
 
 

 

 
Abstract—Frequency domain features of inertial movement 

enables multi-resolution analysis for fall detection, yet they are 

computationally intensive. This paper proposes a 

computationally light frequency domain feature extraction 

method based on lifting wavelet transform (LWT) which 

provides computational efficiency suitable for real-time low 

power devices such as wearable sensors for human fall detection. 

LWT is combined with support vector machine (SVM) to 

identify falls from activities of daily living.  Performance of the 

Haar and Biorthogonal 2.2 wavelets were compared with the 

time domain feature of root-mean square acceleration using a 

human fall dataset. Results show that the first level detail 

coefficients features for both Haar and Biorthogonal 2.2 

wavelets achieve good overall fall detection accuracy, sensitivity 

and specificity. 

I. INTRODUCTION 

S many countries enter the era of aging society, they 
face critical elderly people’s health threats which are fall 

and related complications caused by the injury [1]. 
Considering the need of real-time monitoring and ease of use, 
wearable sensor systems are one of the most promising 
systems.  

Wearable sensor-based fall detection systems, inherently 
generate continuous monitoring of physiological 
measurements. Such system is usually a multi-sensor system, 
comprising sensors such as accelerometers, gyroscopes, 
pressure sensors and magnetometers. Datasets collected by 
such wearable sensors are thus, typically multi-dimensional 
and in large volumes. Such characteristics may cause hinder 
data processing and fall detection capabilities. Some 
researches therefore use feature extraction to reduce the 
amount and the dimensions of data [2] by extracting only 
necessary features. Existing feature extraction techniques 
include two main domains, i.e., time and frequency domains. 
Research such as [1], [3], [4] extracted time domain features 
including the mean value, maximum value, minimum value 
and variance, standard deviation of the patient’s physiological 
movements and other special features such as entropy and 
vertical direction.  
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In general, time domain features are straightforward and 
easy to visualize which means light computational burden for 
feature extraction. So the system is computationally efficient 
in achieving a real-time fall detection. However, the time 
domain statistical features considers only the displayed 
observable trends [2]. Consequently, time domain features 
may not suffice for accurate fall detection. 

Conversely, frequency domain features make use the 
spectral domain of the collected data which may not be clearly 
observable in the time domain. Frequency domain features 
were deployed for fall detection by [5] which used discrete 
stationary wavelet transform (SWT). In [6], a short time 
Fourier transform (STFT) was used for human activity 
recognition, whereby a fall was a subset of data in a series of 
continuous activities of daily living (ADLs). Ref. [7] created 
a prototype wavelet of typical fall pattern by using the average 
acceleration sum vector. The degree of similarity of the signal 
to the prototype was then computed though wavelet analysis. 
Results from the same classifier and real-world dataset 
revealed that the wavelet based features outperformed than 
other time domain features: upper and lower peak values.  

Feature extraction alone only enhance the features of the 
data acquired by the wearable sensors. However, to detect 
weather a fall occurred relies on the performance of the 
detection mechanism. The most common and simplest fall 
detection is the threshold method [8]. Nevertheless, the 
performance heavily depends on the fixed threshold level. 
Hence, it is rarely used alone, and often combined with other 
machine learning methods such as decision tree (DT) [9], 
[10], artificial neural networks (ANN) [11], hidden Markov 
model (HMM) [12]  and Support Vector Machine (SVM) 
[4], [14], [15] can be combined to outperform the threshold 
method [8], [14]. Among the machine learning methods, 
SVM was found the most robust for fall detection when 
compared to other methods such as threshold-based methods 
and the decision tree method [8]. However, most works which 
deploy SVM for fall detection use time-series features [8], 
[16]. It was found that SVM fall detection performance can 
be improved by a combination of time and frequency domain 
features [4]. In particular, the discrete Fourier transform 
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(DFT) was used to determine the spectral coefficients which 
is computationally intensive [4]. On the other hand, the lifting 
wavelet transform (LWT) is an efficient, light weight 
frequency domain extraction method [17]. To the best of our 
knowledge, there is no previous work that has combined LWT 
with SVM for fall detection. This paper is therefore focused 
on the study of feature extraction based on LWT used with 
SVM to detect falls from ADLs using root-mean square value 
from a single tri-axial acceleration sensor. 

