
High-Level Malware Behavioural Patterns:
Extractability Evaluation

Jana Št’astná, Martin Tomášek
Department of Computers and Informatics

Technical University of Košice
Letná 9, 042 00 Košice, Slovakia

Email: {jana.stastna, martin.tomasek}@tuke.sk

Abstract—Many promising malware research projects focus
on malware behaviour analysis, however, in the end they tend
to build new detection systems and stick to measuring detection
ratios. Our approach focuses on malware behavioural analysis
for defining (characterising) malicious software on rather high
level of abstraction, in order to break the endless cycle of
evolving malware and malware analysts trying to catch up on new
threats. As our research outlines, even such high-level behavioural
information as numbers of occurrences of some behavioural
events, can be successfully extracted from program samples
and interpreted for extraction of repeating behavioural patterns.
While this may seem simple at the first glance, there are plenty
variables entering the process of behavioural data acquisition
and pattern extraction.

I. INTRODUCTION

A
TRANSITION from syntactic to semantic view on ma-
licious software leads the research in several last years.

The reason for this change is quite simple: Traditional de-
tection signatures, built upon fragments of executable code
extracted from malicious samples, characterise a specific mal-
ware type on a syntactic level. However, syntactic features
are relatively easy to obscure or modify, as also pointed out
by Moser et al. [1], mainly by techniques of encryption,
packing [2], [3], [4], polymorphism, metamorphism, and code
obfuscation, implemented on control-flow or data-flow of a
program [5].

Malware researchers try to deal with code morphism by
behavioural detection. Yet, Borojerdi and Abadi point out
in their work [6] that not every semantics-based technique
is successful. The level of abstraction on which program’s
behaviour is captured plays an important role. They mention
that patterns of system calls on low level of abstraction can
be circumvented but behavioural patterns related to utilisation
of specific system resources provide more optimistic results.

We believe that when malware and security researchers
don’t focus primarily on creating new detection mechanisms
but on defining (characterising) malicious software on rather
high level of abstraction, they will gain solid foundations for
such detection mechanisms, which will not lose applicability
after short usage - and that is also our main goal: searching
for various forms for characterising malware, on varied levels
of abstraction and detail.

The aim of our work, presented in this paper, is summarised
as follows:

• We look for proper form of malware behaviour represen-
tation on high level of abstraction. Our current formula-
tion of behavioural pattern is presented (Section II).

• We try to find out whether representation of malicious
behaviour on high level of abstraction is feasible, in order
to improve detection precision or expand scope of de-
tected malicious behaviour in future research. We present
behavioural data extraction (Section III) and success rate
of behavioural pattern extraction (Section IV).

II. HIGH-LEVEL MALWARE BEHAVIOURAL PATTERNS

Concerning level of abstraction for malware features extrac-
tion, in our research we decided for a strategy to start with
the most general, abstract features describing behaviour, with
a possibility to gradually employ more detailed features and
lower the level of abstraction later, when appropriate. At the
current state of our research we aim at categories of behaviour,
based on the area of influence on the infected operating
system, such as behaviour affecting filesystem, actions on
processes, network activity, modifications on registry entries
(Table I). Analysis of behaviour regarding these categories is
quantitative, i.e. we observe how many times each category of
behaviour occurred in analysed program sample.

On this level of abstraction, which is quite high, we
managed to observe repetitions in amounts of behaviour
occurrences among behavioural categories. As it turned out,
there were groups of distinct malicious samples, belonging
to the same types of infiltrations (malware signatures), which
performed actions according to some pattern. In our initial

TABLE I
12 CATEGORIES OF PROGRAM BEHAVIOUR WHICH TAKE PART IN

FORMATION OF HIGH-LEVEL BEHAVIOURAL PATTERNS.

