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Abstract—Compressed sensing represents an interesting ap-
proach in signal processing and reconstruction. The theory
involves a surprising number of branches of mathematics: linear
algebra, functional analysis, convex and non-convex optimization,
nonlinear approximation theory and probability. In general, the
applications of compressed sensing can be found (or searched)
wherever it is possible to express the signal in sparse represen-
tation in a “standard” base or in a base that was adjusted for
particular signal. Core applications of compressed sensing today
include image processing, signal denoising, image deblurring and
inpainting. This paper addresses analysis the influence of exter-
nal phenomena on the signal reconstruction using compressed
sensing in wireless sensor networks. Such external phenomena
include, for instance, additive white Gaussian noise (AWGN),
attenuation or time shift. Three acoustic input signals sparse
in frequency domain are used in experiments. The first one
with significant frequency band from 500Hz up to 700Hz.
The second signal with one significant frequency band from
2400Hz up to 3100Hz with considerable frequency bands between
0Hz to 1000Hz and 5000Hz to 6000Hz. The third signal used
is a synthesized artificial sound invented for the experiment
purposes only. It is strictly sparse in the frequency domain and
has exactly three frequency bands between 400Hz and 500Hz,
2000Hz and 2100Hz, 9000Hz and 9100Hz. The results show that
additive noise as well as attenuation have significant effect on the
reconstruction accuracy using the selected distribution scenario
and reconstruction method. On the other side, the time shift has
no significant effect on the reconstruction.

I. INTRODUCTION

A
WSN is a distributed system. Having this in mind, WSNs
can be used for distributing of compressed sensing task

[1]. This can be achieved such that the sensor nodes perform
the sampling part of the compressed sensing. The sinking
node(s) perform(s) the reconstruction part (see Fig. 1).

According to the basic definition of compressed sensing,
it is a modern method for signal representation and data
compression. It is based on the assumption that some (sparse)
signals can be reconstructed from such series of samples that
are considered to be incomplete [2], i.e. have insufficient

information value for proper signal reconstruction through

the sampling theorem. Such reconstruction is made of small
amount of samples - less than the sampling theorem deter-
mines.

The cornerstone of signal reconstruction using compressed
sensing - the ℓ1-minimization [2], which looks for the optimal
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Fig. 1. Distributing compressed sensing task over the wireless sensor nodes
(Compressed Sensing Method With Periodic Sampling Utilization)

representation of the signal in such base, where the signal
is sparse. In compressed sensing, the measurement matrix
A replaces the sampling process. This matrix determines the
weight of each sample that enters the reconstruction process
using ℓ1-minimization [3]. Sparse vector x represents samples
of the sensed signal. The reduced vector b is a condensed
version of x. The vector b is a product of multiplication of
the measurement matrix A and the vector of samples - x [3].

The wireless sensor networks are deployed in the real
environment. In this environment, a sensed signal is being
constantly influenced by different effects. In other words, the
success of the signal reconstruction depends on the influence
of external factors as well [4]. In case of WSNs, these fac-
tors include mainly noise, signal attenuation, wireless nodes’
asynchronous operation as well as signal time-shift due to the
spacial distribution of sensor nodes. Therefore, it is important
to reveal the impact of these phenomena on the measure

of accuracy of the original signal reconstruction. The term
measure of accuracy of the original signal reconstruction is in
this paper understood as a sum of squares from the difference
of the original signal x(i) and the reconstructed signal x̂(i). It
is knows as mean squared error, and in this paper it is marked
as µ:
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Fig. 2. Illustration of general idea of the Compressed Sensing Method With Periodic Sampling

1

N
·

N
∑

i=1

(

x(i)− x̂(i)
)2

= µ. (1)

The the method for WSNs (described in the further text) is
based on the fundamental concept of compressed sensing. This
includes measurement matrix A, vector of measured samples
x and a reduced vector of samples b. The actual reconstruc-
tion of the original signal is based on ℓ1-minimization. This
minimization is being performed on the sink node(s).

II. COMPRESSED SENSING METHOD (WITH PERIODIC

SAMPLING)

General idea of the compressed sensing is illustrated on the
figure 2. Let’s assume that the signal is sampled at equidistant
time instants, i.e. periodically. The result of sampling of the
input signal x(t) is a sequence of samples {x(q)} with length
Q. This sequence of samples is multiplied by the measurement
matrix A which has the size P ×Q where P ≪ Q.

