
 

 

 

 

Abstract—The berth allocation problem (BAP) in marine 

container terminals is defined as the feasible berth allocation to 

the incoming vessels. In this work, we develop a model of fully 

fuzzy linear programming (FFLP) for the continuous and 

dynamic BAP. The vessel arrival times are assumed to be 

imprecise, meaning that the vessel can be late or early up to a 

threshold permitted. Triangular fuzzy numbers represent the 

uncertainty of the arrivals. The model proposed has been 

implemented in CPLEX and evaluated for different instances. 

The results obtained show that the model proposed is helpful to 

the administrators of a marine container terminal, since a plan 

supporting imprecision in the arrival time of vessels, optimized 

with respect to the waiting time and easily adaptable to possible 

incidents and delays, is available to them. 

I. INTRODUCTION 

n this work, we approach the berth allocation problem 

(BAP), a NP-hard problem of combinatorial optimization 

[1], consisting in the allocation for every incoming vessel 

its berthing position at the quay. Once the vessel arrives to the 

port, it comes a waiting time to be berthed at the quay. The 

administrators of Marine Container Terminal (MTC) must 

face with two related decisions: where and when the vessels 

have to be berthed. 

The actual times of arrivals for each vessel are highly 

uncertain depending this uncertainty, for example, on the 

weather conditions (rains, storms), technical problems, other 

terminals that the vessel have to visit and other reasons. The 

vessels can arrive earlier or later their scheduled arrival time 

[2], [3]. This situation affects the operations of load and 

discharge, other activities at the terminal and the services 

required by costumers. The administrators of MTC change or 

reviews the plans, but a frequent review of the berthing plan 

is not a desirable thing from a planning of resources point of 

view. Therefore, the capacity of adaptation of the berthing 

plan is important for a good system performance that a MTC 

manages. As a result, a robust model providing a berthing 

plan that supports the possible early or lateness in the arrival 

time of vessels and easily adaptable is desirable. 

There are many types of uncertainty such as the 

randomness, imprecision (ambiguity, vagueness), confusion. 

Many of them can be categorized as stochastic or fuzzy [4]. 

The fuzzy sets are specially designed to deal with 

imprecision.  

The simulation is done in the MTC of the port of Valencia, 

the use of stochastic optimization models is difficult because 

there are no distributions of probabilities of the delays and 

advances of the vessels. We assume that the arrival times of 

vessels are imprecise, for every vessel it is necessary to 

request the time interval of possible arrival, as well as the 

more possible time the arrival occurs. 

In this work, we present a model of fuzzy optimization for 

the continuous and dynamic BAP. This paper is organized as 

follows: In Section II, we present a review of literature related 

to the BAP under imprecision. Subsequently, in Section III, 

we describe the basic concepts of the work procedure. In 

Section IV, we propose the model of fuzzy optimization to the 

berth allocation problem with imprecision in the arrival of 

vessels. In Section V, we employ a methodology to resolve 

the model. In Section VI, we evaluated the model. Finally, in 

Section VII, we present the conclusions and future lines of 

research. 

II. STATE OF THE ART 

There are many attributes to classify the models related to 

the BAP [5]. The most important are: spatial and temporal. 

The spatial attribute can be discrete or continuous. In the 

discrete case, the quay is considered as a finite set of berths, 

where segments of finite length describe every berth and 

usually a berth just works for a vessel at once; for the 

continuous case, the vessels can berth at any position within 

the limits of the quay. The temporal attribute can be static or 

dynamical. In the static case, all the vessels are assumed to be 

at the port before performing the berthing plan; for the 

dynamical case, the vessels can arrive to the port at different 

times during the planning horizon. 

In [5], the authors make an exhaustive review of the 

literature existing about BAP. To our knowledge, there are 

very few studies dealing with BAP and with imprecise (fuzzy) 

data.  

A fuzzy MILP (Mixed Integer Lineal Programming) model 

for the discrete and dynamic BAP was proposed in [6]. 