FC file creation
FD file deletion
MC mutex creation
PC process creation
SC service creation
SS service starting
RE registry entry
D DNS
WD Winsock DNS
HG HTTP get
HP HTTP post
TF TCP flow

Proceedings of the Federated Conference on
Computer Science and Information Systems pp. 569–572

DOI: 10.15439/2017F354
ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 569



work concerning this matter [7] we used formal notation to
define high-level behavioural patterns as 12-tuple plabel of
elements:

plabel = (nFC , nFD, nMC , nPC , nSC , nSS ,

nRE , nD, nWD, nHG, nHP , nTF ),
nFC , nFD, . . . , nTF ∈ N

0,

(1)

where nFC , . . . , nTF are numbers of occurrences of be-
haviours, listed in Table I, and label is a name or an identifier
of malicious signature with which is the pattern p associated.

The 12-tuple, as given in the definition (Equation 1), de-
scribes a case, when all samples of one type of infiltration
(malware signature) show the same amounts of behaviour
occurrences in behavioural categories, listed in Table I.

As we discovered by analysing behavioural data, such
uniformity in behaviour is not that common and even if pattern
is clearly recognisable, slight variability is present in some of
behavioural categories. Thus, variability of behaviour occur-
rences was introduced in our work [7] by defining a set Vlabel

of n-tuples vl
k
, which capture behaviour with varied occurrence

and possibly group behaviours with potential interdependence
(Equation 2):

Vlabel =























∅, iff no variability in behaviour is present,

{vl1, v
l
2, . . . , v

l

k
| vl

k
= (x1, . . . , xn),

x ∈ N
0, k, n ∈ {1, 2, . . . , 12}, l ∈ N

+},
otherwise.

(2)
Behavioural patterns can be graphically visualised for im-

proved readability, e.g. Fig. 1 describes behavioural pattern
with variability in behaviour occurrences.

The definition of pattern with variability of behaviour
occurrences (Equation 2) is further explained and practical
application is demonstrated in our work [7].

As the previous work showed, there are malware instances
definable on high level of abstraction, by patterns comprising
numbers of executed actions from 12 behavioural categories.

Behaviour observed in analysed samples

Be
ha

vi
ou

r o
cc

ur
re

nc
es 7

5

2
1 1

0 0 0 0

4

1 1 1

Fil
es 

cre
ate

d

Fil
es 

del
ete

d

Mute
xes

 cr
eat

ed

Pr
oce

sse
s c

rea
ted

Ser
vic

es 
cre

ate
d

Ser
vic

es 
sta

rte
d

Regi
str

y e
ntr

ies DNS

Wins
ock

 D
NS

HTTP G
ET

HTTP P
OST

TCP fl
ow

s
0

2

4

6

8

Fig. 1. Behavioural pattern of malicious program samples with signature
labelled internally as E. Analysed samples demonstrated minor variability in
number of behaviour occurrences regarding categories: Registry entries, DNS,
HTTP GET and TCP flows. We avoid stating the real signature label on pur-
pose, because disclosing such details may negatively influence employability
of presented behavioural patterns in potential detection mechanisms.

III. MALWARE BEHAVIOURAL DATA EXTRACTION AND

SOURCES

In the work aimed at defining malware, the nature of
analytic data resources, their quality, and process of extraction,
determine the end results of research experiments.

In several last years a form of crowdsourcing gains pop-
ularity concerning malware data acquisition. Online analytic
services like Totalhash1 or VirusTotal2 provide numerous anti-
virus engines or analytic tools to analyse user-provided sus-
picious files and assemble all analytic results. Not only they
provide the analytic service, they serve also as a repository of
previous analyses.

Our initial research in high-level malware behavioural pat-
terns employed online analytic service Totalhash. First, we
investigated what kinds of data are provided by the service
and which of them have a potential for determining whether
behavioural patterns are present among samples of the same
type of malware. We succeeded in our efforts and behavioural
patterns on high-level of abstraction have been found [7].
The research continued with advanced inspection of data from
malware analyses that we gathered.

Online analytic service Totalhash provides various data in a
form of a report, summarising results of analysis. Not all the
reports contain the same types of information, it depends on
the type of file that was analysed (Windows executable file,
text document, image, script, ...) and the process of analysis
itself - whether a certain stage of analysis was successful or
not.

Analytic reports are quite extensive, so processing all of
their data would be complicated and time consuming. That
is why we resorted to simplification of behavioural data in a
form of abstracting amounts of executed actions per sample,
in accordance with the list of considerable program activity
(Table I).