The product of this multiplication is a reduced vector of the
samples b with length P . Such vector enters the reconstruction
process using ℓ1-minimization. The resulting sequence {x̂(q)}
represents the reconstructed signal.

The elements of the measurement matrix aij can be ran-
domly generated [5] as:

• Elements with Gauss coefficients (independently gener-
ated from a normal distribution with zero mean and
variance σν , i.e. N (0, σν));

• Bernoulli coefficients (elements that have values ± 1√
σν

);

• Binary values {0, 1} with matrix sparsity1 S .

It should be noted that the choice of the measurement matrix
A is itself a very difficult problem. Literature suggests that the
deterministic measurement matrix for specific applications is
almost impossible to construct, therefore randomly generated
matrices are used in practical scenarios [5], [6], [7]. The

1Matrix sparsity indicates the ratio of non-zero matrix elements over the
zero ones.

optimal choice of the statistical properties of the measurement
matrices is investigated by many researches with multiple
approaches [6], [7], [8], [9], [10]. In case of the Gaussian
matrix, the literature states that for matrix with dimensions
P × Q, the elements should be generated from a normal
(Gaussian) distribution with zero mean and variance equal to
either:

• σν = 1

Q
, i.e N (0, 1

Q
) or,

• σν = 1

P
, i.e N (0, 1

P
) but also,

• σν = 1, i.e N (0, 1).

Now, let’s suppose that each sensor node senses the same
signal. General idea of the investigated method stands on the
fact that each sensor node carries out multiplication of one line
of the same measurement matrix with the measured samples
[11]. The result is that a single node produces only a single
coefficient that represents one element of the reduced vector
b (see Fig. 2). This coefficient is then being sent to the sink
node where the reconstruction takes place. At first, the sink
node composes the reduced vector and then, this vector enters
the process of reconstruction by ℓ1-minimization.

III. CONDITIONS

In order to investigate the behavior of the mentioned
method, several experiments investigating performance under
external phenomena have been carried out.

The following three input signals have been used, which all
of them are sparse in frequency domain:

• Simplified version of the sound of Northern Raven;
• Simplified version of the sound of Bohemian Waxwing;
• An artificial signal designed especially as sparse in the

frequency domain. This signal is marked as Artificial

sparse signal.

The first signal is one with a single significant frequency
band starting at around 500Hz and ending at around 700Hz.
This signal is simplified and short version of the sound of
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the Northern Raven2 - (Corvus corax). The Discrete Fourier
Transform (DFT) is shown on Fig. 3.

Fig. 3. Simplified sound of the Northern Raven - a sparse signal in frequency
domain shown in the frequency domain (a single significant frequency band,
500Hz - 700Hz)

The second signal that is used in the simulations as an input
signal x(t) is a simplified and shortened version of the sound
of Bohemian Waxwing3 - (Bombycilla garrulus). The used
signal has one significant frequency band starting at around
2400Hz and ending at around 3100Hz. However, there are
also frequency bands that should be considered such as the
ones in 0Hz - 1000Hz and 5000Hz - 6000Hz. The DFT of the
signal is shown on Fig. 4.

Fig. 4. Simplified sound of the Bohemian Waxwing - a sparse signal in
frequency domain shown in the frequency domain (significant frequency band
2400Hz - 3100Hz)

The third signal used as an input for the simulations is a
synthesized artificial sound invented just for the experiment
purposes only. It is strictly sparse in the frequency domain.
It has three frequency bands: 400Hz - 500Hz, 2000Hz -
2100Hz and 9000Hz - 9100Hz. This signal was invented
for the reference and comparison of the performance of the
compressed sensing with real-world sparse signals. The DFT
of the signal is shown on Fig. 5.

