

 Abstract— Based on a systematic review of empirical studies

about software components selection and usability techniques

applied to a functional prototype, this article maps the functional

and non-functional requirements of a components sharing

network that aims to accelerate JavaScript software

development. Results point out that integrating the development

environment to a component search mechanism with automated

filters, ordered by quality criteria, and allow code snippets rank

and improvements submission on a version control system are

the path to accelerate the development and motivate IT students

and professionals to participate in this network.

I. INTRODUCTION

INCE the 90th, known as the Dot-com bubble, many has

changed regarding user experience on the web. In

October 2014, W3C has released the fifth revision of HTML5,

essential technology for multiple platforms [1]. As web scope

increases, targeting almost every device, a plethora of

frameworks and components have been released to simplify

development on this platform. Bower (bower.io), a package

manager created to store frameworks, libraries, assets, and

utilities for HTML, CSS and JavaScript development has

more than 60,000 packages on its database (data collected on

January, 2017). Building systems through third party

components reuse has being recognized as a crucial success

factor in software industry, but only a few companies

formalize their selection processes and employ any method to

document their decisions [2].

Usually, API documentation is insufficient to assist

programmers while coding. A survey [3] shows that the

crowd can significantly enhance an existing API

documentation, and indicates there is a strong association

between API coverage on Stack Overflow and its usage in real

software systems. Relevance data extracted from crowd

participation can help narrowing down component options

and preventing the YAFS syndrome [4], when developers

tend to create new frameworks instead of using frameworks

with the same features, because they could not afford

evaluating a large number of options.

This paper aims to join the analysis of empirical studies and

human-computer interaction techniques for eliciting

functional and non-functional requirements of a components

sharing network and understand how IT students and

professionals could benefit from this approach and get

motivated to participate in this network.

The following sections present the whole survey process

that contemplates the analysis of papers on empirical methods

and current industry practice for components selection, the

creation of a prototype to elicit the possible requirements of

this network, usage observation and focus group with 26 IT

students, and a heuristic assessment on the prototype

conducted by 3 specialists.

II. BACKGROUND

In the academic context, [21] evaluates quality, validation

and performance of 7 JavaScript web frameworks. On quality

perspective, they analyzed size, complexity and

maintainability using JSMeter (jsmeter.info), Cloc

(cloc.sourceforge.net) and Understand (scitools.com). On

validation perspective, critical and high severity errors were

analyzed with Yasca (sourceforge.net/projects/yasca) and

JSLint (javascriptlint.com) tools. Lastly, on performance

perspective, SlickSpeed (github.com/kamicane/slickspeed)

was used in 7 different browsers and 4 operational systems.

As detected in [22], there is lack of studies to help

professionals to select best JavaScript framework by its

purpose and functionalities, as specific concerns on

JavaScript frameworks are not addressed in more generic

component selection methods.

In [21] they present important criteria that are missing in

most academic studies, extracted from a questionnaire applied

to 4 front-end developers: adequacy of the documentation to

user needs, how many people contribute and use the code, and

how fast it is for the component to bring value to user's

application. All criteria listed vary according to user / project

constraints. Besides these studies [21] and [22] approaches

same language, another proximity between this study and [21]

is the intention of reusing existing OSS tools to provide

metrics on JavaScript code.

This study is focused on code snippets and components,

and the other 2 are more focused on frameworks. The demand

for organizational tools for JavaScript development is

perceived by software community and has being addressed by

package managers like Bower and scaffolding tools like

S

Fundamentals of a Components Sharing Network to Accelerate
JavaScript Software Development

Daniel Souza Makiyama
Universidade Federal do ABC (UFABC)

Centro de Matemática Computação e Cognição (CMCC)
Santo André – SP - Brasil

Email: daniel.makiyama@gmail.com

Plinio Thomaz Aquino Jr.
Centro Universitário FEI

Fundação Educacional Inaciana Pe. Sabóia de Medeiros

Av. Humberto A. Castelo Branco, 3972 - 09850-901

Sao Bernardo Campo - SP – Brasil
Email: plinio.aquino@fei.edu.br

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1303–1306

DOI: 10.15439/2017F290

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1303

Yeoman (yeoman.io). Developers heavily use these tools, but

still they keep continuously seeking new tools that will make

them deliver faster and with a better quality. In this sense,

there is room for new tools that addresses problems still not

solved, e.g. how to classify JavaScript packages by the

feature(s) they provide [22].