Assembling of behavioural data from Totalhash service is
carried out by our custom software tool, which serves as
a mediator for accessing the vast database in a simple and
automatized way. The tool and its usage are described in our
other papers [7] [8].

IV. EXTRACTABILITY OF MALWARE BEHAVIOURAL

PATTERNS

As mentioned in Section II, a malware behavioural pattern
was defined as a 12-tuple (Equation 1), stating numbers of
occurrences for actions from each of 12 behavioural categories
(Table I). At the time of writing of this paper, we have
managed to process 34 099 analytic reports obtained from
Totalhash service, even though assembling of more data is
still in the process - over 200 000 entries of behavioural data
are currently in our database, ready for future inspection.

Advanced analyses of data set with 34 099 samples have
been made to assess employability of our approach for extract-
ing malware behavioural patterns. Results of anti-virus anal-
yses cannot be taken as a 100% reliable detection authority,

1Available at: http://totalhash.com/
2Available at: https://virustotal.com/

570 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



and to our knowledge, no such authority exists yet. With this
in mind, we figured relative maliciousness and harmfulness of
samples from the data set as follows:

• amount of samples detected by each of (at that time)
available anti-virus engines as malicious with some mal-
ware signature was 664,

• amount of samples detected as malicious with some
malware signature by 16 anti-virus engines, which were
selected as highly reliable based on independent anti-
virus comparisons made by AV-Comparatives3, AV-test4

and VB1005, was 1969,
• amount of samples detected as potentially malicious, i.e.

detected with some malware signature by at least one

anti-virus engine, was 34 016, so from the set of 34 099
samples, only 83 were "absolutely safe" - detected with
no virus,

• amount of samples detected as potentially harmless, i.e.
all of 16 highly reliable anti-virus engines, which were
selected based on independent anti-virus comparisons
made by AV-Comparatives, AV-test and VB100, detected
no threat in those samples, was 739,

Each anti-virus engine assigns a specific malware signature
to the sample which was positively detected as malicious, thus
numerous samples may belong to the same malware signature.
Investigation of the data set revealed significant differences in
amounts of malware signatures recognised among samples.
Fig. 2 summarises these differences for 16 selected anti-virus
engines, which were also mentioned above in the list. We do
not mention names, just anonymised labels 1-16, of anti-virus
engines on purpose, since it is not relevant information for this
research.

By looking at Fig. 2, the difference between anti-virus
engines is evident. While there is an engine which recognised
totally 11 338 different malware signatures among 34 099
samples, on the opposite side of the chart, the other engine
recognised only 1 656 malware signatures among the same

3Available at: https://www.av-comparatives.org/
4Available at: https://www.av-test.org/en/antivirus/
5Available at: https://www.virusbulletin.com/testing/

Anti-virus engines

A
m

ou
nt

 o
f r

ec
og

ni
se

d 
sig

na
tu

re
s 11
 3

38

11
 2

58

11
 1

46

10
 1

54

9 
62

6

9 
27

5

7 
08

6

5 
56

9

5 
42

2

5 
07

3

2 
90

4

2 
40

8

2 
09

9

1 
83

1

1 
83

0

1 
65

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0k

2k

4k

6k

8k

10k

12k

Fig. 2. Amount of malware types recognised under unique malware
signatures for 16 anti-virus engines, selected as highly reliable based on
independent anti-virus comparisons made by AV-Comparatives, AV-test and
VB100.

set of samples. This situation probably only mirrors known
issues regarding inconsistency of malware signatures labelling
[9] among anti-virus products and also malware researchers.

In addition to amount of malware signatures recognised by
various anti-virus engines, we had a look at amount of be-
havioural patterns found among analysed samples, separately
for each of anti-virus engines. The numbers we obtained are
separated into two groups:

• all behavioural patterns in total, where a pattern has at
least one value of the 12-tuple common for all the sam-
ples which belong to malware signature corresponding
with the pattern. In other words, these patterns may show
variabilities in 11 behavioural categories from the 12-
tuple, or less, even no variabilities at all,

• plain behavioural patterns, which have no variabilities in
behaviour among samples at all, i.e. they correspond with
the notation from the basic behavioural pattern definition
(Equation 1).