All three presented signals are shown in the 10kHz band-
width. This means that a sampling scheme that can be used
without significant signal reconstruction error is to sample

2The original sound of the Northern Raven is from Xeno-Canto sound
database. http://www.xeno-canto.org/124411

3The original sound of the Bohemian Waxwing is from Xeno-Canto sound
database. http://www.xeno-canto.org/121467

Fig. 5. Artificial sparse signal - a sparse signal in frequency domain shown in
the frequency domain (significant frequency bands 400Hz - 500Hz, 2000Hz
- 2100Hz and 9000Hz - 9100Hz)

with sampling frequency equal to 20kHz (this comes out from
the sampling theorem). This produces 20 000 samples per
second (sps). The worst case scenario is to transmit all the
samples to the sinking node so that the reconstruction can be
performed there. However, the highest frequency component
of the Northern Raven signal is 2150Hz. In the case of
Bohemian Waxwing, the highest frequency component of this
particular signal is 7950Hz. The highest frequency component
of the artificial sparse signal is 9100Hz. Knowing the basic
information about the sampled signals, it can be concluded
that the first signal - simplified version of “Northern Raven”

signal - can be sampled as low as 4.3kHz which results in
producing 4 300 samples per second (sps) only. Similarly, the
second signal - simplified version of “Bohemian Waxwing”

signal - can be sampled by sampling frequency 15.9kHz,
which produces 15 900 samples per second (sps). The third
signal, an artificial sparse signal in frequency domain that
has been introduced for the simulation purposes only, has to
be sampled by at least 18.2kHz sampling frequency.

Experiment of compressed sensing that utilizes periodic
sampling is based on a network consisting of P sensor
nodes. These nodes perform sampling at periodic intervals, i.e.
with sampling frequency fs. This sampling frequency is the
same on all nodes. The sampling process generates a discrete
sequence {x(q)} that has Q elements. This sequence {x(q)} is
multiplied by the measurement matrix. In this experiment, the
measurement matrix is based on random Gaussian values. The
measurement matrix AP×Q is of size P ×Q and its elements
have values from the normal (Gaussian) distribution N (0, 1

P
).

Let’s consider the situation where the input signal is the
same for all sensor nodes. Compressed sensing task can be
parallelized such as each node performs sensing such as each
sensor executes operation corresponding to a single row of the
measurement matrix AP×Q. There are P nodes in the sensor
network. Each node ( i − th node) performs a series of Q

measurements:

Q
∑

j=1

aij · xj = bi ; i ∈ 〈1;P 〉. (2)

MICHAL KOCHLÁŇ, MICHAL HODOŇ: IMPACT OF EXTERNAL PHENOMENA IN COMPRESSED SENSING METHODS 859



The above relation reduces the sequence of measurements
into a single coefficient. The relation produces i − th co-
efficient of the reduced vector b, i.e. bi. These coefficients
{b1, . . . , bi, . . . bp} from all nodes in the WSN are being sent to
the sink node and in the sink node, reconstruction of the vector
b takes place. Afterwards, the reconstruction of the original
sensed signal is performed. This reconstruction is based on
the ℓ1-minimization [12]. The reconstruction based on the ℓ1-
minimization produces a discrete sequence representing the
original sensed signal {x̂(n)} n = 1, 2, . . . , Q.

In this particular case, the measurement matrix A has
1 000 × 20 000 = 20mil. elements, i.e. P = 1 000
and Q = 20 000. Thus, this simulates a thousand nodes
performing compressed sensing in the network. The elements
of the measurement matrix are randomly generated Gaussian
values from the normal distribution with zero mean value and
variance 1

1 000
, i.e. N (0, 1

1 000
). Dimension Q of the matrix is

chosen with respect to the sampling theorem.
For the experiment purposes, the measurement matrix is

generated as a single entity, i.e. not partially at each node.
Each sensor node performs the operations that correspond to
the matrix row for the particular node. Using this row, each
node performs calculation of the coefficient bi and transmits
this coefficient to the sink node.

IV. ACHIEVED RESULTS

For the experiment purposes and for investigation of the
behavior on the influence of the external phenomena, the
following phenomena are being investigated:

• Additive White Gaussian Noise;
• attenuation;
• time shift of the input signal;

In the simulation on the influence of the AWGN, the white

noise with zero mean value and normal distribution designated
as WN0 is considered. At the input of the individual sensors,
there is input signal xi(t) with mutually uncorrelated noise
ei(t) as follows:

xi(t) = x(t) + ei(t). (3)

The conducted experiment investigates the influence of the
noise on the measure of accuracy of the original signal

reconstruction µ. In particular, it shows the dependency of
µ on the statistical distribution of the AWGN, see Fig. 6.
The statistical distribution of the additive white noise has a
zero mean value and variance of normal (uniform) distribution
σi = Ts

i
; i ∈ 〈2, 3, 4, . . . , 10〉. Parameter Ts represents the

period of the sampling frequency fs. Since the sampling
frequency fs = 20kHz, the sampling period Ts = 50µs.

