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Abstract—In this paper we present the methodology of imple-
menting a new enhancement of the Mizar proof checker based on
enabling special processing of Euclidean predicates, i.e. binary
predicates which fulfill a specific variant of transitivity postulated
by Euclid. Typically, every proof step in formal mathematical
reasoning is associated with a formula to be proved and a list
of references used to justify the formula. With the proposed
enhancement, the Euclidean property of given relations can be
registered during their definition, and so the verification of some
proof steps related to these relations can be automated to avoid
explicit referencing.

I. INTRODUCTION

T
HE Mizar system [1], [2], [3] is a computer proof-

assistant system used for encoding formal mathematical

data (definitions and theorems) and verifying mathematical

proofs. The system comprises a dedicated formal computer

language – the Mizar language, a collection of command-line

tools including the VERIFIER and a repository of formal texts

– Mizar Mathematical Library (MML) that have been written

in the Mizar language and machine-verified for their logical

correctness by the VERIFIER.

The Mizar language preserves many features of natu-

ral language mathematical writing. It is designed to write

declarative-style documents both readable for humans and

effectively processed by computers.1 The feature-rich language

enables producing rigorous and semantically unambiguous

texts. Apart from rules for writing traditional mathematical

items (e.g. definitions, lemmas, theorems, proof steps, etc.)

it also provides syntactic constructions to launch specialized

algorithms for processing particular mechanisms (e.g. term

identifications, term reductions [7], flexary connectives [8])

increasing computational power of VERIFIER (e.g. equational

calculus [9], [10]). There have also been experiments on using

specialized external systems to increase computational power

of the Mizar system in selected domains [11], [12], [13].

Mizar allows registering various properties of predicates

and functors [14] when defining new notions. Let us briefly

recall that the set of currently implemented properties in-

cludes involutiveness and projectivity for unary

operations, as well as commutativity and idempotence

for binary operations. As far as binary predicates are con-

cerned, which is directly related to the topic of this pa-

per, the current version of the Mizar system supports reg-

istering reflexivity, irreflexivity, symmetry,

asymmetry and connectedness. The transitivity

1The legibility of proofs is a subject of ongoing research [4], [5], [6].

property has been analyzed and implemented most recently

[15].

Table I presents how many registrations of predicate prop-

erties are used in the MML. The data has been collected

with Mizar Version 8.1.05 working with the MML Version

5.37.1275.2

Property Occurrences Articles

reflexivity 138 91

irreflexivity 11 10

symmetry 122 82

asymmetry 6 6

connectedness 4 4

total 281 119
Table I

PREDICATE PROPERTIES OCCURRENCES

On the other hand, Table II shows the impact of registering

predicate properties for proofs stored in the library as the

number of errors occurring after removing registrations of the

properties from texts, and the numbers of articles with such

errors.

Property Errors Affected articles

reflexivity 356 44

irreflexivity 9 2

symmetry 498 47

asymmetry 6 4

connectedness 65 4

total 934 73
Table II

PREDICATE PROPERTIES IMPACT

In this paper we propose strengthening the Mizar system

by implementing the representation of two new properties –

rightEuclidean and leftEuclidean.3 The properties

are described in Section II. In Section III we present some

examples of Euclidean properties found in the current MML.

In Section IV we indicate several directions of further devel-

opment of processing properties in Mizar.

II. THE EUCLIDEAN PROPERTY

An example of a property which does not have its corre-

sponding representation in Mizar yet is the Euclidean property.

2Computations were carried out at the Computer Center of University of
Białystok http://uco.uwb.edu.pl

3An experimental version of the VERIFIER executable file for the Linux
platform implementing the new features as well as other supplementary
resources required for it to work with the current MML are available at
http://alioth.uwb.edu.pl/~artur/euclidean/euclidean_ver.zip.
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This property appears, most notably, in the set of axiomatic

statements given at the start of Book I of Euclid’s The

Elements [16] as Common Notion 1, which states that: Things

which are equal to the same thing are also equal to each

other. 4 Formally speaking, a binary relation R on a set X is

Euclidean (sometimes called right Euclidean) if it satisfies the

following condition: ∀a, b, c ∈ X (aR b ∧ aR c → bR c).

