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Abstract—The paper is concerned with the application of
mobile ad hoc networks to phenomena clouds boundary detec-
tion and tracking. Self-organizing, coherent networks comprised
of sensors and radio transceivers that maintain a continuous
communication with each other and a central operator are
considered. The attention is focused on the methodology for de-
termining the temporarily optimal network topology for detecting
the boundary of a cloud that can change its shape in time. We
introduce several measures for assessment a quality of a network
topology and propose a computing scheme for detection topology
that is the optimal one at a given time. The utility and efficiency
of the proposed methodology was justified through simulation
experiments.

I. INTRODUCTION

P
HENOMENA clouds are objects covering significant area

and characterized by nondeterministic, dynamic variations

of shape, size, speed, and direction of motion along multiple

axes [1]. The examples of phenomena cloud can be not only

environmental disasters as oil spill, toxic heavy gas cloud,

flood or forest fire, but also moving group of people. In

general, in case of one of the aforementioned disasters the

extensive monitoring of the area of interest is necessary to

manage the evacuation of people from a hazardous zone, track

the propagation of a given cloud and finally, neutralize the

threat.

Nowadays, mobile ad hoc networks (MANETs) are becom-

ing increasingly popular solutions for environmental moni-

toring. MANET is comprised of mobile devices, which are

usually equipped with GPS receivers, various detectors and

radio transceivers that enable wireless communication within

the network. The devices can autonomously and dynamically

self-organize by changing their positions and roles into tem-

poral networks. In general, in emergency situation MANET

should not rely on external communication system as it can

be damaged or congested due to the disaster. Hence, the

network needs to maintain connectivity among the working

set of devices and a base station. Numerous approaches to the

connectivity maintenance have been proposed in the literature

[2]–[6].

MANETs are widely used to cover a region of interest

(ROI) [7], [8]. Phenomena cloud is a special type of ROI due

to its dynamic character. Results of research on adaptation

of a sensing network topology to variant phenomena cloud

boundary was comprehensively described in [9], [10].

In this paper we focus on measuring quality of a network

topology taking into account multiple spatial criteria. Spatial

topology analysis was widely used in MANET. In [11] dense

and sparse regions are identified to limit rebroadcasting pack-

ets in flooding routing protocol. Routing protocols depending

on nodes’ location are described in [12]. Moreover, topology

analysis can support a clustering of network. Topology Adap-

tive Spatial Clustering that divides the network into a locally

isotropic, non-overlapping clusters by creating a set of weights

that encode distance, connectivity and density information

within the neighborhood of each node is described in [13].

In [14] prediction of the existence of a link given the present

distance between a pair of nodes and their relative speed is

proposed. The prediction is based on two topology metrics:

an expected link lifetime and an expected link change rate.

In this paper we define several measures (spatial parameters)

that can be used to assess the quality of a current network

topology. Moreover, we propose a methodology that can be

used to detect the acceptable topology — the best possible

configuration of a network for monitoring a given cloud at a

given time step. The technique for phenomena cloud bound-

ary detection described in [6] is extended with the analysis

of a topology dynamics. The presented approach allows to

increase the efficiency of detection of clouds with unknown

and irregular shapes.

The article is organized as follows. First, computing scheme

for detection of boundary of area covered by a phenomena

cloud with mobile sensors is described. Then we introduce

several measures for assessing quality of a given sensing

topology and statistical tools for analyzing the variability of

these measures. Next, we introduce computing scheme for

detecting the temporrily optimal sensing topology. Finally,

the results of applications of our method to detect the heavy
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gas cloud are presented and discussed. Two more and less

advanced gas dispersion models were taken into account: the

box model [15] and the advance model provided in SLAB

[16].

II. PROBLEM FORMULATION

Let us consider the network G = (V, E) comprised of a set

V of N mobile nodes (unmanned vehicles or mobile robots)

Di, i = 1, . . . , N operating in the workspace. oi = [xi, yi]
denotes the reference point of Di (e.g. an antenna location). It

is assumed, that each node Di is equipped with a punctual

detector for sensing a given phenomena, radio transceiver

(with radio range rt) and a positioning system, e.g. GPS

receiver. Let us define our sensing network

V = {Di, i = 1, . . . , N}, (1)

E = {(Di, Dj), d
i
j ≤ rt, i, j = 1, . . . , N, i 6= j}, (2)

where (Di, Dj) is a bidirectional link between a pair of

nodes Di and Dj and dij is the Euclidean distance between

the reference points oi and oj of nodes Di and Dj . We

assume that each node can freely change both its position and

role according to its knowledge about an environment and a

network. It can move with the speed v ∈ [vmin, vmax] in

desirable direction.