The numerical results show that as the variance of the
normal distribution of the AWGN grows, the measure of the
accuracy of the reconstruction increases as well. Significant
change of the mean squared error of the signal reconstruction
is located between σi values Ts

8
and Ts

7
. The overall perfor-

mance of this method in signal reconstruction degrades from
6.94% error rate at σi =

Ts

8
to 14.56% error rate at σi =

Ts

7
.

Fig. 6. Dependency of the measure of accuracy of the original signal
reconstruction µ on the statistical distribution of the AWGN represented by
white noise variance σi

TABLE I
NUMERICAL RESULTS OF µ [%] DEPENDING ON THE STATISTICAL

DISTRIBUTION OF THE AWGN REPRESENTED BY WHITE NOISE VARIANCE

σi

Input signal \ σi
Ts

10

Ts

9

Ts

8

Ts

7

Ts

6

Ts

5

Ts

4

Ts

3

Ts

2

Artificial sparse signal 3.44 4.03 5.13 11.60 13.80 14.37 18.15 18.99 21.87
Northern Raven 5.83 6.24 6.96 15.59 16.45 18.15 22.04 23.79 26.20
Bohemian Waxwing 6.15 6.70 8.73 16.48 17.80 20.74 23.98 25.83 27.23

For AWGN variance up to around Ts

8
the mean squared

error of the reconstruction keeps under 10%, for Artificial

sparse signal the average reconstruction error equals 4.20%.
However, this is the synthetic signal. On the other hand, real-
life signals perform a little worse, e.g. simplified sound of the
Northern Raven has average value of mean squared error of the
reconstruction 6.34% for in the AWGN variance up to around
Ts

8
. Simulation of reconstruction of the simplified sound of

the Bohemian Waxwing has the average equal to 7.19% in the
same variance limit.

The next conducted experiment investigates the dependency
of µ on the Signal-to-Noise Ratio (SNR), see Fig. 7. The
noise level begins at 30dB and degrades to 10dB. AWGN
with zero mean value and variance σ = Ts

8
has been used in

this simulations. Parameter Ts denotes period of the sampling
frequency fs, which equals 20kHz.

TABLE II
NUMERICAL RESULTS OF THE MEASURE OF ACCURACY OF THE ORIGINAL

SIGNAL RECONSTRUCTION µ [%] DEPENDING ON THE SNR

Input signal \ SNR [dB] 10 12 14 16 18 20 22 24 26 28 30

Artificial sparse signal 34.64 30.10 25.14 18.16 14.43 10.46 7.26 6.69 6.11 4.64 3.96
Northern Raven 36.53 32.24 29.37 22.21 16.76 13.46 8.69 7.48 7.59 5.77 4.55
Bohemian Waxwing 37.76 35.51 32.96 23.88 17.86 14.59 9.08 8.50 7.82 6.42 5.43

The results reveal that the measure of the accuracy of
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Fig. 7. Dependency of the measure of accuracy of the original signal
reconstruction µ on the SNR

the reconstruction (µ) via mentioned reconstruction method
performs good when SNR keeps above 22dB. Then, the
mean squared error of the reconstruction stays below 10%.
For example, the average error for Artificial sparse signal

is 5.73% when SNR stays above 22dB. Simplified sound of
the Northern Raven has average value of mean squared error
in the same range 6.82%. Similarly, simplified sound of the
Bohemian Waxwing has the average error 7.45% for SNR more
than 22dB. The overall performance on reconstruction error
of the proposed method on all investigated input signals is
6.67% for SNR more than 22dB.

This experiment as well as the previous one proves that the
described reconstruction method does not suit well for recon-
struction of acoustic signals in noisy environment. Advanced
processing techniques for noise suppression has to be utilized.
Having low noise acoustic input signals, this method provides
good reconstruction performance with error up to 10%. Having
environment with SNR higher than 22dB enables this method
to perform with good results. Then, the mean squared error of
the original signal reconstruction stays below 10%.