In this study, the agile requirements engineering process

with prototypes is applied [20]: initial requirements are

elicited, prototype is built / updated, submitted to end user

revision, and prototype is refactored for next iteration.

Prototypes increase motivation for requirements gathering

and force users to discuss about requirements in less

subjective terms [20]. Based on [5], a key question was

defined: what are the empirical studies recently published

related to the selection or evaluation of open-source (known

as OSS) or commercial-off-the-shelf (known as COTS)

components? Table I shows the search string generated.

To filter these papers, the following criteria was defined:

remove duplicated surveys, in-progress studies and outdated

survey versions; and select papers approaching industry

practice in component selection through an empirical study;

or academic methods or criteria for component selection. This

filter reduced the list to 46 articles, 38 focused on academic

methods or criteria, which will not be cover on this article.

Table I shows the remaining 7 articles that approaches

industry practice through an empirical study.

In a research on component selection practices with

architects and researchers that perform this activity, [23]

concluded that 4 criteria are fundamental for component

assessment: features, non-functional attributes, architecture

compatibility and business considerations. Evaluation process

is an iterative process interleaved with requirements

engineering. Based on the analysis of the selected articles,

focusing on their main conclusions from interviews and

questionnaires, the key characteristics of the Industry practice

on selection is summarized in Table I. These characteristics

should be considered in a component selection process more

connected to the industry practice.

III. PROTOTYPE, FOCUS GROUP AND HEURISTIC RESULTS

The main purpose of this prototype was to showcase a

variety of possible features available on a components sharing

network. The prototype focus was on user interface, a

proposed taxonomy and selection criteria. The prototype was

not linked to an IDE (Integrated Development Environment),

but hosted in a web server. The prototype is the artifact that

allows specialists and users to provide very early feedback on

requirement elicitation, data taxonomy and terminologies,

relevant selection criteria, possible integrations to bring

value to the solution and detailed use cases that could address

real problems.

The prototype was designed to be a repository of

component bootstraps. Every component would contain a

package with dependent files (scripts/resources/styles) and a

code snippet that could be easily applied in user’s code. These
packages would be classified by feature and accessible

through a search engine. The first criteria supported would be

performance comparison through test cases evaluation and

users rating. In search page, user can filter a feature by name

and navigate to a list of components that implements this

feature, referred in the prototype as techniques. Sample data

was extracted manually from blogs, books and framework’s
documentation. Test cases were created for every feature, and

a benchmark tool (benchmarkjs.com) was used to run them.

For component rates, mocked data was used; the assumption

is that when the final tool were delivered, users will start

rating the components they use. After component selections,

users would be able to generate an online documentation of

their selections and packages with dependencies and snippets,

named receipts. A simple reputation system was simulated,

where users would earn points by adding snippets, ranking or

generating receipts.

Two sessions were conducted with 26 IT students in

computer labs of FEI University Center in São Bernardo do

Campo, São Paulo, Brazil. Programmers composed the

majority of the group: 73% of the group works with IT, 92%

TABLE I.

