
Leveraging virtualization for scenario based IoT
application testing

Tomasz Szydlo
AGH University of Science and Technology,

Department of Computer Science, Krakow, Poland
Email: tszydlo@agh.edu.pl

Joanna Sendorek
AGH University of Science and Technology,

Department of Computer Science, Krakow, Poland
Email: send.joanna@gmail.com

Abstract—From day to day we can observe an increasing
adoption of Internet of Things in the world. Number of devices
connected to the Internet is constantly growing. At the same
time, the applications are getting more and more complex and its
development becomes more difficult and requires testing. Access
to the IoT testbed and possibility to execute the subsequent
version of application in the same environmental conditions is
desirable. In the paper, we present the concept of virtual testing
environment which enables a possibility to create on demand
Linux virtual devices which have access to virtual sensors and
effectors deployed in the emulated environment driven by the
user defined scenarios.

I. INTRODUCTION

T
HE Internet of Things settles rapidly in the world. Not
only in the Smart City initiatives [1], smart homes,

agriculture [2], but also enterprise adoption of the Internet of
Things (IoT) [3] is starting to gain momentum. The concept of
Industry 4.0 where machines will communicate directly with
each other providing more flexible production setup and ability
to react to changing conditions, increases the data variety,
volume and the necessity of data processing at the network
edge [4].

IoT applications are getting more and more complex which
causes their implementation very challenging and error prone
thus the application testing is necessary. There are several tools
simplifying testing process. For example, in cloud platforms
[5] such as Samsung Artik or IBM IoT there are the device
simulation modules which are able to generate randomized
data in order to verify the processing in the clouds. At the
same time, WSN testbeds [6] are designed to verify low
level interactions between devices. Such testbeds constitutes of
several, sometimes even hundreds or thousands, of nodes de-
ployed in the particular place. Additional infrastructure enables
a possibility for node programming and debugging. There
are also projects aimed at testing networking in the virtual
environments. The ns-3 project [7] is a discrete event network
simulator developed for networking research using the network
and protocols models. In contrast, the CORE [8] emulator
is a tool for emulating networks on one or more machines
using lightweight Linux virtualization. Unfortunately, these
solutions does not allow testing the whole IoT stack for data-
driven application where the processing depends on the data
gathered by the sensors. This is especially important in the
Fog Computing concept [9], [10] where computations from

the cloud are moved closer to the sensors in order to decrease
the processing latency and data throughput from the sensors
to the cloud through the Internet [4].

In the paper, we propose the concept of virtualized platform
for testing IoT applications which enables a possibility to
create virtual devices which along with real embedded devices
could be put in the emulated environment driven by the
scenarios. Devices instead of reading data from real sensors
will be using virtual ones located in the virtual environment.
This enables a possibility to repetitively execute the testing
scenarios and observing how the new versions of tested
application behave facing the same readings from the sensors.
Moreover, such virtual environment composed of the virtual
devices can be set up on almost any computer simplifying the
development process of the IoT applications. In the paper we
are focusing on the Linux based IoT devices but the presented
concept can be further extended to cover other types of the
devices.

The scientific contributions of the paper are: (i) introduction
of Linux based embedded devices virtualization concept (ii)
introduction of sensors virtualization concept (iii) event-driven
environment emulation framework (iv) use case showing the
functionalities of the framework.

The rest of the paper is organized as follows. Section II
describes the virtualization of linux based IoT devices. In
section III the scenario based testing and the environment
emulation is discussed, while in section IV case study is
presented. The last section summarizes the paper.

II. VIRTUALIZATION OF LINUX BASED IOT DEVICES

Operating systems based on the Linux kernel are used in
embedded systems such as consumer electronics, personal
video recorders, networking devices, industrial automation and
IoT. They differs in kernel versions, available modules and
standard libraries. Nevertheless, due to the fact that they are
all based on Linux kernels, most of the software can be used
on any of these platforms.

In the Linux OS for embedded systems, access to the device
peripherals is usually achieved by the files in the /sys folder
which are there exposed by the kernel modules. Pin numbers
and their functionalities varies between embedded boards, so
the applications have to be customized for particular hardware.