Triangular fuzzy numbers represent the arrival times of 

vessels. The model and design of a method for parametric 
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MILP-based solutions are presented there, but the evaluation 

is not shown. In the previous model, they do not address the 

continuous BAP. According to Bierwith [5], to design a 

continuous model, the planning of berthing is more 

complicated than for a discrete one, but the advantage is a 

better use of the space available at the quay. 

In [7], a MILP fuzzy model for the continuous and dynamic 

BAP was proposed, this model assigns slacks to support 

possible delays or earliness of vessels but it also has an 

inconvenience: if a vessel arrives early or on time, the next 

vessel has to wait all the time considered for the possible 

earliness and delay. This represent a big waste of time without 

the use of the quay and the vessel has to stay longer than is 

necessary at the port. 

In this work, we present and new model for the continuous 

and dynamic BAP that solves the problem of the previous 

model. This model is formulated as a fully fuzzy linear 

programming problem (FFLP), wherewith we obtain robust 

berthing plans supporting imprecision (earliness or delay) of 

vessels without generating unnecessary waiting times. 

III. PRELIMINARIES 

The concepts about fuzzy sets, fuzzy arithmetic and 

possibility distributions are taken from [8]. 

A. Fuzzy Sets 

Definition 1. Let X be the universe of discourse. A fuzzy 

set Ã in X is a set of pairs: Ã = {(x, μÃሺxሻ), x ∈ X}, where μÃ: X → [Ͳ,ͳ] is called the membership function and μÃሺxሻ 

represents the degree that x belongs to the set Ã. 
In this work, we use the fuzzy sets defined on real numbers, Թ. A membership function can be triangular, trapezoidal, 

sigmoidal, quadratic, etc. 
 

Definition 2. A fuzzy set Ã in Թ is normal if maxXμÃሺxሻ =ͳ. 
Definition 3. The fuzzy set Ã in Թ is convex if and only if 

the membership function of Ã satisfies the 

inequality μÃሺβxଵ + ሺͳ − βሻxଶሻ  min[μÃሺxଵሻ, μÃሺxଶሻ],  ∀ ݔଵ, ଶݔ  ∈  Թ, β ∈ [Ͳ,ͳ]. 
Definition 4. A fuzzy number is a normal and convex fuzzy 

set in Թ. 
Definition 5. A triangular fuzzy number (TFN) (see Fig. 1) 

is represented by ã = ሺaଵ, aଶ, aଷሻ 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Triangular fuzzy number 

 

B. Fuzzy Arithmetic 

If we have the nonnegative triangular fuzzy numbers ܽ̃ =ሺܽଵ, ܽଶ, ܽଷሻ and  ܾ̃ = ሺܾଵ, ܾଶ, ܾଷሻ, the operations of sum and 

difference are defined as follows: 

Sum: ܽ̃ + ܾ̃ = ሺܽଵ + ܾଵ, ܽଶ + ܾଶ, ܽଷ + ܾଷሻ 

Difference: ܽ̃ − ܾ̃ = ሺܽଵ − ܾଷ, ܽଶ − ܾଶ, ܽଷ − ܾଵሻ 

 

C. Comparison of Fuzzy Numbers 

The comparison of fuzzy numbers allows deciding between 

two fuzzy numbers ܽ̃ and ܾ̃ which is greater, but fuzzy 

numbers not always provide a totally ordered set just like real 

numbers do. All methods for the comparison of fuzzy 

numbers have advantages and disadvantages. 

In this work, we use the method called First Index of 

Yagger [9]. This method uses the ordering function  

 Ըሺܽ̃ሻ = ܽଵ + ܽଶ + ܽଷ͵  

 

As a result, ܽ̃  ℎ݁݊ Ըሺܽ̃ሻݓ̃ ܾ  Ը(ܾ̃) , that is,  

 ܽଵ + ܽଶ + ܽଷ   ܾଵ + ܾଶ + ܾଷ 

 

D. Distributions of Possibility 

Imprecision can be represented by distributions of 

possibility [10]. These distributions allow us to formalize, in 

a reliable way, a very large amount of situations estimating 

magnitudes located in the future. The measure of possibility 

of an event can be interpreted as the degree of possibility of 

his occurrence. Among the various types of distributions, 

triangular and trapezoidal ones are most common. Formally, 

the distributions of possibility are fuzzy numbers; in this 

work, we use triangular distributions of possibility ܽ̃ =ሺܽଵ, ܽଶ, ܽଷሻ, which are determined by three quantities: ܽଶ is 

value with the highest possibility of occurrence, ܽଵ and ܽଷ are 

the upper and lower limit values allowed, respectively (see 

Fig. 1). 