INDUSTRY PRACTICE THROUGH EMPIRICAL STUDIES

Libraries Articles Search string

IEEEXplore 59 (("empirical study") AND ("Open Source

Software" OR "Off-The-Shelf") AND
("Software evaluation" OR "Software

selection" OR "Component selection" OR

"Component evaluation"))

ACM DL 24

Science Direct 30

Springer Link 16

topics: title and abstract; language: English; when: 2005 to Jan. 2017;

discipline: Computer Science; types: articles, conferences & chapters

[Author] Objective focus | target | tool | participants

[6] map reasons COTS or OSS are

used in Norway, Italy & Germany

COTS, OSS | decision makers |

questionnaires | 127 companies

[7] understand how researches can

contribute to practice in Norway

OSS | developers | questionnaires | 16

software companies

[8] identify the principles of software

packages selection

COTS | decision makers | interviews |

39 people

[9] investigate COTS selection

practice in Jordan companies

COTS | decision makers |

questionnaires | 10 companies

[10] understand components

selection practice and emphasize
underestimated topics in academy

COTS, OSS | developers | interviews |

23 people / 20 software companies

[11] challenges on OSS component

selection, licensing and maintenance
on Chinese software companies

OSS | decision makers |

questionnaires | 43 companies

[12] Examine state-of-practice in

OTS component-based development

COTS, OSS | decision makers |

questionnaires | 127 companies

Industry Practice Characteristics [found in:]

ad-hoc and situational; generic selection methods not applied [7][9][10]

rely on developer team’s previous experiences [7][9][10][11][12]

selection process, criteria and decisions are not registered [9][7]

search engine (google) is the source for new components; repositories
rarely used [7][10][11][12]

market is continuously monitored [7][10][9]

selection happens in early development phases [10]

selection can happen in any phase, based on project context & flexibility
[12]

evidences of real component usage matters on decision [10]

comply to functional requirements and project constraints [7][10][11]

future support assurance matters on decision [6][10][9]

bring less effort and take less time to apply matters on decision [6]

licensing terms matters on decision [11]

1304 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

read and write in English, 38% code some days every week

and 31% code on a daily basis; 69% informed that are familiar

to JavaScript language and CSS, and 92% are familiar to

HTML. Activities contemplated a questionnaire to map group

expertise level, user observation, where pairs had to complete

a list of tasks while being observed, a post questionnaire and

a focus group to discuss post questionnaire answers. Post

questionnaire topics were: how people should use this tool

(Q1); if they agree a code snippets database would play a

crucial role in component selection (Q2); if they recognize

any differential between this tool and other tools available in

the market (Q3); and if the recognition simulation is seen as

relevant (Q4). Researcher role was to moderate discussion

and not influence group [14].

On Q1, group agreed users would use this tool to rank the

best snippets and receipts (88%), and when tool had more

access, use it to extract component development patterns

(85%), find solutions recognized by development community

(81%) and share them in Question and Answer (Q&A) sites

(81%). Group agreed the receipts concept was not clear so

they would not use it. On Q2, group agreed code snippets

available on the web influence JavaScript, HTML and CSS

development (85%). 96% agree code snippets that work are

the information source that most helps when adopting a

framework, confirming [10] results. The second main

information source is technical blogs (85%) followed by

Q&A sites (81%).

On Q3, groups disagreed. First group agree this tool has

potential, but it should be integrated with existing tools like

GitHub (github.com). The other group argued they would

only use this tool if it could compete with tools like Stack

Overflow in performance and search engine quality. On Q4,

recognition mechanisms are considered positive by 69% of

the group, but group pointed out its relevance depends on how

it prevents people from cheating.

Heuristic evaluation was conducted by 3 specialist during

three days. Specialists recommended organization, quality,

communication and integration changes.

Table II shows the fundamentals of a Component Sharing

Network based on the software engineering dimensions:

Requirements, Integrations, Taxonomy, Criteria and Use

Cases. This list integrates data from academic background,

user observation and heuristic evaluation.

IV. CONCLUSION

This research aims to go beyond a new rational method for

component selection, aggregating info on how this activity is

done, a fundamental step to design a successful tool with this

purpose [7] [10]. There are only a few studies focusing on

gathering Industry feedback, which is one of the purposes of

this study, and bring more evidences of real component

selection practice. On internal and external validity [18], the

26 participants and 3 heuristic specialists formed a

heterogeneous group of people directly or indirectly involved

in software development, only 35% of them with a more

active role in development community, in observation to 90-

9-1 rule of [15] for online communities. We strictly followed

rules described in [17] and [14] for conducting user

observation and focus groups. Interaction between researcher

and users were as low as possible, they had no previous

contact with the prototype and questionnaires before the

session and answered questions individually at the same time.