Communication papers of the Federated Conference on
Computer Science and Information Systems, pp. 229–235

DOI: 10.15439/2017F394
ISSN 2300-5963 ACSIS, Vol. 13

c©2017, PTI 229

In order to simplify the application development, Intel
implemented the two libraries - MRAA1 and UPM2. First
one is for low speed IO communication in C with bindings
for C++, Python, Node.js and Java. It supports generic plat-
forms, as well as Intel Edison, Intel Joule and Raspberry
Pi. It provides access, among others, to the GPIO (General
Purpose Input/Output), ADC (analog-to-digital converter), I2C
(Inter-Integrated Circuit) and UART (universal asynchronous
receiver/transmitter) interfaces. The second one - UPM - is a
high level repository that provides software drivers for a wide
variety of commonly used sensors and effectors. It contains
routines for accessing real sensors such as temperature sen-
sors e.g. Texas Instruments LM353, humidity e.g. Sensirion
SHT314 and others. These software drivers interact with the
underlying hardware platform through calls to MRAA APIs.
The idea is presented in Fig.1a.

For the purpose of device virtualization, it was necessary
to virtualize the device and the hardware interfaces for con-
necting external peripherals and sensors. We have decided to
virtualize the device using Docker containers, while for hard-
ware interfaces virtualization, two solutions were considered:

• implementation of Linux kernel modules emulating the
real hardware and placing particular files in /sys folder,

• modification of the system libraries that covers nuances of
linux distributions and provides unified API for the users
- in that case the aforementioned Intel MRAA which is
open sourced and used in several projects.

We have decided to implement interface virtualization by
modifying MRAA library. The decision was dictated by the
fact, that the library covers several hardware platforms and
enables possibility to use UPM library. Communication be-
tween the modified v-MRAA library on the Linux based
device (real or Docker based) and the emulated environment
is message driven. It is based on MQTT which is a much
used light-weight publish/subscribe communication protocol.
Currently, the GPIO and ADC peripherals are supported.
Realization of the I2C and UART protocols is in progress
and is out of scope of this paper. Fig.1b depicts the situation
where embedded device is connected to virtual sensors through
emulated interface. In order to use UPM library for reading
values from virtual sensors using routines for real ones, their
internal logic must be implemented in environment emulation
framework, which is discussed in the next section.

Fig.1c depicts the situation, where the real embedded device
instead of real sensors is connected to sensor emulation
module. The concept is further elaborated in the previous work
[11].

III. SCENARIO BASED TESTING

One of the biggest issues behind complex system testing
of IoT solutions, which are based on sensors and real data

1http://mraa.io
2https://github.com/intel-iot-devkit/upm
3www.ti.com
4https://www.sensirion.com

processing, is lying in the unpredictability of surrounding
world and its changing conditions being the input for the
system. While the separate components could be mocked for
testing purposes, the necessity for being able to reproduce
particular changes of the whole conditions, often dependent
on each other, seems to be gaining in importance with more
emerging IoT applications based on sensors measurements.
The concept of applying the scenario-based testing to simulate
behavior of external conditions, its influence on devices and
interactions between them, is presented in this paper. We
have made assumption that not only should person writing
a scenario be able to specify exactly what is happening at the
given time or under certain conditions, but also be able to
apply potentially non deterministic mathematical model as the
simulation base. This approach enables testing of the whole
application including data analysis models and real data pro-
cessing. In the least complex variant, the mathematical model
could be reduced to replaying already recorded measurements.

A. Environment emulation

Emulation model presented in the paper consists of two
main entities: (i) the world representing all parameters
which can be measured and which are changing along with a
particular model and (ii) observers which are able to read
specified values of world’s parameters. World itself has space
mapped to measurement vectors V = (v0, v1, v2, ...) where
vi is the specific property of world able to be measured by
sensors in the real world and to be observed by observers in
the emulation model e.g. temperature, humidity etc. Main idea
behind the proposed environment construction is the separation
of the world which is responsible for simulating physical
mechanisms from observers which main task is to read
world’s state and convey it further to the actual device (real
or virtual) and sensors. Hence, observers have the role of
data providers to the devices and their components and world
acts as the source of this data. Observers are reading data
from the world in the moments meeting requirements defined
in the scenario while the world is transforming itself
starting from the initial state.