E. Fully Fuzzy Linear Programming 

Fuzzy mathematical programming is useful to handle 

situations within optimization problems including imprecise 

parameters [11]. There are different approaches to the fuzzy 

mathematical programming. When the parameters and 

decision variables are fuzzy, the problem is formulated as a 

Fully Fuzzy Lineal Programming Problem (FFLP). There are 

many methodologies of solution to a FFLP [12]. Mostly of 

them, convert the original fuzzy model in a classical 

satisfactory model. 

In this work, we use the method of Nasseri et. al. [13]. 

Given the FFLP problem max ∑ ܿ̃𝑛
=ଵ ݔ̃  

Subject to ∑ ܽ̃𝑛=ଵ ݔ̃  ܾ�̃�, ∀݅ = ͳ … ݉                 (1) 
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Where parameters ܿ̃  , ܽ̃   , ܾ̃ and the decision ̃ݔ are 

nonnegative fuzzy numbers. ∀݆ = ͳ … ݊,     ∀݅ = ͳ … ݉            
 

If all parameters and decision variables are represented by 

triangular fuzzy numbers, 

 ܿ̃ = (ܿͳ୨, ܿʹ୨, ܿ͵୨), ܽ̃ = (ܽͳ୧୨, ܽʹ୧୨, a͵), ܾ̃ = ሺܾͳ୧, ܾʹ୧, ܾ͵୧ሻ,  ̃ݔ = ,ͳ୨ݔ) ,୨ʹݔ  (୨͵ݔ

 

   Nasseri’s Method transforms (1) into a classic problem of 

mathematical programming. 

 max Ը ቌ∑(ܿͳ୨, ܿʹ୨, ܿ͵୨)(ݔͳ୨, ,୨ʹݔ ୨)𝑛͵ݔ
=ଵ ቍ 

Subject to: 

 ∑ ܽͳݔͳ𝑛
=ଵ  ܾͳ     ,    ∀݅ = ͳ … ݉  
∑ ܽʹݔʹ𝑛
=ଵ  ܾʹ     ,    ∀݅ = ͳ … ݉ 

∑ ܽ͵ݔ͵𝑛
=ଵ  ܾ͵     ,    ∀݅ = ͳ … ݉  

ݔ  ʹ − ͳݔ  Ͳ,      ݔ ͵ − ݔ ʹ  Ͳ, ∀݆ = ͳ … ݊ 

 

Where Ը is an ordering function (See Section III.C.) 

IV. FFLP MODEL FOR THE BERTH ALLOCATION 

PROBLEM 

 

In this section, we present the notation to the main 

parameters used in the model (see Fig. 2).  

L: Total length of the quay at the MTC 

H: Planning horizon 

Let V  be the set of incoming vessels, the problem data for 

each vessel ݅ ∈ 𝑉 are given by: ܽ:  Arrival time at port. ݈:  Vessel length ℎ: Handling time of the vessel  in the berth. (service time). 

With these data, the decision variables ݉ and 𝑝   must be 

obtained ݉: Berthing time of vessel. 𝑝 :  Berthing position where the vessel will moor. 

 

With the data and decision variables are obtained 𝜔 and ݀ 𝜔 = ݉ − ܽ : Waiting time of vessel since the arrival to 

the berthing. 

    ݀ = ݉ + ℎ : Departure time 

 

We consider the next assumptions: All the information 

related to the waiting vessels is known in advance, every 

vessel has a draft that is lower or equal to the draft of the quay, 

the berthing and departures are not time consuming, 

simultaneous berthing is allowed, safety distance between 

vessels is not considered. 