Sessions were recorded, transcript and analyzed. During

focus group, researcher read the questions, clarified that an

agreement of the group was expected for every question,

helped on doubts and controlled time available for each

discussion.

Heuristic specialists had previous experience in heuristic

evaluation and strictly followed Nielsen heuristics and

severity ratings [18] [19]. They did not participate at the user

observation and focus group sessions.

This study do not attempt to make universal

generalizations, it is concerned with characterizing and

TABLE II.

FUNDAMENTALS OF A COMPONENT SHARING NETWORK

Structure Requirements: invest on search engine; User area should list

project’s snippets, components & versions; Component and snippet’s
rank should be per criteria; Search should be contextualized by project

metadata; Component comparison should be by criteria (adherence,

performance), not code; Components already used in user’s project
should have precedence in search results; IDE results should be ordered

by best option based on project metadata; allow users to add test cases to

an existing snippet; tool should support storing private data for
companies; allow running performance reports for the entire project

Quality Requirements: pay special attention to search engine and

package dependency resolver performance; performance analysis should
be done in background; tool should reduplicate code; recognition system

should stimulate user interaction and avoid cheating; a tag system

should be used to classify snippets; avoid anonymous user to submit
content to the tool; moderation of abusive content; free text restrictions

should be applied; moderation program should be stablished, with

moderators chosen by their reputation on the network

Communication Requirements: clearly inform languages available and

supported; tool features should be well documented; content should be

in English; allow user to change criteria used to select a component in a
given context;

GitHub Integration: create repositories, branches, forks, pull requests

Atom, VS Code and Cloud9 Integration: code pre-analysis to speed

up contextualized snippets suggestion; search snippets per feature &

component (best option and list); resolve component dependencies on
selection; allow rating inside IDE

GitHub and Package Managers Integration: extract component

reputation data

Google Integration: define search engine optimization strategy

Bower Integration: resolve components dependencies of code snippets

JsMeter, Cloc, Understand, Benchmark.js, Jslint and SlickSpeed

Integration: use to run component evaluation metrics

Taxonomy: features, techniques (code snippets), components; package

dependencies instead of receipts

Criteria: performance; constraints adherence (components/frameworks

in use, architecture); code complexity (lines of code, cyclomatic

complexity, maintainability index); vulnerability and conformance

(critical and severity errors in component)

Use Cases: choose a list of components that matches a list of features

before starting a new project; find a list of components that matches a
specific feature and user project metadata; infer project constraints from

code analysis to generate search metadata; find a list of components that

matches your project metadata; find the fastest component for a feature
disregarding project metadata; apply code snippet to an existing project

and resolve dependencies automatically; find most popular components;

DANIEL SOUZA MAKIYAMA, PLINIO THOMAZ AQUINO JR.: FUNDAMENTALS OF A COMPONENTS SHARING NETWORK TO ACCELERATE JAVASCRIPT SOFTWARE DEVELOPMENT1305

aligning its own solution to the practice under the context of

this study [16]. As evidenced in [10], evidence of real usage

are the source of information that most help in the adoption

of a JavaScript, CSS or HTML component, and this was

proven to influence the result of this type of software.

Two perspectives were identified in component selection

process, one when user is studying component options for his

new project, more open to new options and the second one

when user is in the middle of a project and needs a technical

solution for a specific problem, looking for compatible

components. This tool should address both use cases,

supporting project bootstrap with best components available

under initial project constraints, and suggesting the best

component to solve technical problems or missing features in

an existing code. The main differential identified on prototype

was the capacity to run performance tests and rate snippets.