One of the challenges coming with the construction of
scenario and its execution have been the ability to make
observers responsive to certain situations occurring during
world transformation. In certain cases, it could be satisfactory
to make observers read world state at specified moments
in time domain. However, while this approach is closest to
the real-world behavior of sensors, it does not address few
important issues. First of all, running any transformation based
on mathematical computations on computer gives no guarantee
as to the length of intervals occurring between iterations of the
simulation. Because complexity of model have impact on this
length, this could lead to the point when observer reads data
from the world while part of the vectors are still at previous
state while the others are already in the next one. Another
problem could arise when it would be necessary to synchronize
few observers or make particular observations consecutive
and dependent on each other. Finally, the nondeterministic

230 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Real World

(plants, mill,…)

Sensors

 (temperature, humidity,...)

Hardware

 (Intel Edison, RPi…)

Application

Virtual Sensors

 (temperature, humidity,...)

Virtual Hardware/OS

(Docker container - Linux)

Application

OS

 (Yocto, Raspbian,...)

b) Virtual World

(model of mill, humidity

propagation in soil,…)

Hardware

 (Intel Edison, Rpi,…)

OS

 (Linux)

Application

c)

Virtual Sensors

 (temperature, humidity,...)

libmraa

libupm

V-libmraa

libupm

Host OS

 (Linux)

V-libmraa

libupm

a)

Fig. 1. Access to the sensors on Linux based devices

nature of applied mathematical model may cause some specific
circumstances occur in unpredictable moments in time.

All of the mentioned issues decide on insufficiency of the
time-based procedural scenario execution. Solution proposed
in the paper is inspired by the reactive programming paradigm
gaining lately on popularity. This lead to implementation of
event-based scenario framework in Python, which enables both
time based and reactive observing. In order to inform observers
that world’s state has already changed, special events can
be produced after each iteration cycle which world needs to
transform its measurement vectors from state xk to state xk+1.
In the proposed solution, scenario consist of steps - function
declarations written in Python which can be decorated using
predefined decorators in order to decide on moment of their
execution. Decorators provided by framework for the time of
writing are:

Time-based:

• @every(start=..., seconds=...) - periodic
execution

• @after(seconds=...) - one-time execution at
given moment

Event-based:

• @every_event(event=...) - execution on the
each occurrence of event

• @on_event(event=...) - one-off execution on oc-
currence of event

Example 3.1 (Python): Example scenario written in Python
framework

@every_event (e v e n t =World . ITERATION_COMPLETED)
def s t e p s () :

i t e r a t i o n = wor ld . i t e r a t i o n _ c o u n t e r
i f i t e r a t i o n % 3 == 0 :

e m i t _ e v e n t (" t h i r d _ i t e r a t i o n ")

@every_event (e v e n t =" t h i r d _ i t e r a t i o n ")
def s t e p s () :

p r i n t (" T h i r d i t e r a t i o n comple t ed ")

@every (s t a r t =8 , s e c o n d s =2)
def s t e p s () :

p r i n t ("Some t a s k A")

@af t e r (s e c o n d s =11)
def s t e p s () :

p r i n t (" B l o c k i n g wor ld ")
e m i t _ e v e n t (World .WORLD_PAUSE_EVENT)
q u e u e s _ d i c t i o n a r y [World . PAUSED_EVENT]

. g e t (b l o c k =True)
p r i n t (" World i s paused ")
p r i n t (wor ld . s p a c e [2 4] [2 4]

. v e c t o r . t e m p e r a t u r e)
e m i t _ e v e n t (World .CAN_RESUME)

i f __name__ == ’ __main__ ’ :
e x e c u t e (wor ld)

Example 3.1 presents scenario which consists of four
function declarations, each representing different behavior of
observer corresponding with specific event or time moment,
declared in the decorator for function. Each event occurring
during scenario execution has to be correlated with at most one
observer function declaration, however it may be also gener-
ated or reproduced during function execution as presented in
first declaration.

The idea of observer functions being able to withhold
execution of world transformation stems from the necessity
for confirming that world state read by observer after one
completed iteration has not yet been modified by the fol-
lowing one. Implementation of world being withholdable on
WORLD_PAUSED_EVENT should be the responsibility of
programmer implementing world thus making it responsive to
any events in the more complex example. Described mecha-
nism is also enabling few observers to act during the same
interval between particular two iterations.