Dually, a relation R on X may be called left Euclidean if

∀a, b, c ∈ X (bR a ∧ cR a → bR c).

The property of being Euclidean is a variant of transitivity,

but the properties are indeed different. A transitive relation

is Euclidean only if it is also symmetric. Only a symmetric

Euclidean relation is transitive. A relation which is both

Euclidean and reflexive is also symmetric and therefore it is

an equivalence relation.

In the sequel we describe an enhancement of the Mizar sys-

tem supporting automatic processing of Euclidean predicates.

The automation involves specific computations performed dur-

ing the verification process.5

To enable such an automation, when a new predicate is

being defined, if it is Euclidean, it should be declared as such.

The declaration is placed within a definitional block with the

following Mizar syntax for right Euclidean:

definition

let x1 be θ1, x2 be θ2, . . . , xn be θn, y1, y2 be θn+1;

pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
rightEuclidean

proof

thus for a, b, c being θn+1

st Φ(x1, x2, . . . , xn, a, b) & Φ(x1, x2, . . . , xn, a, c)
holds Φ(x1, x2, . . . , xn, b, c);

end;

end;

and left Euclidean, respectively:

definition

let x1 be θ1, x2 be θ2, . . . , xn be θn, y1, y2 be θn+1;

pred π(y1, y2) means :ident:

Φ(x1, x2, . . . , xn, y1, y2);
leftEuclidean

proof

thus for a, b, c being θn+1

st Φ(x1, x2, . . . , xn, b, a) & Φ(x1, x2, . . . , xn, c, a)
holds Φ(x1, x2, . . . , xn, b, c);

end;

end;

The statements of the formulas of correctness proofs shown

in both the above definitions must be proved according to

a special formula expressing the corresponding property of

the defined predicate. For example, having such a definition,

whenever VERIFIER meets a conjunction of formulas π(a, b)
and π(a, c) within an inference, and the predicate π is known

to be right Euclidean, then the set of premises in the inference

is enlarged by the automatically generated formula π(b, c),
which may help to justify the proof step.

4https://proofwiki.org/wiki/Axiom:Euclid%27s_Common_Notions
5Other such automations are, for example, processing of adjectives [17]

and definitional expansions [18].

It should be noted that the form of definitions and a corre-

sponding correctness proof can in general be more complicated

when the definition has several cases. Below is a formal repre-

sentation of the correctness proof structure in the case of a def-

inition with three explicit cases (Γ1(x1, x2, . . . , xn, y1, y2),
Γ2(x1, x2, . . . , xn, y1, y2) and Γ3(x1, x2, . . . , xn, y1, y2)) as

well as the default case (introduced by otherwise):

definition

let x1 be θ1, x2 be θ2, . . . , xn be θn, y1, y2 be θn+1;

pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;

