUES PI(50), VF WITH Α =10 ,Β =0,∆ =1

n LB LS(50) CPU-LS VF CPU-VF

20 182.7 217.6 4.1 205.6 5.8

30 228.2 270.9 8.3 255.7 10.2

40 235.6 288.7 31.6 264.6 187.1

50 299.9 364.7 50.7 335.9 561.0

60 297.3 369.8 61.8 340.8 1098.4

Comment : The improvement margin induced by the
VSR-MCA local  loop  is  not  very  high,  especially
when  the  focus  is  on  the  vehicle  riding  time.   A
consequence  is  that  performing  random
diversification according to the Randomized Shortest
Cost/Distance Strategy is most often more efficient.
Both require small  computational time.  Conversely,
the  Vehicle Flow oriented algorithm provides better
results but equires higher computation times. At the
end, the gap which remains between the LB value and
the  values  which  are  produced  by  our  heuristics
suggests  that  our  lower  bound probably  misses  the
optimal value of our VSR problem by about 8 %.

II. CONCLUSION

We  mainly  dealt  here  with  a  Vehicle  Sharing
Relocation  problem,  related  to  the  operational
management of  Vehicle Sharing systems, and which
we handled according to an approach which puts the
focus on the way transported object  (vehicles)  move
from excess stations to deficit ones. Still, many open
problems  remain,  related  to  the  design  of  exact
algorithms, to the way allowing carriers to exchange
vehicles may eventually  improve the quality  of  the
solutions, and also, if we refer to practical context, to
the  way  algorithms  which  have  been  designed  for
static model may be adapted in order to fit with  on
line  contexts.  Future  research  will  be  carried  on  in
order to address these issues.     
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