The objective is to allocate all vessels according to several 

constraints minimizing the total waiting time, for all vessels. 

The arrival times, berthing times and departure times of the 

vessel are considered to be of fuzzy nature (imprecise) and 

denoted by ܽ̃,  ݉̃,  and ℎ̃,   respectively. 

Based on the deterministic model [14] and assuming the 

imprecision of some parameters and decision variables, we 

propose the following fuzzy model optimization. 

 ݉í݊ ∑ ሺ݉̃ − ܽ̃ሻ∈𝑉    (2)

   

   Subject to:  

 ݉̃  ܽ̃     ∀݅ ∈ 𝑉 (3) 

 𝑝 + ݈   ݅∀     ܮ ∈ 𝑉        (4) 

 𝑝 + ݈   𝑝 + ͳ)ܯ − 𝑧௫ )       ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (5) 

 ݉̃ + ℎ̃   𝐻     ∀݅ ∈ 𝑉 (6) 

 ݉̃ + ℎ̃   ݉̃ + ͳ)ܯ − 𝑧௬ )      ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆                   (7) 

  𝑧௫ + 𝑧௫ + 𝑧௬ + 𝑧௬  ͳ       ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (8) 

 𝑧௫ , 𝑧௬ ∈ {Ͳ,ͳ}       ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆    (9) 

 

In order to assign a vessel to the quay, the following 

constraints must be accomplished: 

(3), the berthing time of vessel must be at least the same as 

the arrival time;  (4), there must be enough space at the quay 

for the berthing; (5), at the quay, a vessel must be to the left 

or right side of another vessel; (6), the berthing plan must be 

within the planning horizon; (7), with regard to the time, a 

vessel berths after or before another one; (8), the constraints 

(5) y (6) must be accomplished. 

Where 𝑧௫ is a decision variable indicating if the vessel ݅ is 
located to the left of vessel j at the berth, (𝑧௫ = ͳሻ. 

Fig. 2.  Representation of a vessel according to the time and position 
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 𝑧௬ = ͳ indicates that the berthing time of vessel ݅ is before  

than vessel ݆. ܯ is a large integer constant. 

The planning horizon is given by 

 𝐻 = ∑ ℎ∈𝑉 + max∈𝑉 ܽଷ 
 

V. SOLUTION TO THE FUZZY BAP MODEL 

We assume that all the parameters and decision variables 

are linear and some diffuse, thus, we have a FFLP problem. 

The arrival of every vessel is represented by a triangular 

possibility distribution ܽ̃ = ሺܽͳ, ܽʹ, ܽ͵ሻ (see Fig. 1), 

indicating the possibility of arrival in a2, but not before a1, or 

after a3. In a similar way, the berthing time is represented by m̃ = ሺmͳ, mʹ, m͵ሻ and h̃ = ሺh, h, hሻ is considered a 

singleton. 

When representing parameters and variables by triangular 

fuzzy numbers, we obtain a solution to the fuzzy model 

proposed applying the methodology proposed by Nasseri, 

(see section III. E). 

To apply this methodology, we use the operation of fuzzy 

difference on the objective function and the fuzzy sum on the 

constraints (see Section III.B.) and the First Index of Yagger 

as an ordering function on the objective function (see Section 

III.C.) obtaining the next auxiliary MILP model. 

 ݉í݊ ∑ ଵଷ (ሺ݉ͳ − ܽ͵ଵሻ + ሺ݉ʹ − ܽʹଵሻ + ሺ݉͵ − ܽͳଵሻ)∈𝑉  (10)   

 

Subject to: 

 ݉ͳ  ܽͳ     ∀݅ ∈ 𝑉 (11) 

 ݉ʹ  ܽʹ     ∀݅ ∈ 𝑉 (12) 

 ݉͵  ܽ͵     ∀݅ ∈ 𝑉 (13) 

 𝑝 + ݈   ݅∀     ܮ ∈ 𝑉 (14) 