The amount of patterns, when we looked at behavioural data
in accordance with various anti-virus labelling systems, is
summarised on Fig. 3. While there have been significant dif-
ferences between amounts of recognised malware signatures,
the relation between amount of recognised signatures and
extractable behavioural patterns is quite similar for most of the
considered anti-virus engines. The percentage of extractable
behavioural patterns from recognised malware signatures is on
average 10.72%, although much lower value 2.12% occurred
with one anti-virus engine (number 6 on Fig. 3), and value
significantly above average, more than 15%, occurred with
three anti-virus engines (numbers 13, 15 and 16 on Fig. 3).

V. RELATED WORK

To our current knowledge, our approach to defining malware
behaviour by patterns, comprising amounts of occurrences
of actions from defined behavioural categories, is unique.
However, there are research works worth mentioning, with
which we share some techniques and research ideas.

Anti-virus engines

Amount of recognised signatures Amount of all behavioural patterns

Amount of plain behavioural patterns

Percentage of behavioural patterns from recognised signatures

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1

100

10k

Fig. 3. Amount of malware types recognised under unique malware
signatures, amount of all behavioural patterns extracted from samples cor-
responding with these signatures, amount of plain behavioural patterns (with
no variations), and percentage of all behavioural patterns from amount of
recognised signatures, for 16 anti-virus engines, selected as highly reliable
based on independent anti-virus comparisons made by AV-Comparatives, AV-
test and VB100.

JANA ŠŤASTNÁ, MARTIN TOMÁŠEK: HIGH-LEVEL MALWARE BEHAVIOURAL PATTERNS: EXTRACTABILITY EVALUATION 571



Research of malware behaviour on the level of system
function calls is discussed in work of Canzanese, Kam and
Mancoridis [9]. They observed the amount of calls to system
kernel API per second for each kernel function separately
or for a sequence - two unique kernel functions. This is
quite similar to our approach, however, they observed amounts
of function calls for 235 different system functions, and we
used higher level of abstraction - instead of system functions
themselves as categories, we used types of actions based on
the area of their influence in the infected operating system.

Cho and Im use in their work [10] analysis of system
API call sequences for extracting patterns of API calls, which
should define malware samples belonging to the same malware
family. Authors were inspired by techniques of DNA sequenc-
ing from bioinformatics. Very interesting from our perspective
is that they categorised API functions into 13 categories,
according to their influence on host system resources: registry,

file system, process, service, network, socket, synchronization,

system, device, threading, hooking, misc., Windows. They
could serve as an inspiration for enhancing our categorisation
of behaviour.

Hellal and Romdhane statically extract function calls of
system API from analysed programs and divide them into 32
main categories of behaviour, with additional 4 subcategories
for 4 types of actions - open, read, write and close, so in total
128 behaviour categories are used [11]. They also observe
sequence of function calls, which is statically extracted from
a program as an API call graph. In comparison to our work,
they use more detailed description of behaviour, but mainly
their extensive fine-grained categorisation may serve for our
inspiration.

Various approaches of behaviour analysis in the area of
network security share the idea of pattern extraction, e.g. work
of Konorski et al. [12]. Despite similarity of the concept, it
is crucial to note that analysing network traffic and events
initiated through network is markedly different from analysing
actions performed during software execution.

VI. FUTURE WORK PROPOSAL

Regarding assembling of behavioural data from online ana-
lytic service, our software tool which carries out the task will
be adjusted for cooperating with more analytic services which
provide data, not only with Totalhash.

Beside 12 behavioural categories which are currently in-
cluded in our analytic system, also readable strings extracted
from executable code are available for each malware sample
which analytic report has been obtained from Totalhash ser-
vice. These readable strings have not yet been analysed.

We also considered to enhance number of analysed be-
havioural categories, e.g. by taking inspiration form work of
Cho and Im [10], mentioned in Related Work (Section V),
who use 13 behavioural categories in their experiments.

