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Abstract—This paper presents multiple variances of selection
operator used in Non-dominated Sorting Genetic Algorithm II
applied to solving Bi-Objective Multi-Skill Resource Constrained
Project Scheduling Problem. A hybrid Differential Evolution
with Greedy Algorithm has been proven to work very well on
the researched problem and so it is used to probe the multi-
objective solution space. It is then determined whether a multi-
objective approach can outperform single-objective approaches
in finding potential Pareto Fronts. Additional modified selection
operators and a clone prevention method have been introduced
and experiments have shown the increase in efficiency caused by
their utilization.

I. INTRODUCTION

S
CHEDULING problem plays an important role in todays

science and business. It can be met in transportation [1],

production [2], project management [3], etc. The problem itself

can be informallyined as the function that aims to find the

lowest duration and cost of the schedule by assigning resources

to tasks. Multi-Skill Resource-Constrained Project Scheduling

Problem (MS–RCPSP) is NP-hard and there are no methods

capable of finding an optimal solution in polynomial time [4].

The goal of the research presented in this paper is to verify

how Differential Evolution hybridized with Greedy (DEGR)

and Non-dominated Sorting Genetic Algorithm II (NSGA-II)

approaches explore space in the context of multi–objective op-

timization. DEGR algorithm is a single–objective method, and

potential Pareto Front (PF ) is created by running it multiple

times. Each run uses different weights values in the fitness

function. Set of points resulting from all runs is considered

during evaluation. Moreover, a tournament selection method

is investigated in NSGA-II to boost its selective pressure and

a clone prevention method is implemented to increase the

diversity of the resulting potential PF s. Results are evaluated

and compared with a set of multi-objective measures. This

paper presents the transition from a single to a multi-objective

approach to MS–RCPSP and introduces modified selection

operators, which have proven to increase efficiency of NSGA-

II.

The rest of the paper is organized as follows. Section IIIines

the MS–RCPSP. Sections IV and V describe implemented

methods - NSGA-II and DEGR appropriately. All experiments

along with its results have been presented in section VI.

Section VII contains conclusions and directions of future work.

II. RELATED WORKS

There are many different types of scheduling problem mod-

els. PSPLIB library [5] is often used as a baseline to compare

methods efficiency. It doesn’t support a skill extension of

the problem. Additionally, it comprises only one criterion -

duration of the schedule, which makes it infeasible for the

purpose of this article.

A Software Project Scheduling Problem (SPSP) is another

example and was first presented in [6]. It is the most similar

problem to the MS–RCPSP as it contains skills and two criteria

- duration and cost. Additionally, it allows for tasks to be

worked on by multiple resources. It has been more thoroughly

described in [7].

Due to NP-hard nature of the problem, researchers have

often tackled it with metaheuristics, which often provide

satisfactory solution in acceptable time. Many methods have

been developed to solve scheduling problems: Differential

Evolution [8], Genetic Algorithm [9], Tabu Search [10],

Grasp [11] and Teaching–learning–based optimization algo-

rithm [14]. Additionally, swarm optimization techniques have

been used: Ant Colony Optimization [12] or Particle Swarm

Optimization [13].

The MS–RCPSP isined as a multi-objective problem. The

goal is to minimize both duration and cost of the schedule. It

is often difficult to compare different criteria, so it is desired to

find a set of equally-good solutions but with different objective

values. An existence of populations in evolutionary algorithms

perfectly fit the need to find multiple points on the PF .

There are very few articles that deal with multi-objective MS–

RCPSP. Simulated Annealing [15] and Genetic Algorithm [16]

have been used for that purpose. The best known results for a

single-objective MS–RCPSP have been achieved by a DEGR

[8] method and therefore it is used in this paper.

NSGA-II has been proposed in [17] and has proven its

efficiency in scheduling problems [18] [19]. The algorithm

is often used as a benchmark approach for multi-objective

problems.
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III. FORMULATION OF MS–RCPSP

In MS–RCPSP [7] the schedule can be evaluated by both

its cost and duration, making the problem multi-objective.

MS–RCPSP comprises a sets of tasks, resources and skills.

Each task has a skill required to work on that task, a set of

predecessors that have to be completed before the task can be

started. Each resource has a set of skills and a cost associated

with it. Skill is described by a type and level of expertise.