 𝑝 + ݈   𝑝 + ͳ)ܯ − 𝑧௫ )       ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (15) 

 ݉ͳ + ℎ + ͳ)ܯ − 𝑧௬ )  ݉ͳ     ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (16) 

 ݉ʹ + ℎ + ͳ)ܯ − 𝑧௬ )  ݉ ʹ     ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (17) 

 ݉͵ + ℎ + ͳ)ܯ − 𝑧௬ )  ݉ ͵     ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (18) 

 ݉ʹ − ݉ͳ > Ͳ    ∀݅ ∈ 𝑉 (19) 

 ݉͵ − ݉ʹ > Ͳ   ∀݅ ∈ 𝑉 (20) 

 𝑧௫ + 𝑧௫ + 𝑧௬ + 𝑧௬  ͳ       ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (21) 

 𝑧௫ , 𝑧௬ ∈ {Ͳ,ͳ}       ∀݅, ݆ ∈ 𝑉, ݅ ≠ ݆ (22) 

VI. EVALUATION 

The experiments were performed in 50 instances, having 

each of them the data arrivals for 8 vessels during a day; the 

instances have been generated with a uniform distribution, in 

order to simulate the berths at TMC of Valencia’s Port 
(Spain). In this TMC, the quay has an approximate length of 

700 meters. All the instances have the same features for all 

vessels (time of service and length), as well as the most 

possible arrival time a2. However, all instances have different 

values to the minimum and maximal arrival time allowed, a1 

and a3, respectively. The method has been coded and solved, 

in an optimum way, by using CPLEX. The instances were 

solved in a desk computer equipped with a Core (TM) i5-

4210U CPU 2.4 Ghz with 8.00 GB RAM. The experiments 

were performed within a “timeout” of 60 minutes. 
To report the data we use a new parameter also considered 

as fuzzy; the departure time of a vessel d̃ = ሺdͳ, dʹ, d͵ሻ. 

One instance is shown in Table I.  

 
TABLE I 

 EXAMPLE OF ONE INSTANCE 

 

 

 

 

 

 

 

 

 

 

 

For example, the most probably arrival of vessel V1 is at 8 

units of time, but it could be early or late up to 4 and 34 units 

of time, respectively. 

The berthing plan obtained with the model is showed in 

Table II, and polygonal-shaped are showed in Fig. 3. 

The berthing plan showed in Table II provides three 

berthing plans. The one we could call the most optimistic 

assuming all the vessel arrival occurring at the minimum time 

allowed, is showed in columns m1 and d1 from Table II. The 

optimum plan, when all vessels arrive precisely on time, is 

given by columns m2 and d2 from Table II. The pessimistic 

plan assuming that all vessels are delayed the maximum 

allowed time is given by columns m3 and d3 from Table II. 
 

TABLE II 

BERTHING PLAN  

 

 

Vessel 

 

Berthing time 

Service 

t i m e 

 

Departure time 

 

l 

 

p 

m1 m2 m3 h d1 d2 d3 

V1 4 8 34 121 125  129 155 159 63 

V2 0 15 36 231 231  246 267 150 222 

V3 18 32 50 87 1 0 5 119 137 95 605 

V4 9 40 46 248 257  288 294 63 0 

V5 32 52 52 213 245  265 285 219 372 

V6 2 4 5 2 6 5 2 6 5 496 7 4 1 761 781 274 332 

V7 2 3 1 2 4 6 2 4 6 435 666  681 702 265 63 

V8 1 0 5 1 1 9 1 3 7 146 251  265 283 94 606 

 

Vessels 

Arrival time  

h 

 

l a1 a2 a3 

V1 4 8 34 121 159 

V2 0 15 36 231 150 

V3 18 32 50 87 95 

V4 9 40 46 248 63 

V5 32 52 72 213 219 

V6 55 68 86 496 274 

V7 62 75 90 435 265 

V8 45 86 87 146 94 
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An appropriate way to observe the robustness of the fuzzy 

berthing plan is the polygonal-shape representation (see Fig. 