As the possible development direction for framework, we
consider adding effector functions which would have the

TOMASZ SZYDLO, JOANNA SENDOREK: LEVERAGING VIRTUALIZATION FOR SCENARIO BASED IOT APPLICATION TESTING 231

ability not only to read world state at particular moment and
pause world transformation, but also to influence actual way of
transformation e.g. modifying underlying mathematical model
responsible for data generation.

Underlying implementation of framework is based on block-
ing queues stored in the common dictionary, which is mapping
event name to corresponding queue. When particular observ-
ing function declaration in scenario is decorated, the decorator
handles execution of this function based on events appearing
in the queue. When new event name is being detected during
scenario execution, appropriate queue is added to the queues
dictionary.

B. Sensor virtualization

During the scenario, observers read the particular values
from the virtual world as physical values e.g. temperature. In
order to read that value by the virtual device using v-MRAA
and UPM libraries, the decision should be made which type of
hardware sensor should be virtualized - for example DS18B20
by Maxim or LM35 by Texas Instruments.

In the case of LM35 temperature sensor, the voltage pro-
vided by the sensor is linearly related to the temperature (0mV
+ 10.0mV/’C). The voltage can be measured by the ADC
input on the virtual device. The python class LM35_V in the
emulator framework has the method update_temp(temp)
which computes the voltage that would be generated by the
real sensor measuring particular temperature t. The voltage
is then converted to the 10bit ADC value fADC(t) which
is sent to the v-MRAA library on the device using MQTT
protocol. The maximum voltage measured by the ADC is 5V.
The equation is as follows:

fADC(t) = t
10mV

1◦C

210 − 1

5V
=

t ∗ 1023

500
(1)

On the virtual device, the application that uses UPM library
routine for LM35 sensor will read the already computed
voltage value and will convert it to the proper temperature.
When the same application would be executed on the real
embedded device with LM35 temperature sensor, the value
would be read from the real environment.

IV. AUTOMATION OF ENVIRONMENT SETUP

Building emulation environment described in this paper
is done with enclosing each virtual device in one Docker
container thus isolating them from platform they would be
run on. Usage of Docker containers resolves many prob-
lems including running each virtual device independently of
the others or ensuring that software required by devices is
provided. However, one still has to have Docker platform
installed on the machine which will be hosting containers
thus making whole environment not fully independent from
platform it is build on. What is more, when running multiple
virtual devices, one has to repeat the same process of running
each container from the same image and setting environment
variables for it. In the solution presented in the paper, we aim
at environment portable, easy to maintain and as automated as

possible. Fig.2 depicts the idea of using automation tools for
setting up virtualized devices. In the proposed implementation,
we are using Ansible, which enables defining all platform
setup e.g. installation of required software in YAML files
called playbooks. Ansible also has build-in support for docker
orchestration which enables creating images from Dockerfiles
and running them in the containers.

While usage of Ansible and in general, automation tools,
resolves inconvenience stemming from executing repetitive
tasks for each instance of virtual device, it does not address
issues coming from platform-dependence of installed software.
In particular, Linux-oriented playbook will not work when run
on Windows operating system and vice versa. Therefore, we
have provided additional virtual machine as a docker host and
made use of Vagrant tool, which enables building virtual
environments which are portable and platform-independent.
Vagrant has also support for Ansible provisioning thus making
all three tools working together well and providing means for
easy to build environment.

Fig 2 depicts the tools stack used to set environment up and
automate the process.

V. USE CASE AND VERIFICATION

In order to present the idea of virtual testing environment we
have constructed example cloud based IoT application whose
purpose was to read temperature from the environment by the
two devices and send that data to the cloud platform. As the
cloud platform handling devices data, we used the Samsung
Artik Cloud5 platform and applied simple case of plotting data.
For temperature reading We decided to use the aforementioned
LM35 sensors.

In order to test the whole layers of the application during
development, some data had to be provided so we con-
structed two virtual devices. Data was generated by simulation
framework and then conveyed to devices as the emulated
temperature measurements. Whole test was executed due to
scenario constructed in the framework described in section
III.

After building emulation environment as described in the
previous paragraph, we executed the example scenario. Code
for this scenario, composed with framework characterized
previously in the paper, is presented by example 5.1.