The goal is to create task-resource assignments in a way

that satisfies given constraints and minimizes both objectives.

Detailedinition can found in [7].

IV. NON-DOMINATED SORTING GENETIC ALGORITHM II

Non-dominated Sorting Genetic Algorithm II (NSGA-II)

first presented in [17] has proven to be effective approach

to multi-objective optimization. It is based on a genetic algo-

rithm, which utilizes populations for space exploration. The

use of populations fits the problem very well, as the goal is

to find a set of points. NSGA-II uses a comparison operator

based on a domination described in formula 1 and a crowding

distance operator, which aims to maximize the smallest box

which comprises only one individual.

i ≥n j if (irank < jrank)∨

((irank = jrank) ∧ (idistance > jdistance))
(1)

where i and j are two compared individuals.

NSGA-II utilizes a non-dominated sorting. Individuals cre-

ated by the genetic operators are added to the same population.

At the end of a generation, an entire population is sorted

according to the domination operator and then it is truncated

to its original size. Detailed description can be found in [17].

A. Non-dominated Tournament Genetic Algorithm

In this section, a modification to selection in NSGA-II is

presented. This approach uses a tournament selection instead

of sorting the population and choosing its better half.

Additional experiments have been performed to check the

effectiveness of a tournament selection if an ≥r operator,

which doesn’t regard crowding distance is used. It isined as:

i ≥r j if (irank < jrank) (2)

Non-dominated Tournament Genetic Algorithm (NTGA) is

a method, which uses modified selection and ≥r operator.

B. Clone prevention

A clone prevention method has been designed and intro-

duced after the initial results of the tournament selection. The

results have shown a decrease in diversity of the population in

comparison to NSGA-II approach with tournament size equal

to 2. It was caused by stronger selective pressure. The idea is

to enforce a mutation of every newly created individual which

happens to be a clone. An individual is a clone of another

individual if all their genes are equal.

V. DIFFERENTIAL EVOLUTION HYBRIDIZED WITH GREEDY

DEGR has been successfully applied to the MS–RCPSP

in [8]. It’s an evolutionary method operating in real space.

Evolution creates a real–valued phenotype, which represents

a task-resource assignments. Then the greedy algorithm puts

tasks on a timeline.

DEGR has been proven to be efficient in single-objective

MS–RCPSP and so it is used to probe space and create a

potential PF . It is compared to both regular NSGA-II and

NTGA approaches. It is worth noting that DEGR is inherently

not a multi-objective method.

Differential Evolutions uses a weighted fitness function

(presented in 3), which allow the algorithm to focus on

different parts of the solution space and potentially create a

good coverage, even though this approach is Pareto blind -

has no concept of the PF, but it is the simplest approach to a

multi-criteria problem.

f(S) = wτ ∗ fτ (S) + (1− wτ ) ∗ fc(S) (3)

where wτ is a weight associated with the duration of the

schedule and its values can vary between [0,1], S is the

schedule, ftau and fc are time and cost of the schedule, both

of which are minimized. The function is implemented in a

library made public on [21].

Using equation 3 a potential PF is created by running

the method multiple times with different weights to allow for

exploration of space and to ensure good coverage.

VI. EXPERIMENTS AND RESULTS

The goal of this paper is to present a transition from a

single-objective to multi-objective approach to MS–RCPSP.

Additionally novel selection methods have been proposed to

further increase the efficiency of multi-objective method. The

results are evaluated by a set of chosen measures. They take

convergence and diversity of the found PF under consideration.

A. Measures

A set of measures [20] has been chosen to evaluate the

results. The choice has been dictated by the need of evaluating

both convergence and diversity of the algorithms. Selected

measures are commonly used for this purpose.

An Euclidean Distance (ED) is an average Euclidean

distance between the points on the potential PF and a perfect

point (built by the best possible values of every criteria).

A HyperVolume (HV ) is a volume of the rectangle con-

structed from the potential PF and a Nadir Point (point built

by the worst possible values of every criteria).

A Pareto Front Size (PFS) is a number of unique points

on the potential PF .

B. Dataset

For the experiments an iMOPSE [7] dataset has been used,

which is located on [21]. It contains 36 data instances, all

varied by the number of tasks, resources and precedence

relations. 2 subsets of instances could be identified. In the
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first group all instances have 100 tasks, and in the second

group, they have 200 tasks. Instances in those groups have

been created to preserve an average resource load and number

of tasks per number of resources. The idea behind formulation

of this dataset was to achieve variety between the instances.