Let us divide the network G into K separated clusters Vk,

k = 1, . . . ,K of devices:

V1 ∪ V2 ∪ ... ∪ VK = V, (3)

V1 ∩ V2 ∩ ... ∩ VK = ∅. (4)

We assign DHk
∈ Vk a role of the kth cluster head, k =

1, . . . ,K, and select one of cluster heads DH to be a head of

the whole network, DH ∈ DH1
, . . . , DHK

.

It is assumed that the network can self-organize to accom-

plish a given task. The task considered in this paper is to sense

boundaries of a given phenomena cloud to estimate a size and

a shape of this cloud. The scheme for robot-assisted sensors

deployment was developed and described in [6]. In this work

we focus on the last phase of the deployment, i.e. boundary

detection. We assume that at least one device detected a cloud

and the cloud center Ψ was estimated by DH based on known

locations of those network nodes V
′

, which sensors detected

the phenomena (i.e. nodes located inside the cloud):

Ψ =

∑

Di∈V′ oi

|V ′ |
. (5)

To determine the boundary of a given cloud with high accuracy

we need measurements from sensors that should be evenly

deployed on the boundary (Fig. 1). Hence, our goal is to create

a sensing network with evenly distributed nodes. Moreover,

the permanent communication within the network has to

be maintained to exchange information about topology and

current measurements between nodes and report measurements

to a base station.

(a)

Fig. 1: Even deployment of network clusters on the cloud

boundary;

The nodes mobility model incorporates the concept of an

artificial potential. The artificial potential function is con-

structed as a sum of repulsive and attractive potentials [17].

Every assumed time step each Di ∈ Vm solves the following

optimization problem to calculate its new position:

min
c
i



U i = U i
c +

∑

Dj∈Si,Dj∈Vm

U i
j +

∑

k∈ICm

U i
k

= αc

(

d
i

c

dic
− 1

)2

+
∑

Dj∈Si,Dj∈Vm

βj

(

d
i

j

dij
− 1

)2

+
∑

k∈ICm

γk

(

d
i

k

dik
− 1

)2


 .

(6)

In the above formulation artificial potential function U i con-

sists of the potential U i
c between Di and the cloud centroid

Ψ, a sum of potentials U i
j between Di and its neighboring

nodes Dj , Dj ∈ Si = {Dj : (Di, Dj) ∈ E , Dj ∈ Vm} and

a sum of potentials U i
k between Di and neighboring clusters

ICm. αc ≥ 0, βj ≥ 0, γk ≥ 0 denote weighting factors, dic
is an Euclidean distance between oi and estimated centroid

Ψ of the cloud, d
i

c = maxDi∈V′ dic + w1, where w1 > 0

denotes a distance margin (arbitrary selected), d
i

j ≤ rt is a

reference distance between two neighboring nodes Di and Dj .

In the last part of eq. (6) ICm is a set of indexes of two

closest neighboring clusters of the mth cluster that contains

Di, defined as follows:

ICm =

{

argmin
Vj 6=Vm

∢(Vm,Vj)

}

∪

{

argmax
Vj 6=Vm

∢(Vm,Vj)

}

(7)

∢(Vm,Vj) =






arccos
−−−→
Ψcm·

−−→
Ψcj

|Ψcm|·|Ψcj |
[
−−→
Ψcm ×

−−→
Ψcj ]z ≥ 0

2Π− arccos
−−−→
Ψcm·

−−→
Ψcj

|Ψcm|·|Ψcj |
[
−−→
Ψcm ×

−−→
Ψcj ]z < 0

(8)

cm =

∑

Di∈Vm
oi

|Vm|
, (9)
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where [−→q ]z is z-component of vector −→q . dik is a distance

between oi and the centroid of the kth cluster ck and d
i

k is an

average distance between two neighboring clusters of the mth

cluster (clusters with indexes from the set ICm) increased by

a small margin w2 slightly greater than 0:

d
i

k =

∑

k∈ICm
dik

2
+ w2, w2 > 0. (10)

Detailed description of the mentioned above network de-

ployment scheme can be found in [6]. The result of the

boundary detection phase is even distribution of nodes on the

boundary of an area covered by a given phenomena cloud

(Fig. 1). Due to the dynamic changes of the phenomena clouds

the next phase is boundary tracking — nodes move and follow

the boundary, keeping internode and intercluser distances. The

aim of the research described in this paper was to develop a

methodology for detecting the temporarily optimal topology

for boundary tracking and switch to the boundary tracking

phase. The definitions of measures that we used to evaluate

the quality of a given topology are provided in the next section.