The paper is organized as follows. Section II presents the 
proposed frequency analysis and the support vector machine 
scheme proposed in the paper. The time domain feature which 
is used for comparison is also introduced. In section III, the 
experiment based on a comprehensive fall detection dataset is 
described. Section IV presents the results and discussion and 
finally conclusions is given in the final section. 

II. METHOD 

A. Frequency domain feature extraction 

Feature extraction based on frequency analysis of the body 
inertia collected from sensors has been studied in the recent 
literature. Discrete wavelet transform (DWT) has been 
proposed for mobility monitoring, posture transition and 
activities classification in [18] using a single chest-mounted 
sensors. In [19], another frequency domain feature extraction 
method using short-time Fourier transform (STFT) was 
proposed to shorten the calculation time of DWT. Despite 
good results, the short time windows in STFT may not always 
be suitable for human motion which varies greatly. If 
windows are too short, STFT may be unable to identify the 
frequency in such a short period of time. If windows are too 
large, more information in time domain will lost. If the STFT 
window size is fixed, STFT may not be suitable for fall 
detection as human activities are flexible. Unlike DFT in [4], 
LWT can be constructed from time series signal directly. 
Unlike DWT in [18], LWT does not require convolution, 
translation or dilation of traditional mother wavelets. 
Furthermore, LWT allows in place calculation, with no need 
for auxiliary memory. Therefore, LWT provides 
computational efficiency suitable for real-time low power 
devices such as wearable sensors. In the following subsection, 
we describe LWT in more details. 

B. Lifting Wavelet Transform 

LWT has been introduced by Sweldens in 1997 [17]. The 
scheme theory is often described as three steps: split, predict 
and update. The split step is to split a signal into to two 
independent sequences, i.e, the even half and odd half 
sequences. Let 𝑥𝑖 be the original discrete signal at time index 
i. Let ݁𝑣݁݊𝑖  ሺ݀݀𝑖ሻ denote the ith index of the even (odd) 
sequence. We have that ݁𝑣݁݊𝑖 = 𝑥ଶ𝑖 and ݀݀𝑖 = 𝑥ଶ𝑖+ଵ, 𝑖 ∈𝐼. 

LWT is a recursive algorithm which splits the signal into 
halves at each level. If the original signal has 2n elements, then 
the next level will operate on 2(n-1)  elements. Hence, if the 
original signal has 256 elements, there will be 8 levels with 

the next level having 128 elements. The subsequent levels 
will have 64, 32, 16, 8, 4, 2 and 1 element. The odd values in 
the next level j+1 is predicted from the even value at level j: 

cDj+1,i = oddj,i - P( evenj,i )           (1) 
where P is the predict function which approximates the signal, 
cD is the high frequency component of 𝑥𝑖. This is called the 
Predict phase. The even values at the next level can be found 
from  

cAj+1,i = evenj,i + U ( cDj+1,i )          (2) 
where U is the update operation that updates on the 
differences from the odd values, cA is the low frequency 
component of 𝑥𝑖. This is called the Update phase. The multi-
level lifting scheme can be summarized in Fig. 1. The 
averages are sometimes called approximate coefficients 
whereas the differences are called the detail coefficients. 
There are two types of wavelets used in this paper. 

1) Haar wavelet:  

 Predict :  
 cDj+1,i = oddj,i - evenj,i      

Update : 

cAj+1,i = evenj,i +
ଵଶcDj+1,i         (4) 

2) Biorthogonal 2.2 wavelet:  

 Predict :  

cDj+1,i = oddj,i – 
ଵଶ(evenj,i + evenj,i+1 )   

Update : 

cAj+1,i = evenj,i +
ଵ4(cDj+1,i-1 + cDj+1,i) 

 
 

 

 Fig.  1 Forward lifting scheme 

 
 
Figure 2 shows a sample fall plot of the original signal 

and the first level LWT coefficient. The number of 
coefficients of cA1 (average or low frequency part) and cD1 
(detail or high frequency part) are half of the original signal 
according to the number of data points. By comparing cA1, 
cD1 and the root-mean square acceleration (SVtotal) in Fig. 2, 
it is seen that cA1 greatly correlates with the original signal. 
Note that cD1 also shows a peak similar to the original signal 
signifying a fall which occurred during the red highlighted 
window of one second. However, the baseline zero illustrated 
a more distinguished fall feature than cA1. Therefore, cD1 
was preferable than cA1 for feature extraction of falls.  