Performance and usability problems on the prototype

disturbed user perception, but most participants think that,

over time, when integrated to a version system and IDE, this

tool can be used to map component patterns. The reward

mechanism showed moderated relevance, which can be

consequence of the limited usage period. Participants down

voted the receipts feature. A more practical approach would

be to rely on an existing package management tool. Users did

not report major problems navigating in features, techniques

and criteria, which suggests that the taxonomy defined was

considered natural.

The results of this study are a stimulus to early user

involvement on software projects, a key resource on the

design phase, and the use of prototypes to help increasing the

capacity to share the envision of features and requirements.

Future studies will focus on applying the fundamentals

gathered in this study to create a new prototype that will be

validated for a longer time (some months). The focus will be

on IDE integration and code analysis with metadata

generation to provide contextualized search results.

ACKNOWLEDGMENT

Special thanks to professor Gordana Manic, PhD. that

conducted the initial research and providing important

information. We thank FAPESP (São Paulo Research

Foundation) for financial support.

REFERENCES

[1] W3C. “Open Web Platform Milestone Achieved with HTML5
Recommendation,” in http://www.w3.org/2014/10/html5-rec.html.en,

October, 2014.

[2] Ayala, C.; Hauge, Ø.; Conradi, R.; Franch, X.; Li, J. “Selection of third
party software in Off-The-Shelf-based software development—An

interview study with industrial practitioners,” in Journal of Systems and

Software, vol. 84, 4 ed., pp. 620-637, Apr. 2010
https://doi.org/10.1016/j.jss.2010.10.019.

[3] Delfim, F.; Paixão, K. V. R.; Cassou, D.; Maia, M. A. “Redocumenting

APIs with crowd knowledge: a coverage analysis based on question
types,” in Journal of the Brazilian Computer Society, vol. 22:9, 1 ed.,

Dec. 2016 https://doi.org/10.1186/s13173-016-0049-0.

[4] Osmani, A. “Yet Another Framework Syndrome (YAFS),” in
https://medium.com/tastejs-blog/yet-another-framework-syndrome-

yafs-cf5f694ee070, Jan. 2015.

[5] Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. “Systematic mapping
studies in software engineering,” in Proc. of the 12th Intl. Conference

on Evaluation and Assessment in Software Engineering, Swinton,

United Kingdom, pp. 68-77, Jun. 2008.
[6] Li, J.; Conradi, R.; Slyngstad, O.P.N.; Bunse, C.; Torchiano, M.;

Moriso, M. “An empirical study on decision making in off-the-shelf

component-based development,” in Proc. of the 28th Intl. Conference
on Software engineering, Shangai, China, pp. 897-900, May 2006

https://doi.org/10.1145/1134285.1134446.

[7] Hauge, Ø.; Østerlie, T.; Sørensen, C.-F.; Gerea, M. “An Empirical
Study on Selection of Open Source Software – Preliminary Results,” in

ICSE Workshop on Emerging Trends in Free/Libre/Open Source

Software Research and Development, Vancouver, British Columbia,
Canada, pp. 42-47, May 2009

https://doi.org/10.1109/floss.2009.5071359.

[8] Damsgaard, J.; Karlsbjerg, J. “Seven Principles for Selecting Software
Packages,” in Communications of the ACM, vol. 53, 8 ed., pp. 63-71,

Aug. 2010 https://doi.org/10.1145/1787234.1787252.

[9] Tarawneh, F.; Baharom, F.; Yahaya, J.H.; Zainol, A. “COTS Software
Evaluation and Selection: a pilot Study Based in Jordan Firms,” in Int.