III. NETWORK TOPOLOGY QUALITY MEASURES

Let us consider a network defined in (1)-(4). To create

a topology that allows to determine a cloud boundary at a

given time and maintain the permanent connectivity we have

to perform the following operation (see eq. 6):

• move all devices towards the cloud boundary (increase

distance between clusters and the center of cloud);

• expand an area monitored by clusters (increase distances

between nodes within cluster);

• deploy clusters on the cloud boundary (as evenly as

possible).

Various measures can be used to evaluate the quality of a

given MANET at a given time. Taking into account the above

operations the following ones can be defined:

• distance between a centroid of the mth cluster to the

estimated centroid of a cloud

dmc = ‖cm −Ψ‖
2
. (11)

The distance is increased as long as the mth cluster nodes

do not reach the cloud boundary. The bigger distance is

the better topology is.

• mth cluster diameter

φm = max
Di,Dj∈Vm

dij . (12)

The bigger φm is the bigger area is monitored by the mth

cluster.

• standard deviation of angles between neighboring clusters

σ∢ =

√

∑K

m=1
(∢m − µ∢)2

K − 1
, µ∢ =

∑K

m=1
∢m

K
, (13)

where ∢m = ∢(Vm,Vj) (Fig. 2) is an angle between the

cluster Vm and its the closest neighboring cluster Vj :

j = argmin
k 6=m

∢(Vm,Vk). (14)

For evenly distributed clusters σ∢ ≈ 0.

Fig. 2: The angle ∢(Vm,Vj) between a cluster Vm and a

cluster Vj and the angle ∢(Vj ,Vm) between a cluster Vj and

a cluster Vm.

IV. MEASURES VARIABILITY ANALYSIS

Changes of measures defined in (11)-(13) involve changes

in the topology of a given sensing network. However, to

monitor and analyze network topology dynamics we need

values of the defined measures from a time interval. Let

us assume that µ(ti) is a value of the measure µ cal-

culated at ti (µ ∈ {σ∢, φm, dmc |m = 1, . . . ,K}) and

Xµ(t) =< µ(t−M + 1), . . . , µ(ti), . . . , µ(t) > is a vector of

values of the measure µ calculated at last M time steps. The

goal of our analysis is to detect does a given measure

• increase (growth);

• decrease (drop);

• change slightly (stabilization);

• change very dynamically and chaotically (instability).

In brackets names of the variability types were introduced. It

should be emphasized that detection of variability type has

to be done a priori (in real time), with no information about

future measurement values. Moreover, the window size M that

is arbritraly determined can influence the results of an analysis.

To analyze variability of the values of the vector Xµ(t)
following simple statistical measures were proposed:

• peak-to-peak amplitude A:

A = maxXµ(t)−minXµ(t); (15)

• Pearson’s correlation ρX,t:

ρX,t =
∑M

i=1
(µ(t−M + i)− µ)(i− M+1

2
)

√

∑M

i=1
(µ(t−M + i)− µ)2

√

∑M

i=1
(i− M+1

2
)
,

(16)

µ =

∑M

i=1
µ(t−M + i)

M
; (17)

• trend direction coefficient tra (trend line given as f(x) =
trax+ b):

tra =

M
∑M

i=1
µ(t−M + i)i−

∑M

i=1
i
∑M

i=1
µ(t−M + i)

M
∑M

i=1
i2 − (

∑M

i=1
i)2

.

(18)
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Based on these measures we can determine whether in time

t the vector Xµ(t) induces one of the previously defined

variability types:

• growth and drop:

– Pearson’s correlation; if ρX,t ∈ (ρH , 1] a mea-

sure Xµ(t) is continually increasing with time; if

ρX,t ∈ [−1, ρL) the value is continually decreasing,

where:

ρH ≥ 0.5; ρL ≤ −0.5; (19)

– trend direction coefficient; if tra ≥ trH the measure

is increasing significantly, else if tra ≤ trL the mea-

sure Xµ(t) is decreasing significantly, where:

trH > 0; trL < 0. (20)

• stabilization:

– peak-to-peak amplitude; if A < AL value of measure

Xµ(t) does not change significantly;

– Pearson’s correlation; if ρX,t ∈ (−ρM , ρM ) the mea-

sure Xµ(t) is neither continually decreasing nor

continually increasing, where:

ρM ∈ (0, 0.7]. (21)

• instability:

– peak-to-peak amplitude; if A > AH value of prop-

erty does change significantly (AH >> AL);

– Pearson’s correlation — as in stabilization.