Example 5.1 (Python): Use-case scenario

@every_event (e v e n t =World . ITERATION_COMPLETED)
def o b s e r v e _ i t e r a t i o n s () :

i t e r a t i o n = wor ld . i t e r a t i o n _ c o u n t e r
i f i t e r a t i o n == 10 0 :

e m i t _ e v e n t (" h u n d r e d _ r e a c h e d ")
i f i t e r a t i o n == 30 0 :

e m i t _ e v e n t (" t h r e e _ h u n d r e d _ r e a c h e d ")

@every (s t a r t =5 , s e c o n d s =5)
def r e a d _ t e m p e r a t u r e s () :

temp1 = c l i e n t 1 . g e t _ t e m p e r a t u r e ()
temp2 = c l i e n t 2 . g e t _ t e m p e r a t u r e ()
c l i e n t 1 . s e n d _ t e m p e r a t u r e (c l i e n t 1 .

5https://artik.cloud

232 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Fig. 2. Virtualization tools applied to building environment

c o n v e r t _ f r o m _ c e l s i u s (temp1))
c l i e n t 2 . s e n d _ t e m p e r a t u r e (c l i e n t 2 .

c o n v e r t _ f r o m _ c e l s i u s (temp2))

@on_event (e v e n t =" h u n d r e d _ r e a c h e d ")
def a d d _ h e a t e r () :

p r i n t (" H e a t e r added ")
h e a t e r 1 = World . H e a t e r (s i z e =10 ,

m a x _ t e m p e ra t u r e =150 ,
b o t t o m _ l e f t _ x =30 ,
b o t t o m _ l e f t _ y =20)

wor ld . h e a t e r s . append (h e a t e r 1)
wor ld . p l a c e _ h e a t e r s ()

@on_event (e v e n t =" t h r e e _ h u n d r e d _ r e a c h e d ")
def r e m o v e _ h e a t e r s () :

p r i n t (" H e a t e r s removed ")
wor ld . h e a t e r s . c l e a r ()
wor ld . i s _ h e a t e r _ m a p . c l e a r ()

Simulation is based on the simplified heat diffusion pro-
cess in the two-dimensional space with sensors being able
to read temperature at the given points in space. Presented
scenario consists of four observer functions. Three of them
are event-based and are executed on the occurrence of events
connected with iterations. The remaining function is being
executed periodically in the time domain, at each five seconds
starting from fifth one. Function observe_iterations is
responsible for emiting events, based on the value of world’s
iteration counter that are handled by the other functions. Func-
tion read_temperatures which is working in the time
domain, is responsible for providing data to the MQTT clients,
which are then sending messages to the devices in simulation
environment. Example 5.2 is presenting the initialization code
for both clients.

Example 5.2 (Python): Initialization of MQTT clients

c l i e n t 1 = MQTTClient .
LM35_V (1 , 0 , (2 0 , 25) , wor ld)

c l i e n t 2 = MQTTClient .
LM35_V (2 , 0 , (3 0 , 25) , wor ld)

The clients have the role of virtualized temperature sensors
LM35 and are instances of class LM35_V, which is taking as
constructor arguments: device id, pin id, position
of the sensor in the simulation space and the world which is
main simulation entity, described in the previous paragraphs.
First two parameters are determining MQTT topics, to which
the data will be send.

World is starting with two dimensional space of size 50
by 50 units. Space is discretely sampled and each point
of the space is mapped to the measurement vector, holding
information on temperature value. One heating device with
temperature of 150 Celsius is placed at (15, 25) and with each
iteration, heat is diffusing on the space with simple mathemati-
cal model, reduced to replacing temperature value for the point
with average of temperature values of its neighbors. Second
heater will be placed in the world during scenario execution.
Frequency of world’s iterations is 1 sec.

Functions add_heater and remove_heaters are de
facto more effectors than observer functions, because they
influence the behavior of the world by placing additional
heater and removing all heaters respectively. However, they
do not use any synchronization mechanism described in the
previous paragraphs and therefore behave in a manner similar
to this of observer functions. The example is presenting
different possibilities coming with current state of simulation
framework, but the aspects of synchronization and separating
observer functions from effector functions remain open.