rightEuclidean

proof

thus for a, b, c being θn+1 st

(

(Γ1(x1, x2, . . . , xn, a, b) implies Φ1(x1, x2, . . . , xn, a, b)) &

(Γ2(x1, x2, . . . , xn, a, b) implies Φ2(x1, x2, . . . , xn, a, b)) &

(Γ3(x1, x2, . . . , xn, a, b) implies Φ3(x1, x2, . . . , xn, a, b)) &

(not Γ1(x1, x2, . . . , xn, a, b) &

not Γ2(x1, x2, . . . , xn, a, b) &

not Γ3(x1, x2, . . . , xn, a, b) implies

Φn(x1, x2, . . . , xn, a, b)) &

(Γ1(x1, x2, . . . , xn, a, c) implies Φ1(x1, x2, . . . , xn, a, c)) &

(Γ2(x1, x2, . . . , xn, a, c) implies Φ2(x1, x2, . . . , xn, a, c)) &

(Γ3(x1, x2, . . . , xn, a, c) implies Φ3(x1, x2, . . . , xn, a, c)) &

(not Γ1(x1, x2, . . . , xn, a, c) &

not Γ2(x1, x2, . . . , xn, a, c) &

not Γ3(x1, x2, . . . , xn, a, c) implies

Φn(x1, x2, . . . , xn, a, c))
) holds

(

(Γ1(x1, x2, . . . , xn, b, c) implies Φ1(x1, x2, . . . , xn, b, c)) &

(Γ2(x1, x2, . . . , xn, b, c) implies Φ2(x1, x2, . . . , xn, b, c)) &

(Γ3(x1, x2, . . . , xn, b, c) implies Φ3(x1, x2, . . . , xn, b, c)) &

(not Γ1(x1, x2, . . . , xn, b, c) &

not Γ2(x1, x2, . . . , xn, b, c) &

not Γ3(x1, x2, . . . , xn, b, c) implies

Φn(x1, x2, . . . , xn, b, c))
);

end;

end;

The proof for a left Euclidean predicate with an analogous

set of conditions would look like this:

definition

let x1 be θ1, x2 be θ2, . . . , xn be θn, y1, y2 be θn+1;

pred π(y1, y2) means :ident:

Φ1(x1, x2, . . . , xn, y1, y2) if Γ1(x1, x2, . . . , xn, y1, y2),
Φ2(x1, x2, . . . , xn, y1, y2) if Γ2(x1, x2, . . . , xn, y1, y2),
Φ3(x1, x2, . . . , xn, y1, y2) if Γ3(x1, x2, . . . , xn, y1, y2)
otherwise Φn(x1, x2, . . . , xn, y1, y2);

consistency;

leftEuclidean

proof

thus for a, b, c being θn+1 st

(

(Γ1(x1, x2, . . . , xn, b, a) implies Φ1(x1, x2, . . . , xn, b, a)) &

(Γ2(x1, x2, . . . , xn, b, a) implies Φ2(x1, x2, . . . , xn, b, a)) &

(Γ3(x1, x2, . . . , xn, b, a) implies Φ3(x1, x2, . . . , xn, b, a)) &

(not Γ1(x1, x2, . . . , xn, b, a) &

not Γ2(x1, x2, . . . , xn, b, a) &

not Γ3(x1, x2, . . . , xn, b, a) implies

Φn(x1, x2, . . . , xn, b, a)) &

(Γ1(x1, x2, . . . , xn, c, a) implies Φ1(x1, x2, . . . , xn, c, a)) &

(Γ2(x1, x2, . . . , xn, c, a) implies Φ2(x1, x2, . . . , xn, c, a)) &

(Γ3(x1, x2, . . . , xn, c, a) implies Φ3(x1, x2, . . . , xn, c, a)) &
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(not Γ1(x1, x2, . . . , xn, c, a) &

not Γ2(x1, x2, . . . , xn, c, a) &

not Γ3(x1, x2, . . . , xn, c, a) implies

Φn(x1, x2, . . . , xn, c, a))
) holds

(

(Γ1(x1, x2, . . . , xn, b, c) implies Φ1(x1, x2, . . . , xn, b, c)) &

(Γ2(x1, x2, . . . , xn, b, c) implies Φ2(x1, x2, . . . , xn, b, c)) &

(Γ3(x1, x2, . . . , xn, b, c) implies Φ3(x1, x2, . . . , xn, b, c)) &

(not Γ1(x1, x2, . . . , xn, b, c) &

not Γ2(x1, x2, . . . , xn, b, c) &

not Γ3(x1, x2, . . . , xn, b, c) implies

Φn(x1, x2, . . . , xn, b, c))
);

end;

end;

III. EXAMPLES

To search for examples of predicates that fulfill the Eu-

clidean properties one needs to use a parser capable of process-

ing MML articles. For example, there is a free customizable

parser6 [19] implemented using the popular open-source GNU

parser generator suite: flex and bison that gets in line with

the free license on which the Mizar Mathematical Library is

distributed [20]. It should be noted that the parser works with

the “Weakly Strict Mizar” (WS-Mizar) representation of Mizar

texts. With the current Mizar system one can generate a WS-

Mizar document from a Mizar article using the wsmparser

tool. Customized parsing actions allow filtering out theorems

stated as implications resembling the Euclidean conditions,

i.e. in which the antecedent contains a conjunction of two

instances of predicative formulas and the consequent is also

the same predicate (with appropriately instantiated variables).