Conf. on Electrical Engineering and Informatics, Bandung, Indonesia,

pp. 1-5, Jul. 2011 https://doi.org/10.1109/iceei.2011.6021821.
[10] Ayala, C.; Hauge, Ø.; Conradi, R.; Franch, X.; Li, J. “Selection of third

party software in Off-The-Shelf-based software development—An

interview study with industrial practitioners,” in Journal of Systems and
Software, vol. 84, 4 ed., pp. 620-637, Apr. 2010

https://doi.org/10.1016/j.jss.2010.10.019.
[11] Weibing C.; Jingyue, L.; Jianqiang, M.; Reidar, C.; Junzhong, J.;

Chunnian, L. “A Survey of Software Development with Open Source

Components in Chinese Software Industry,” in Software Process
Dynamics and Agility, Minneapolis, USA, pp. 208-220, May 19-20

2007 https://doi.org/10.1007/978-3-540-72426-1_18.

[12] Li, J.; Torchiano, M.; Conradi, R.; Slyngstad, O. P. N.; Bunse, C. “A
State-of-the-Practice Survey of Off-the-Shelf Component-Based

Development Processes,” in Reuse of Off-the-Shelf Components.

Lecture Notes in Computer Science, vol. 4039, pp. 16-28, Springer,
Berlin, Heidelberg, 2006 https://doi.org/10.1007/11763864_2.

[13] Teixeira, L.; Saavedra, V.; Ferreira, C.; Santos, B.S. “Using
Participatory Design in a Health Information System,” in Proc. of IEEE
Annual Int. Conference of Engineering in Medicine and Biology

Society, Boston, Massachusets, EUA, pp. 5339-5342, Ago./Set. 2011

https://doi.org/10.1109/IEMBS.2011.6091321.
[14] Morgan, D. “Focus group as qualitative research,” in Qualitative

Research Methods Series, Sage Publications, London, England, vol.16,

2 ed., Out. 1996 http://dx.doi.org/10.4135/9781412984287.
[15] Nielsen, J. “The 90-9-1 Rule for Participation Inequality in Social

Media and Online Communities,” in

http://www.nngroup.com/articles/participation-inequality/, Oct. 2006.
[16] Robson, C., “Real World Research: A Resource for Social Scientists

and Practitioner-researchers,” 2nd ed., Blackwell Publishers Inc., 2002.

[17] Stone D., Jarrett C., Woodroffe M., Minocha S. "User Interface Design
and Evaluation," Morgan Kaufmann, pp. 29-37, Apr. 2005.

[18] Nielsen, J. "Severity Ratings for Usability Problems," in

https://www.nngroup.com/articles/how-to-rate-the-severity-of-
usability-problems/, Jan. 1995.

[19] Nielsen, J. "10 Usability Heuristics for User Interface Design," in

https://www.nngroup.com/articles/ten-usability-heuristics/, Jan. 1995.
[20] Käpyaho, M.; Kauppinen, M. “Agile Requirements Engineering with

Prototyping: A Case Study,” IEEE 23rd Intl. Requirements Engineering

Conference (RE), Ottawa, Ontario, Canada, pp. 334-343, Ago. 2015
https://doi.org/10.1109/re.2015.7320450.

[21] Gizas, A.B.; Christodoulou, S. P.; Papatheodoru, T.S. “Comparative
evaluation of JavaScript frameworks,” in Proc. of the 21st Intl.
Conference Companion on World Wide Web, Lyon, França, pp. 513–
514, Apr. 2012 https://doi.org/10.1145/2187980.2188103.

[22] Graziotin, D.; Abrahamsson, P. “Making Sense Out of a Jungle of
JavaScript Frameworks – Towards a Practitioner-Friendly Comparative

Analysis,” in Proc. of the 14th Intl. Conference on Product-Focused

Software Process Improvement, Pafos, Chipre, pp. 334-337, Jun. 2013
https://doi.org/10.1007/978-3-642-39259-7_28.

[23] Land, R.; Blankers, L.; Chaudron, M.; Crnković, I. “COTS Selection
Best Practices in Literature and in Industry,” in Proc. of the 10th Intl.
Conference on Software Reuse , Beijing, China, pp. 100-111, May.

2008 https://doi.org/10.1007/978-3-540-68073-4_9.

1306 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