The simulation study was performed to determine the values

of threshold values ρH , ρL, ρM , trL, trH , AL, AH . Within

the study an experiment described in [6] (for K = 4) was per-

formed for various values of vmax, vmax ∈ {1m
s
, 5m

s
, 20m

s
}.

The estimated values of threshold values are presented in

Table I. It was observed that values of some thresholds

(trH ,trL,AL,AH ) depend on the maximal velocity of nodes

vmax as the higher velocity involves the bigger changes of

measures every time step.

(a) (b)

(c) (d)

Fig. 3: Detection (green color) of (a) growth, (b) drop, (c) stabilization and (d) instability variability type of σ∢ property during

the network deployment. The less visible parts of graphs in which detection occurred were enlarged.
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TABLE I: Values of threshold parameters

σ∢ measure

stabilization drop growth instability

M 5 M 8 M 8 M 5

ρM 0.7 ρL -0.6 ρH 0.6 ρM 0.6

AL 1 + 0.1vmax trL −0.05− 0.01vmax trH 0.05 + 0.01vmax AH 3 + 0.3vmax

dmc measure

stabilization drop growth instability

M 5 M 6 M 8 M 6

ρM 0.7 ρL -0.7 ρH 0.7 ρM 0.5

AL 0.5vmax trL −0.1 trH 0.1 + 0.1vmax AH 1 + 0.8vmax

φm measure

stabilization drop growth instability

M 4 M 4 M 4 M 4

ρM 0.5 ρL -0.7 ρH 0.7 ρM 0.5

AL 1.6vmax trL −0.4− 0.1vmax trH 0.4 + 0.1vmax AH 3.2vmax

The results of application of the proposed variability type

detection scheme for the measure σ∢ and the threshold values

calculated for vmax = 20m
s

(see Table I) are depicted in

Figures 3a-3d. Each figure corresponds to one variability type:

growth, drop, stabilization or instability. The time steps in

which a given variability type was detected are marked with a

green color. It can be observed that in most cases the variability

types were detected correctly. However, in some cases (see

Fig. 3b, t = 125) a variability type was detected too late. It

was caused by too long observation time window.

V. TEMPORARILY OPTIMAL TOPOLOGY DETECTION

Summing up, the aforementioned considerations. The aim

is to create the network topology that seems to be optimal

to measure the boundary of a cloud at a given time. Exactly,

due to the dynamic nature of the monitored cloud our goal

reduces to the detection of the time step t at which we claim

that the network configuration is stable or the local optimum

for t∗, t∗ ∈ [t − M + 1, t − 1] was reached and we assume

that all changes in the nearest future involve its deterioration.

Such network topology in time t is called temporarily optimal.

Fig. 4: Time steps in which the variability type of measure σ∢

is stabilization or growth.

The decision whether the topology is temporarily optimal is

made based on the observed variability types of all defined

measures:

a) the topology is stable for:

• σ∢ — type stabilization;

• dmc , m ∈ {1, . . . ,K} — type stabilization;

• φm, m ∈ {1, . . . ,K} — type stabilization;

b) the topology will be worse in the nearest future for:

• σ∢ — type stabilization or growth;

• dmc , m ∈ {1, . . . ,K} — type stabilization or drop;

• φm, m ∈ {1, . . . ,K} — type stabilization or drop;

but not case a).

The head of mth cluster DHm
detects the variability type of

the measures dmc and φm, whereas the head of the whole

network DH detects the variability type of the measure σ∢.

The calculations are performed repetitively with the repetition

time equal to ∆t. If none of the variability types is detected

for measure µ in time t based on Xµ(t) the variability type of

this measure in time t is the same as in time t−∆t (we assume

that in the beginning the variability type of each measure is

instability). Each of cluster heads DHm
sends information

about variability types of dmc and φm to the network head.

Exemplary detection of time steps in which variability type

of measure σ∢ for the aforementioned example (Fig. 3) is

stabilization or growth is depicted in Fig. 4.

Due to the large number of requirements regarding the

number of measures (2 ∗ K + 1) that have to be taken

into account during the decision problem and dynamics of

a phenomena fulfilling all of the requirements is too rigorous.

Therefore, we propose two distributed strategies.