In order to provide some verification for readings made
by read_temperatures function, we implemented simple
plotter that use matplotlib library for world simulation.
Therefore, each fifty iteration, the plot of world state was
generated. Fig. 4 shows plots of heatwave generated after
50, 150, 300 and 350 iterations that corresponds to 50, 150,
300 and 350 seconds since the beginning of the testing
scenario, while Fig. 3 depicts graphs of data received by
both devices. "Usecase_temp3" corresponds to device with
virtualized sensor placed at coordinate (20, 25) - device A
on figure and "Usecase_temp4" corresponds to device with

TOMASZ SZYDLO, JOANNA SENDOREK: LEVERAGING VIRTUALIZATION FOR SCENARIO BASED IOT APPLICATION TESTING 233

Fig. 3. Plots of data received by device in Samsung Artik Cloud

Fig. 4. Plots of world’s state corresponding with data received by device

234 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017

virtualized sensor placed at (30, 25) - device B. There can be
observed how firstly, only one sensor was noticing significant
changes of temperature, then after 100 seconds the second
one started and finally after about 300 seconds, both sensors
started noticing declining temperatures.

The presented use case shows how the virtualized testing
platform can be used for testing data-driven IoT applications.
The virtual machine with docker containers representing vir-
tual devices where executed on i5 notebook with 8GB of
RAM, while the emulation environment was executed on i3
desktop computer with 4GB of RAM. During the experiments,
the MQTT broker at iot.eclipse.org has been used. It proves
that the framework can be executed even on development com-
puters simplifying process of IoT applications development.

VI. SUMMARY

In the paper we have presented the concept of virtualized
testbed for scenario based IoT application testing. The concept
has been verified by the use case where the virtual environment
was used for testing application that measures the temperature
using IoT devices and analyzes it in the cloud platform.

As a future work, concept could be extended by adding
protocols for I2C and UART interfaces in v-MRAA library. It
would extend the list of possible sensors that could be used by
applications. Additionally, the external sensor emulation board
would be useful for testing real devices - in that case instead
of real sensors, such emulation boards could be connected
and driven by the scenarios. Finally, the environment emula-
tion framework can be extended by synchronization concepts
simplifying implementation of effectors wanting to change the
virtual worlds.

ACKNOWLEDGMENT

The research presented in this paper was partially sup-
ported by the National Centre for Research and De-

velopment (NCBiR) under Grant No. LIDER/15/0144/L-
7/15/NCBR/2016.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for Smart Cities,” IEEE Internet of Things Journal, vol. 1,
no. 1, pp. 22–32, Feb 2014.

[2] J. Shenoy and Y. Pingle, “IOT in agriculture,” in 2016 3rd International

Conference on Computing for Sustainable Global Development (INDI-

ACom), March 2016, pp. 1456–1458.
[3] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”

IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov 2014.

[4] R. Brzoza-Woch, M. Konieczny, P. Nawrocki, T. Szydlo, and
K. Zielinski, “Embedded systems in the application of fog computing
- levee monitoring use case,” in 11th IEEE Symposium on

Industrial Embedded Systems, SIES 2016, Krakow, Poland, May

23-25, 2016. IEEE, 2016, pp. 238–243. [Online]. Available:
http://dx.doi.org/10.1109/SIES.2016.7509437

[5] P. P. Ray, “A survey of IoT cloud platforms,” Future Computing and

Informatics Journal, pp. –, 2017.
[6] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-

ralambo, “A survey on facilities for experimental Internet of Things
research,” IEEE Communications Magazine, vol. 49, no. 11, pp. 58–67,
November 2011.

[7] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator.” in
Modeling and Tools for Network Simulation, K. Wehrle, M. GÃijnes,
and J. Gross, Eds. Springer, 2010, pp. 15–34.

[8] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A
real-time network emulator,” in MILCOM 2008 - 2008 IEEE Military

Communications Conference, Nov 2008, pp. 1–7.
[9] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its

role in the Internet of Things,” in Proceedings of the first edition of the

MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.
[10] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,

applications and issues,” in Proceedings of the 2015 Workshop on Mobile

Big Data. ACM, 2015, pp. 37–42.
[11] R. Kaploniak, L. Kwiatkowski, and T. Szydlo, “Environment emulation

for WSN testbed,” Computer Science (AGH), vol. 13, no. 3, pp. 101–112,
2012. [Online]. Available: http://dx.doi.org/10.7494/csci.2012.13.3.101

TOMASZ SZYDLO, JOANNA SENDOREK: LEVERAGING VIRTUALIZATION FOR SCENARIO BASED IOT APPLICATION TESTING 235