An interesting inspiration comes also from work of Hellal
and Romdhane, which was also mentioned in Related Work
(Section V). We could observe behavioural patterns built on

several different levels of malware behaviour categorisation,
and compare those patterns. Currently we employ 12 be-
havioural categories, but inspired by Hellal and Romdhane,
we could try to build patterns on 32 x 4 = 128 behavioural
categories from the same data set, and compare extractability
and relevance of those two levels of patterns.

From a long-term perspective, in our research we would
like to proceed with more detailed information about malware
behaviour, not only to observe amounts of behaviour occur-
rences in 12 behavioural categories, but to track e.g. which
specific system functions implement the behaviour, or whether
malware samples, belonging to the same malware signature,
use the same types of system functions.

ACKNOWLEDGMENT

This work was supported by the Slovak Research and
Development Agency under the contract No. APVV-15-0055
and by project KEGA no. 079TUKE-4/2017.

REFERENCES

[1] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for mal-
ware detection,” in Twenty-Third Annual Computer Security Applications

Conference, ACSAC 2007, Dec 2007. doi: 10.1109/ACSAC.2007.21 pp.
421–430.

[2] S. Josse, “Secure and advanced unpacking using computer emulation,”
Journal in Computer Virology, vol. 3, no. 3, pp. 221–236, 2007. doi:
10.1007/s11416-007-0046-0

[3] J. Stastna and M. Tomasek, “Exploring malware behaviour for im-
provement of malware signatures,” in IEEE 13th International Scientific

Conference on Informatics, 2015, Nov 2015. doi: 10.1109/Informat-
ics.2015.7377846 pp. 275–280.

[4] J. Št’astná and M. Tomášek, “The problem of malware packing and its
occurrence in harmless software,” Acta Electrotechnica et Informatica,
vol. 16, no. 3, pp. 41–47, 2016. doi: 0.15546/aeei-2016-0022

[5] J.-M. Borello and L. Mé, “Code obfuscation techniques for metamorphic
viruses,” Journal in Computer Virology, vol. 4, no. 3, pp. 211–220, 2008.
doi: 10.1007/s11416-008-0084-2

[6] H. R. Borojerdi and M. Abadi, “Malhunter: Automatic generation of
multiple behavioral signatures for polymorphic malware detection,” in
3th International eConference on Computer and Knowledge Engineering

(ICCKE), 2013, Oct 2013. doi: 10.1109/ICCKE.2013.6682867 pp. 430–
436.

[7] J. Št’astná and M. Tomášek, Characterising Malicious Software with

High-Level Behavioural Patterns, ser. Lecture Notes in Computer Sci-
ence. Springer International Publishing, 2017, vol. 10139, pp. 473–484.
doi: 10.1007/978-3-319-51963-0_37

[8] P. Hlinka, M. Tomášek, and J. Št’astná, “Collecting significant informa-
tion from results of malicious software analysis,” Electrical Engineering

and Informatics 7, pp. 103–108, 2016.
[9] R. Canzanese, M. Kam, and S. Mancoridis, “Toward an automatic,

online behavioral malware classification system,” in 2013 IEEE 7th

International Conference on Self-Adaptive and Self-Organizing Systems,
Sept 2013. doi: 10.1109/SASO.2013.8 pp. 111–120.

[10] I. K. Cho and E. G. Im, “Extracting representative api patterns of
malware families using multiple sequence alignments,” in Proceed-

ings of the 2015 Conference on Research in Adaptive and Conver-

gent Systems, ser. RACS. New York, NY, USA: ACM, 2015. doi:
10.1145/2811411.2811543 pp. 308–313.

[11] A. Hellal and L. B. Romdhane, “Minimal contrast frequent pattern
mining for malware detection,” Computers & Security, vol. 62, pp. 19
– 32, 2016. doi: https://doi.org/10.1016/j.cose.2016.06.004

[12] J. Konorski, P. Pacyna, G. Kolaczek, Z. Kotulski, K. Cabaj, and
P. Szalachowski, “Theory and implementation of a virtualisation level
future internet defence in depth architecture,” in Int. J. of Trust Man-

agement in Computing and Communications, vol. 1, no. 3, 2013. doi:
10.1504/IJTMCC.2013.056431 pp. 274–299.

572 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