C. Procedure

A DEGR approach has been used to establish a baseline.

It’s been executed multiple times with weights values from 0.0

to 1.0, incremented by 0.1 and resulting points been collected.

Parameters chosen for DEGR: population size (Ps) = 100, 500

generations (gen), mutation probability (Pm) = 0.1, crossover

probability (Px) = 0.1 and a one-to-one selection.

Four different variants of NSGA-II have been checked. The

following parameters have been chosen for NSGA-II: ps =

50, 500 gen, Pm = 0.01, Px = 0.6, tournament size (ts) = 5.

Parameters chosen for NTGA: ps = 50, 500 gen, Pm = 0.002,

Px = 0.9, ts = 4. We compared classic NSGA-II approach with

its modifications: a tournament selection, modified comparison

operator, which disregards crowding distance and clone pre-

vention method. The goal was to increase the convergence and

diversity of the method. All procedures has been repeated 30

times and results were averaged.

D. Results

An experiment has been performed to check the influence

of a tournament size on chosen measures. The best values of

both ED and PFS are achieved for tournament size equal to

4. Interestingly higher values improve the HV . High PF Size

means high diversity of the population and also suggest good

coverage of PF . Therefore PFS has been chosen as the most

important measure.

A clone removal method have been introduced to increase

low diveristy of the population. Since clone removal increases

the distance between the individuals, a crowding distance has

become redundant. Another approach has been investigated

with modified comparison operator, which considers only the

rank of the individual. Due to a huge volume of the table,

standard deviations have been omitted and only classical

NSGA-II, best variant of NTGA and DEGR approaches have

been presented - table II. Additionally averaged results have

been gathered and are presented in table I.

The increased size of the tournament improved all measures

and standard deviations. Clone prevention method has a posi-

tive effect on average results but increases standard deviation.

Checking crowding distance is not crucial when used with

clone prevention method. This approach resulted in a better

TABLE I: Comparison of averaged results for all methods

ED HV PFS

avg std avg std avg std

NSGA-II 0.2720 0.0059 0.5506 0.0041 138.44 15.91
NTGA 0.2677 0.0079 0.5280 0.0067 75.068 22.65
NSGA-II(t5,pc) 0.2764 0.0059 0.5668 0.0029 170.32 15.36
NTGA(t4,pc,r) 0.2575 0.0061 0.5446 0.0054 199.60 54.67
DEGR[8] 0.2743 0.0066 0.5708 0.0022 55.64 5.81

convergence, represented by ED, a bit lower diversity, repre-

sented by HV , but average PFS has dramatically increased.

Interestingly NSGA-II(t6,pc) has achieved the highest PFS

for most instances, but NTGA(t6,pc,r) has achieved the best

PFS. It is caused by the fact, that their results were very

close, but the latter has achieved a huge lead on a couple of

instances. DEGR approach achieved relatively low ED and the

worst PFS of all investigated methods but at the same time

the best HV . It is caused by the fact, that it was executed

multiple times with various weight values, which allowed for

searching different parts of solution space and is connected

with the fact that DEGR achieved the best edge values.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents how a single and a multi-objective

approaches are capable of exploring the space of MS–RCPSP.

It’s been shown that a classic Pareto approach (NSGA-II) has a

much better efficiency concerning convergence, however, lack

diversity of DEGR - it’s worth noting that DEGR has been

executed multiple times with different weights. A modified

selection operators and a clone prevention method have been

presented and experiments have shown that they are capable

of further increasing efficiency of NSGA-II.

Two potential directions for future work can be considered.

On the one hand, an initial population, which better covers the

solution space could improve achieved results. On the other

hand, the selection method, which rewards better spread of

individuals could occur the more diverse PF.

The used DEGR approach is hybridized with a Greedy

Algorithm, which potentially is a bottleneck for the method.

A very promising direction would be to remove the Greedy

Approach and let an Evolutionary Algorithm take its place.

In this co-evolutionary approach, there would be populations

communicating with each other - one would assign the task

to resources, while other would assign timestamps to tasks.

DEGR has proven to be an effective method for single–

objective optimization. As an extension of these works, DEGR

could be introduced dominance relation and PF concept to

compete with existing multi–objective methods even better.
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