Another phenomenon that influences the sensed signal is
called attenuation. In other words, the attenuation modifies
the amplitude(s) of the input signal - it scales the original
signal on the inputs of the nodes. This phenomenon can be
expressed mathematically as the following relation:

xi(t) = ki · x(t). (4)

In this experimental scenario each of the sensors in the
network senses an input signal which is scaled by the scaling
coefficients ki. These coefficient are randomly generated from
normal (Gaussian) statistical distribution with mean value
equal to 0.5 and with variance equal to 1, i.e. N (0.5, 1). Based
on their values, several groups with different root mean square

(RMS) values have been formed. The output of this simulation
is the dependency of the measure of accuracy of the original

signal reconstruction µ on the effective value (RMS) of the
scaling coefficients krms, as shown on Fig. 8.

Fig. 8. Dependency of the measure of accuracy of the original signal re-
construction µ on effective value of the scaling coefficients krms (performed
with Compressed Sensing Method Using Periodic Sampling)

TABLE III
NUMERICAL RESULTS OF THE MEASURE OF ACCURACY OF THE ORIGINAL

SIGNAL RECONSTRUCTION µ REGARDING THE EFFECTIVE VALUE OF THE

SCALING COEFFICIENTS krms

Input signal \ krms 0.2 0.4 0.6 0.8 1

Artificial sparse signal 24.12 9.68 6.75 5.83 4.68
Northern Raven 25.49 12.44 7.96 6.46 5.68
Bohemian Waxwing 29.47 13.81 8.71 7.61 6.02

The results show significant increase of the reconstruction
error µ for the effective value of the scaling coefficients higher
than 0.6. Significant change of the mean squared error of
the signal reconstruction is located between krms values 0.6
and 0.4. The overall performance of this method in signal
reconstruction degrades from 7.81% error rate at krms = 0.6
to 11.98% error rate at krms = 0.4.

Having Artificial sparse signal, the average reconstruction
error is 5.75% for effective value of the scaling coefficients
from 0.6 to 1.0. The average reconstruction error within the
same interval equals 6.70% for simplified sound of the North-

ern Raven. Simplified sound of the Bohemian Waxwing has
the average error of the reconstruction in the range 0.6− 1.0
equal to 7.45%.

It can be concluded that the mentioned reconstruction
method performs well with attenuated signals that are attenu-
ated not less than 60% of the amplitude in average.

Major impact on the success rate of the reconstruction in the
sinking node has also signal shift at individual sensor nodes.
This can be expressed as:
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xi(t) = x(t− τi). (5)

The shift τi expresses different distances of the nodes from
a common source of the sensed signal. The coefficients of the
time shift are for the experimental purposes generated from
normal statistical distribution with a mean value equal to 0
and variance σi = i · Ts; i ∈ 〈1, 2, 3, . . . , 10〉. Parameter Ts

represents the period of the sampling frequency fs, which
equals 20kHz. Thus, the sampling period Ts = 50µs. The
output of this experiment is the dependency of µ on the time
shift expressed by σi, see Fig. 9.

Fig. 9. Dependency of the measure of accuracy of the original signal
reconstruction µ on the time shift variance σi

The results show that the accuracy of the original signal
reconstruction (µ) performs very well for time shift up to 8
fold of the sampling period Ts.

The average error for Artificial sparse signal in all per-
formed simulations is 6.29%. Simplified sound of the North-

ern Raven has average value of mean squared error for all
simulations of the time shift equal to 7.53%. Simplified sound
of the Bohemian Waxwing has the average error 8.47%. The
overall performance on reconstruction error of the proposed
method on all investigated input signals is 5.60% for time
shift variance σi < 8 · Ts.

Since the time shift of the input signal can vary in time, the
results show mild resistance of the proposed method on the
time shift of the input signal.