 

(3) 

(5) 

(6) 
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Fig.  2 A sample fall plot of SVtotal and after LWT cD1 and cA1 with 
data points inside “fall” window highlighted 

 

C. Time domain feature 

The tri-axial acceleration data collected contains Ax, Az, Ay 

in x-axis, z-axis and y-axis as a function of time. All 
accelerometer data were in factors of gravity units (g). The 
accelerometer components were used to calculate the root-
mean square acceleration denoted by total sum vector SVtotal: ܵ𝑉௧௧ = √𝐴௫ଶ + 𝐴௬ଶ + 𝐴௭ଶ  .   (7) 

D. Support Vector Machine 

Support Vector Machine (SVM) is a supervised machine 
learning model which is commonly used for anomaly 
detection and classification [20], [21], [22]. As a supervised 
learning model, SVM requires training from datasets with 
“labels.” The SVM concept is to map a set of data points from 
the real-world to a higher dimensional space. A boundary or 
hyperplane is created in a high dimensional space by training 
datasets to classify the features into fall or non-fall. Since the 
fall detection system inherently generates long-term 
continuous monitoring of physiological measurements, such 
datasets are usually large. Such characteristic may cause 
difficulty in data processing. To reduce the amount of data 
and achieve a higher calculating speed, the features of the data 
may be extracted from these raw datasets.  

To train the SVM, the data points in the dataset must be 
labeled. For example, in time domain, SVtotal was directly 
used as input feature. We labeled all the ADLs data points 
with “-1” whereas falls were labeled “1.” Fig. 3 depicts a 
sample plot of a fall along with non-fall activities like walking 
around and lying on the ground. Point A shows the peak value 
of the dataset. A highlighted window size with point A placed 
at the middle of the window is constructed. Within such 
window, all the data points are labeled “1” and the remaining 
data points outside this window are labeled    “-1.” The 
goal of SVM is therefore to distinguish the labels among the 
tested datasets using the model obtained from the trained data. 
The data points are typically non-linearly separable to classify 
in low dimensional space. However, if these points are 
projected onto a higher dimensional space, it is possible to 
find a hyperplane to classify the labels. Such projection is 

obtained through use of kernel functions such as linear, 
polynomial, sigmoidal, or the Gaussian radial base functions. 
It is with this kernel trick that makes SVM a powerful model 
to classify the labels in higher dimensional space. In the next 
section, the experiment settings are presented.  

 

 

Fig.  3 A sample plot of fall SVtotal with data points inside window 
highlighted 

 

III. EXPERIMENT 

As mentioned in the previous section, SVM requires 
training labeled datasets. As data input in the fall detection 
scenario involves both non-falls and falls data, We trained 
with both falls and non-falls italic in Table I.we first evaluate 
the SVM model with a hybrid fall and non-fall activities. The 
objective is to evaluate a suitable training dataset for SVM to 
detect falls. For the sake of simplicity, only the time domain 
feature (SVtotal) is studied. 

Once a SVM model is trained, we proceed to study the 
comparison between features in the time domain (SVtotal) and 
frequency domain (LWT using Haar and Biorgthogonal 2.2 
wavelets). Note that there are existing works which combined 
features in both time domain and frequency domain of data, 
the type of sensors, the number and position of sensors on 
human body, and in the volume of dataset for training and 
testing [1], [5]. From results gathered from existing literature, 
we focus on data collected from a single tri-axial acceleration 
sensor due to its low cost, reliability and efficiency.  
 