• Strategy 1: The topology is temporarily optimal if:

– variability type of σ∢ is stabilization or growth;

– exists at least r1 clusters for which variability type

of both dmc and φm is stabilization or drop.

• Strategy 2: The topology is temporarily optimal if:

– variability type of σ∢ is stabilization or growth;

– exists at least r2 clusters for which variability type

of dmc is stabilization or drop;
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Fig. 5: Temporarily optimal topology detection — Strategy 2. With the dotted arrows communication between the cluster head

DHm
and the network head DH is shown.

– exists at least r2 clusters for which variability type

of φm is stabilization or drop.

The scheme of making decision according to Strategy 2.

is presented in Fig. 5. For r1 = r2 the Strategy 1 is more

rigorous. The results of experiments for various values of r1
and r2 are presented and discussed in the next section.

VI. EXPERIMENTAL VERIFICATION

The performance of our methodology for cloud boundary

detection was verified through simulation experiment. The task

was to create a sensing MANET for monitoring uncontrolled

instantaneous release of vapor LNG. Due to a low temperature

of the release the created cloud was heavier-than-air. Thus, it

moved close to the ground. The parameters of the released

material and ambient environment are presented in Table II.

The dispersion of cloud was simulated using the SLAB

simulator [16]. The sensing network was built by 16 devices

divided into 4 clusters. The maximal velocity vmax of each

node was equal to 10m
s

.

The method for detection of acceptable topology was

tested for both proposed strategies and for different values of

r1, r2 ∈ {2, 3, 4}. For both strategies for r1 = r2 = 3 the opti-

mal topology was detected at the same time t = 102. However,

for r1 = r2 = 2 the results obtained for both strategies were

different: t = 100 for Strategy 1 and t = 52 for Strategy 2. In

the extreme case r1 = r2 = K = 4 (all requirements have to

be fulfilled) the consensus was not reached until t = 220.

Fig. 6 shows the process of forming the network topology

for cloud boundary monitoring. The results of experiment

indicate that at t = 52 (Fig. 6a) the topology meets basic

TABLE II: The parameters of the released material and ambi-

ent environment in the verification scenario

Name Value Units

Molecular weight 0.01604 kg

Vapor heat capacity at constant pressure 2238 J
kg∗K

Boilling point temperature 111.7 K

Heat of vaporization 509900 J
kg

Liquid heat capacity 3348.5 J
kg

Liquid density of source material 424.1
kg

m3

Temperature of source material 111.7 K

Source area 900 m2

Instantaneous source mass 6000 kg

Surface roughness height 0.01 m

Ambient measurement height 2.88 m

Ambient wind speed 1.92 m
s

Ambient temperature 306 K

Relative humidity 4.6 %

requirements — at least one node of each cluster is on the

boundary, distance between clusters (except green and gray)

are significant and nodes within clusters are rather dispersed.

However, at time t = 100 clusters are much more evenly

dispersed on the boundary (Fig. 6b). Finally, at t = 220
(Fig. 6d) the topology is slightly better (better dispersion of

nodes within clusters). Furthermore there is no improvement

comparing to topology created at t = 180 (Fig. 6c).

According to the results of the experiment it can be induced

that r2 = K
2

for Strategy 2 is too weak requirement and

fulfilling all requirements (r1 = r2 = K) may delay the

detection of temporarily optimal topology unnecessarily. Thus,
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(a) (b)

(c) (d)

Fig. 6: Topology of the sensing network:(a) t = 52, (b) t = 100, (c) t = 180 and (d) t = 220. Nodes of the same cluster are

marked with the same color, the cluster head is marked with darker hue.
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the reasonable values for the strategies parameters r1 and r2
are: K

2
≤ r1 < K and K

2
< r2 < K. However, the future

work should involve evaluation of the method performance

based on simulation experiments for more complex scenarios

with various number of clusters K.

VII. CONCLUSION

MANETs can significantly enhance the capability to in-

vestigate contaminated areas, in particular detect and track

phenomena clouds. In this paper we described the method-

ology for evaluating a quality of a network topology due to

the possibility of determining a boundary of a cloud. The

results of simulation experiments confirm that our approach

can sufficiently support the process of detecting the temporar-

ily optimal sensing devices configuration for cloud boundary

monitoring at a given time. Unfortunately, our experimental re-

sults demonstrate that due to the dynamic nature of monitored

phenomena clouds the quality of selected topology depends on

the size of the observation time window and requirement of

meeting all conditions for defined measurements. The trade-off

between a quality of sensing network, time of calculation and

fulfilling all requirements and expectations has to be assumed.
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