V. DISCUSSION ON ACHIEVED RESULTS

This method, Compressed Sensing Method Using Periodic

Sampling, requires sampling on the periodic basis on all nodes
in the WSN. Therefore, sampling performed on each of the
nodes was done under sampling frequency fs = 20kHz. This
produces 20 000 samples per second. However, the reduction
part of the proposed method (equation 2), reduces these 20

TABLE IV
NUMERICAL RESULTS OF THE MEASURE OF ACCURACY OF THE ORIGINAL

SIGNAL RECONSTRUCTION µ [%] DEPENDING ON THE TIME SHIFT

VARIANCE σi

Input signal \ σi 10 · Ts 8 · Ts 6 · Ts 4 · Ts 2 · Ts 0 · Ts

Artificial sparse signal 10.06 8.65 5.71 5.49 4.16 3.66
Northern Raven 12.67 10.39 6.56 6.28 5.26 4.03
Bohemian Waxwing 13.79 11.02 8.17 6.40 5.99 5.45

000 samples into a single one on each of the nodes. Having
1 000 nodes in all experiments, the overall compression ratio
is 1:20.

The investigated method requires only 1 000 samples to be
transmitted to the sink node in order to properly reconstruct
the original signal with certain accuracy (in average µ < 10%).
Therefore, from the point of reduction of the samples, neces-
sary to be sent over the network for reconstruction in the sink
node, the proposed method is 20 times better than the case
where all the samples obtained using the sampling theorem.
This can be applied for all investigated input signals.

The aforementioned applies for the sampling frequency
fs = 20kHz. However, based on the nature of the figure
investigated signals and their maximal frequency component,
the input signals can be sampled by lower frequency using
sampling theorem:

• simplified sound of the Northern Raven fs_raven =
4.3kHz;

• simplified sound of the Bohemian Waxwing fs_waxwing

= 15.9kHz;
• Artificial sparse signal fs_artificial = 18.2kHz.

Following the consideration that for the simplified sound
of the Northern Raven only fs_raven is enough, then this
proposed method is just 4 times better from the point of
reduction of the samples necessary to be sent to the sink
node. Similarly, considering fs_waxwing and simplified sound
of the Bohemian Waxwing as an input signal, this method
gives almost 16 times better performance. Having Artificial

sparse signal as an input signal and considering fs_artificial,
this method is 18 times better regarding the reduction of the
samples required to be sent to the sink node.

From the point of the sampling process, this method brings
no saving of the sampled values over the sampling theorem.
This comes out of form the method design since it uses
sampling pattern based on the periodic sampling following
the sampling theorem. This method saves only data that are
being sent from the nodes to the sinking node.

VI. CONCLUSION

The results show that the mentioned method for recon-
struction of the acoustic signals does not suit well for the
reconstruction of signals in noisy environment. For all three
simulation scenarios and all three input signals, the depen-
dency of the measure of the accuracy of the reconstruction µ

has increasing and nonlinear character. This is obvious where
mean squared error of the reconstruction is less than 10%

862 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



only for SNR higher than 22dB. The variance of AWGN
should be lower than 12.5% of the sampling period Ts. The
experiments investigating effect of the AWGN and SNR show
that the selected reconstruction method is sensitive to the
noise. Therefore, it is more suitable for reconstructing signals
in the environment with low noise levels.

The attenuation has significant effect only in case of higher
attenuation level across the network. In other words, the
described method can successfully reconstruct the original
signal when the amplitude at most of the sensors is attenuated
less than the 50% of the original signal’s amplitude.

The simulations proved that time shift of the input signal
does not significantly influence the reconstruction via com-
pressed sensing methods. The mean squared error is mostly
less than 10% for time shift up to ten fold of the sampling
period. The time shift of the input signal can vary in time, thus,
the results show mild resistance of the proposed methods on
the time shift of the sensed signal.

Motivation of this work is related to the investigation of
reconstruction methods form target localization WSN and
distributed compressed sensing with perspective energy ef-
ficiency. The results of this paper show that Compressed
Sensing Method using Periodic Sampling as described earlier
can save the number of samples being sent to the sink node
and thus reducing energy consumed by transmission. However,
saving on signal processing does not come to effect since
compressed sensing with periodic sampling requires periodic
processing of the sensed values. Nevertheless, there are more
compressed sensing methods for investigation, therefore, the
future work includes utilization and performance comparison
of Compressed Sensing Method Using Random Sampling

Generated By Measurement Matrix or Modified Compressed
Sensing Method Using Random Sampling [13], [8].
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