A. Performance metrics 

To evaluate the performance, we measure the True 
Positives (TP) or True Negatives (TN) which refers to the 
number of events correctly identified or correctly rejected. 
False Positives (FP) or False Negatives (FN) which represent 
the number of events incorrectly identified or incorrectly 
rejected [23]. These measurements provide the following 
necessary metrics required to evaluate the fall detection 
method: 
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1) Sensitivity (SE) or true positive rate is the capability to 
detect a fall correctly. It is an indicator to judge whether a 
system will miss a fall. It is given by ܵ𝐸 = 𝑇𝑃𝑇𝑃+𝐹𝑁 × ͳͲͲ%         (8) 

2) Specificity (SP) or true negative rate is the ability to detect 
a fall only if a fall really occurred. It is to avoid false alarm 
given by ܵ𝑃 = 𝑇𝑁𝑇𝑁+𝐹𝑃 × ͳͲͲ%        (9) 

3) Accuracy (AC) or correct rate refers to the overall freedom 
from false. This is given by 𝐴𝐶 = 𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 × ͳͲͲ%      (10) 

It is worth noting that SVM classifies data points 
individually. However, to detect a fall within a certain 
window as shown in Fig. 3, a set of data points must be 
classified rather than just a single data point. Therefore, to 
determine a suitable decision region to decide whether a fall 
has occurred, we use a simple calculation for the percentage 

of predicted fall label “1” over the number of labels observed 
in an activity to compare with a predetermined threshold: ܶ = ௧ℎ ௨  ௗ𝑖௧ௗ "ଵ"௧ℎ ௨  ௧௦௧𝑖 ௗ௧ 𝑖௧௦         (11) 

If T > threshold, the activity is a fall. Otherwise, else it is a 
non-fall activity. 

B. Training SVM Model 

We hypothesize that the best type of training dataset will be 
the combined set of both fall and ADLs dataset. Since not 
only falls but also ADLs data are contained in the hybrid 
training dataset, the more comprehensive information 
contained in training dataset, the more likely the model will 
decide correctly.  

The dataset we used to train and test the SVM models have 
been obtained from [24] including 70 activities (tri-axial 
acceleration of 30 falls and 40 non-falls collected and video 
recorded with Kinect camera) with details given in Table I. 
The tri-axial accelerometer data was sampled at 60Hz. 
Therefore, a one-second window for fall detection consists of 

TABLE I. 

DATASETS USED IN EXPERIMENT
1  

 
Data file Activities description Data file Activities description 

Falls Activities 
fall-01-acc From vertical falling left on the floor fall-16-acc From sitting falling right on the floor 
fall-02-acc From sitting falling left on the floor fall-17-acc From vertical falling forward on the floor 
fall-03-acc From vertical falling left on the floor fall-18-acc From sitting falling left on the floor 
fall-04-acc From sitting falling left on the floor fall-19-acc From vertical falling right on the floor 
fall-05-acc From vertical falling right on the floor fall-20-acc From sitting falling right on the floor 
fall-06-acc From sitting falling right on the floor fall-21-acc From vertical falling right on the floor 
fall-07-acc From vertical falling left on the floor fall-22-acc From sitting falling left on the floor 
fall-08-acc From sitting falling right on the floor fall-23-acc From vertical falling right on the floor 
fall-09-acc From vertical falling left on the floor fall-24-acc From sitting falling left on the floor 
fall-10-acc From sitting falling left on the floor fall-25-acc From vertical falling forward on the floor 
fall-11-acc From vertical falling right on the floor fall-26-acc From sitting falling forward on the floor 

fall-12-acc From sitting falling right on the floor fall-27-acc From vertical falling forward on the floor 
fall-13-acc From vertical falling forward on the floor fall-28-acc From sitting falling forward on the floor 
fall-14-acc From sitting falling right on the floor fall-29-acc From vertical falling forward on the floor 
fall-15-acc From vertical falling forward on the floor fall-30-acc From sitting falling forward on the floor 

Non-falls Activities (ADLs) 