3). The red line represents the possible early Berthing time; 

the green line, the possible late berthing time, the small 

triangle represents the optimum berthing time (with a greater 

possibility of occurrence) and the blue line represents the time 

that vessel will stay at the quay. 
 

In the circle of Fig. 3, we observe an apparent conflict 

between the departure of vessel V2 and the berthing of vessel 

V6. The conflict is not such,  if the vessel V2 is late, the vessel 

V6 has slack times supporting delays. For example, assume 

that vessel V2 is late 10 units of time; according the Table II, 

the berthing occurs at m=15 + 10 = 25 units of time and its 

departure occurs at d=25 + 231 = 256 units of time. The vessel 

V6 can moor during this space of time, since according to 

Table II, its berthing can occurs between 245 and 285 units of 

time. This fact is observed in Fig. 4. 

In order to analyze the robustness of the fuzzy berthing 

plan, we simulate the incidences showed in Table III. 

 

 

 

TABLE III 

INCIDENCES IN THE VESSEL ARRIVAL TIMES 

 
Vessel Time Incidence 

V1 13 delay 

V2 15 delay 

V3 0 on time 

V4 18 earliness 

V5 10 earliness 

V6 8 earliness 

V7 9 delay 

V8 21 earliness 

 

To obtain a feasible and optimum berthing plan supporting 

the incidences, we realize a rescheduling, obtaining the 

berthing plan shown in Table IV. In Fig. 5, we observe that 

the berthing plan obtained, is a part of the fuzzy plan obtained 

initially. 

Fig. 6 illustrates the variation of the objective function 

(waiting time) for 50 instances. The average of the objective 

function is 409.76, that is, every day the 8 vessels have to wait 

a total of 409.76 units of time.   

 
TABLE IV 

BERTHING PLAN WITH RESCHEDULING 

 

 

Vessel  

Berthing 

time 

(m) 

Service 

time 

(h) 

Departure 

time 

(d) 

Length 

(l) 

Position 

(p) 

V1 21 121 142 159 63 

V2 30 231 261 150 222 

V3 32 87 119 95 605 

V4 22 248 270 63 0 

V5 42 213 255 219 372 

V6 261 496 757 274 332 

V7 261 435 696 265 63 

V8 119 146 265 94 606 

 

On the other hand, Fig. 7, shows the computer time 

variation to solve the 50 instances. The average computer 

time that uses CPLEX to solve one instance is 2.96 seconds. 

 

 

 

 

 

Fig. 4.  Delayed berthing of vessel V2 

Fig. 3.  Fuzzy berthing plan in polygonal-shape 

Fig. 5. Berthing with rescheduling 
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VII. CONCLUSION 

Even though many investigations about BAP have been 

carried out, most of them assume that vessel arrivals are 

deterministic. This is not real, in practice there are earliness 

or delays in vessel arrivals. Thus, the adaptability of a 

berthing plan is important for the global performance of the 

system in a MTC.  

The results obtained showed that the model, is useful to the 

MTC managers in decision-making, since they have different 

plans in case the vessels arrive late, on time or early up to the 

maximum allowed time. In case the vessels arrive early or late 

a shorter time of the maximum tolerance, the optimum plan 

can be adapted by making a rescheduling. 

The model has been evaluated for 50 instances, each 

consisting of 8 vessels. The number of vessel is for illustrative 

purposes only, the model works in the same way for a large 

number of vessels. 

The proposed model can be used when sufficient 

information is not available to obtain probability distributions 

on the arrival time of vessels that will allow posing a 

stochastic model. 

 

 

 

 

 

Likewise it could be used when we want to do berthing plans 

on the basis of inaccurate information obtained in advance 

about the vessel arrivals. For every vessel it is necessary to 

request the time interval of possible arrival, as well as the 

more possible time the arrival occurs.  

Finally, because of this research, we have open problems 

for future researches: 

 To extend the model that considers the quay 

cranes to be assigned to every vessel. 

 To use meta-heuristics to solve the fuzzy BAP 

model more efficiently, when the number of 

vessels is greater. 
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