As a result, such theorems could be eliminated from the MML

in order to avoid redundancy [21].

Our first example of a definition which naturally possesses

the Euclidean property comes from a Mizar article about

Tarski’s classes and ranks [22].

definition

let F,G be Relation;

pred F,G are_fiberwise_equipotent means

for x being object holds

card Coim(F,x) = card Coim(G,x);

reflexivity;

symmetry;

end;

It should be noted that the properties of reflexivity

and symmetry have already been identified and proved for

this definition.

The Euclidean property of this definition is expressed as

theorem CLASSES1:76:

theorem

for F,G,H being Function

st F,G are_fiberwise_equipotent &

F,H are_fiberwise_equipotent holds

G,H are_fiberwise_equipotent

6It can be downloaded from a dedicated Git repository https://github.com/
MizarProject/wsm-tools. The distribution includes a simple Makefile for use
with GNU make, which contains instructions to generate both the lexer
and parser source code and build an executable called wsm-parser with
customized syntactic actions.

The above theorem is quite popular (in total it is referenced

54 times in 12 various Mizar articles). In order to be possibly

as general as in the original definition, i.e. the equipotence

should be provable for arbitrary relations. This theorem can

obviously be generated without any problems to this form:

theorem

for F,G,H being Relation

st F,G are_fiberwise_equipotent &

F,H are_fiberwise_equipotent holds

G,H are_fiberwise_equipotent

Another example of a theorem stating the right Euclidean

property for a binary predicate is located in an article about

midpoint algebras, in particular its theorem MIDSP_1:21

[23]:

theorem Th21:

p ## q & p ## r implies q ## r

This theorem does not have any references in the library

yet.

Another example comes from a Mizar article devoted to

parallelity spaces [24].

definition

let PS be non empty ParStr;

let a,b,c,d be Element of PS;

pred a,b '||' c,d means

[[a,b],[c,d]] in the CONGR of PS;

end;

Defining a new shortcut type for nonempty parallelity spaces

and reserving the type for free variables including a, b, c and

d to be used in the sequel

definition

mode ParSp is ParSp-like non empty ParStr;

end;

reserve PS for ParSp,

a,b,c,d for Element of PS;

the article provides the following theorem PARSP_1:35:

theorem Th35:

a,b '||' a,c & a,b '||' a,d implies

a,b '||' c,d

This theorem is referenced twice, only in the article intro-

ducing the notion. The above example is particularly inter-

esting, because it shows that the Euclidean property can also

be interpreted for predicates with more than two parameters.

Namely, in this case the '||' predicate has four nominal

arguments, but if we fix the first pair and consider only the

last two, then the theorem clearly states a variant of the right

Euclidean property.

IV. CONCLUSIONS AND FURTHER WORK

This work falls under the continuous development of the

Mizar system aimed at a still better representation of mathe-

matical concepts taken for granted by working mathematicians

in their writings. Following the addition of some automation

for such commonly used relation properties like reflexivity,

irreflexivity, symmetry, asymmetry, antisymmetry and most
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recently transitivity, we report on the experiment of imple-

menting the left- and right- Euclidean properties. The number

of Euclidean predicates detected in the current Mizar library

is not big, but enriching the set of properties automatically

processed by the VERIFIER is potentially useful for developing

further formalizations in a more natural way without explicit

references to theorems stating ‘naturally obvious’ properties.

The availability of various properties might in future result

in devising ways of handling collections of properties which

often go together, e.g. the equivalence relation being a con-

junction of three properties.

Another direction of future development might be connected

with the extension of predicate properties for the ones which

are not necessarily binary, but can be treated as such if we fix

the values of their arguments. In general, properties known

for binary predicates, can be introduced for n-ary predicates,

where 2 ≤ n, with n− 2 fixed arguments.
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