Data file Activities description Data file Activities description 
adl-01-acc Walking, then squatting adl-21-acc From vertical lying on the bed 
adl-02-acc Walking, then squatting adl-22-acc From vertical lying on the bed 
adl-03-acc Walking, then squatting adl-23-acc From vertical lying on the bed 
adl-04-acc Bending 90 degree to pick up something adl-24-acc Walking, then squatting 
adl-05-acc Squatting to pick up something adl-25-acc From vertical to sitting onto a chair 
adl-06-acc Squatting to pick up something adl-26-acc Walking, then squatting 
adl-07-acc  From vertical to sitting onto a chair adl-27-acc From vertical to sitting onto a chair 
adl-08-acc From vertical to sitting onto a chair adl-28-acc Walking, then squatting 
adl-09-acc From vertical to sitting onto a bed adl-29-acc From vertical to sitting onto a chair 
adl-10-acc From vertical lying on the bed adl-30-acc From vertical lying leftward on the ground 
adl-11-acc From vertical lying rightward on the bed adl-31-acc From vertical lying forward on the ground  
adl-12-acc Walking, then squatting adl-32-acc From vertical lying forward on the ground  
adl-13-acc Walking, then squatting adl-33-acc From vertical lying forward on the ground  
adl-14-acc Walking, then squatting adl-34-acc From vertical lying forward on the ground  
adl-15-acc Bending 90 degree to pick up something adl-35-acc From vertical lying forward on the ground  
adl-16-acc Bending 90 degree to pick up something adl-36-acc From vertical lying rightward on the ground 
adl-17-acc Squatting to pick up something adl-37-acc From vertical lying rightward on the ground  
adl-18-acc From vertical to sitting onto a bed adl-38-acc From vertical lying forward on the ground  
adl-19-acc From vertical to sitting onto a chair adl-39-acc From vertical lying forward on the ground  
adl-20-acc From vertical to sitting onto a bed adl-40-acc From vertical lying forward on the ground  

Source: http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html 
1 The italic activities were used as training dataset. 
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60 data points. The dataset was divided into training set and 
testing set based on activities in the matching video of each 
data file. Table I consists of fall and non-fall (ADLs) 
activities. The SVM model has been trained with the datasets 
obtained in italics in Table I for a comprehensive dataset of 
various falls and ADL activities. 

Once the data points are labeled and trained, the SVM 
model is obtained. The SVM model is then used to classify 
the testing data. The dataset remaining (non-italic activities) 
in Table I  are used for testing. For each dataset tested, a data 
point is labeled “1” for data points predicted as a fall data 
point, or “-1” for data points predicted as non-fall data point. 
If the ratio of fall labels in an activity exceeds the determined 
threshold, then a fall has been detected. For each tested 
dataset, TP, TN, FP and FN is measured for the calculation of 
SE, SP and AC to evaluate the SVM model. Results are 
presented in Section IV. 

 

C. Comparing Time and Frequency domain features 

This part of the experiment is to compare the time 
domain feature (based on SVtotal) and the frequency domain 
features (based on Haar and Bioorthogonal 2.2 wavelets). 
Using the SVM model obtained in the previous experiment, a 
suitable level threshold level to detect a fall event for each 
feature is then found. For each feature, the percentage levels 
of threshold is tested at 10%, 20%, 30%, 40% and 50%. Then 
level is tested at finer threshold values. Results are shown in 
Table II. 

We then investigate closely how multiple levels of LWT 
coefficients affect the fall detection performance by 
evaluating the first five levels of coefficients of the Haar and 
Biorthogonal 2.2 wavelets. Results are shown in Table III. 

IV. RESULTS AND DISCUSSION 

A. Training SVM Model  

Results show that the SVM model trained and tested with 
time domain datasets of both falls and ADL activities gave a 
100% sensitivity, 97.14% of specificity and 98.31% accuracy. 
It should be noted that the 100% sensitivity is obtained from 
offline datasets with a predetermined threshold found from 
observing these datasets. Furthermore, a larger dataset 
collected from online simulated falls is currently under 
investigation. 

 

B. Comparing Time and Frequency domain feature 

Table II shows the performance comparison between time 
and frequency domain features at different levels of 
thresholds. 

1) Root-mean square acceleration: Table II shows that the 
best threshold for the time domain feature should be between 
10% to 20%. With fine threshold tuning, it is found that a 
threshold of 17-18% showed better preference than others 
(shown in bold fonts). Therefore, we chose 17% as the 
threshold to classify a fall or non-fall for time domain feature.  

2) LWT with Haar Wavelet: The appropriate threshold for 
Haar LWT is found by also ranged from 10% to 50%. As 

shown in Table II, the best achieved threshold should be under 
10%. To fine tune the threshold levels, the threshold is varied 
from 2% to 10%. It is found that the threshold at 8% 
outperformed other levels (shown in bold fonts). Thus, we 
chose 8% as the threshold for LWT using Haar wavelet. In 
Table III, multiple levels of LWT coefficients (cD1 to cD5) 
are evaluated. When tested with ADLs & Falls dataset, all 
specificity, specificity and accuracy values of 100% was 
achieved only in cD1 (shown in bold fonts). This result 
indicated that Haar LWT CD1 coefficients achieved a goal 
such that no ADL has been misclassified as a fall and detected 
most of the falls when training and testing using finite 
activities in Table I 
3)  LWT with Biorthogonal 2.2 Wavelet: From Table II, the 
optimal threshold for Biorthogonal 2.2 (Bior 2.2) should be 
under 10%. With a finer threshold search, results indicate that 
threshold level of 6% is the best level with 100% sensitivity, 
specificity and accuracy (shown in bold fonts). Similar to 
Haar LWT, Bior 2.2 LWT coefficients also show a good 
performance distinguishing falls from ADLs when using most 
cD levels. In Table III, cD1 also outperformed other levels of 
coefficients similar to Haar wavelet (shown in bold fonts). 
The reason may be the information contained in the frequency 
components that is helpful to classify activities by SVM. The 
cD1 components contained the most distinguishable 
information of falls, while cD5 contained the least 
information. Generally, Haar was slightly better at 
distinguishing ADLs from falls than Bior 2.2, whereas both 
LWT features outperform the time domain feature of root-
mean square acceleration alone. It is worth noting that these 
results are obtained by a comprehensive human fall dataset 
with video captures obtained from [24] which allow the 
thresholds and detail coefficients to be predetermined offline. 
Current ongoing work involves implementing the LWT and 
SVM on actual wearable sensor devices to be evaluated online 
for human fall detection for accuracy and efficiency. 

V. CONCLUSIONS 

In this paper, we propose a computationally light frequency 
domain feature extraction method called lifting wavelet 
transform (LWT) for a wearable sensor human fall detection 
device combined with a fall identifier using support vector 
machine model. The performance of the LWT using Haar and 
Biorthogonal 2.2 wavelets, together with the time domain 
feature of root-mean square acceleration have been evaluated 
with raw dataset acquired from a single tri-axial acceleration 
sensor from an existing human fall and activities of daily 
living dataset. 

Based on the dataset, suitable thresholds and level of detail 
coefficients can be predetermined. Consequently, the LWT 
frequency domain features are shown to have better 
performance than time domain features in terms of sensitivity, 
specificity and accuracy. Given a one-second window size 
under a sampling frequency of 60Hz, the best threshold in 
terms of the percentage of fall labels (“1”) per window is as 
follows, 18% for the time domain feature using the root-mean 
square acceleration, and 8% for Haar and 6% for 
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Biorthogonal 2.2 LWT wavelets when the SVM model is 
trained with both fall and non-fall datasets. The frequency 
domain feature from cD1 for both Haar and Biorthogonal 2.2 
wavelets achieved 100% overall accuracy whereas 98.31% 
overall accuracy was attained for the time domain feature, 
SVtotal. All features achieved 100% sensitivity from this 
dataset. In terms of specificity, the time domain feature, 
SVtotal, attained up to 97.14% whereas the two LWT features 
attained 100%. In a final note, ongoing work involves 
implementing the LWT and SVM on actual wearable sensor 
devices to be evaluated for human fall detection accuracy and 
reliability in real-time. 
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