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Abstract—In control applications, we often encounter systems
that respond to the change of control signal in an undesirable
way. To adjust system output, there arises the need to know
system parameters, so the identification has to be performed.
The aim of this paper is to compare upstanding identification
error that is the consequence of dataset size, input signal type,
and quantization error occurring in the signal. The experimental
part of this paper presents the results measured on the real device
and shows the identification results.

I. INTRODUCTION

T
HE purpose of identification is to experimentally deter-
mine the structure and complexity of the model. After

determining the structure and complexity of the model, an
appropriate method is used to estimate the unknown system
model parameters.

The first step in system identification from experimental
data is modelling. The behaviour of the model is determined
by the structure of the system and by the properties of the
equations describing the relations of the action members.
The way the individual subsystems are interconnected and
how they operate is described by the overall system and
its behaviour. The behaviour of the system obtained using
equations describing the physical model can be described in
detail by a set of algebraic and differential equations.

II. SYSTEM IDENTIFICATION BACKGROUND

In automated control and signal processing, we understand
the dynamic system model as a mathematical description of the
relationship between inputs and outputs of the system. Based
on this context, it is possible to determine the system transfer
function and thus to identify the system. Basic methods of
identification may include methods such as transition and
impulse characteristics. The excited input has the character
of a single jump or a unit pulse, and the output signal states
the model. The application of these techniques is simple, not
very susceptible to noise. Another drawback of using these
techniques to identify the system is the need to introduce a unit
jump / input impulse, which is undesirable for some systems
[1]. For this reason, we are also addressing other systems
identification approaches that are described in the following
text.

The gradient method and the least squares method can be
used to estimate the parameters of any linear system [2], [3],

[5]. For simplicity and clarity, consider the transport delay
d = 1. Equation (1) states that

y(k) = ϕT (k − 1)θ, (1)

where

θ = [−a1 . . .− an b0 . . . bm]T ,

ϕ(k − 1) = [y(k − 1) . . . y(k − n) u(k − 1) . . .

. . . u(k −m)]T .

(2)

θ is the vector of the system parameters we are trying to
determine and ϕ(k − 1) is called a regression vector as
it is made up of previous system inputs and outputs that
affect the current system output value. When determining the
correct system parameter values, it is necessary to determine
the initial estimate θ̂(0). Then the parameter values are so
adjusted that the difference between the estimated system
output ŷ(k) = ϕ(k − 1)T θ̂(k − 1) and the actual output of
the system y(k) = ϕ(k−1)T θ is minimized in time. The task
of adaptation is thus minimization of the error between the
difference of the expected and the actual output (3).

e(k) = |y(k)− ŷ(k)| = |ϕ(k−1)T θ−ϕ(k−1)T θ̂(k−1)| (3)

The adaptation scheme is illustrated in Fig. 1.

Fig. 1. The adaptation scheme of model parameters.

III. MODELLING AND SIMULATION OF THE

ACCELEROMETER BASED SYSTEM IDENTIFICATION

In order to observe the behaviour of the model, the model
must first be conducted. At first, we need to define the prop-
erties of the system that we are modelling. When modelling
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a weakly damped linear discrete system, it is necessary to
determine the system’s own frequency and the damping ratio.
A relationship

d2x(t)

dt2
+ 2ζωn

dx(t)

dt
+ ω2

nx(t) = f(t) (4)

evokes that the knowledge of these parameters is sufficient to
describe the second order differential equation and hence the
ideal stabilized system [7]. To solve this differential equation,
Laplace transform means were preferred for clarity, by means
of which it is possible to shift from a mathematical model in
the form of a differential equation to a system description by
means of F (s)

F (s) =
ω2
n

s2 + 2ζωns+ ω2
n

. (5)

After transforming into a z-plane we get a defined discrete
model describing the system we want to simulate. The advan-
tages of such writing include a relatively simple determination
of the location of the zeros and poles based on the polynomial
numerator and denominator of the system.

In order to verify the suitability of the identification method,
it is adequately to generate several kinds of input signals to
excite the modelling system. Selected control signals include
unit pulse, unit jump, harmonic signal, or a combination
thereof. Due to the fact that we model the data obtained from
the accelerometer, it is necessary to set certain limitations.
The simulated control signals are suitable for a certain width.
We decided to represent the result by a 12-bit binary num-
ber. These signals were also affected by quantization noise.
Quantum error has the character of white noise and normal
distribution [7]. Based on the above, noise is generated with a
normal distribution in the range determined by the sensitivity
of the measurement and the range and is then added to the
input and output signals.

IV. SYSTEM IDENTIFICATION USING THE LEAST SQUARES

METHOD

To use this method for identification, it is necessary to have
at least P data from the data set (6), whereby

P = n+m, (6)

where n is the order of denominator and m is the order of
numerator [3], [5]. Thus, the second order transfer function is
in shape

ŷ(z) =
b0 + b1z

−1

1 + a1z−1 + a2z−2
u(z) + e(z), (7)

where the measurable magnitudes are only the input U(z) and
the output of the model Y (z). Systems with higher order can
be represented analogically. The aim is to identify coefficients
of the numerator b, the denominator a of the system, but about
the random error e(n), we know only that it has a Gaussian
distribution, the character of the white noise, and a zero mean

value [4]. The equation (7) can be rewritten into the analytical
form
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By stating
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(9)

we obtain
ŷp = Apθp + ep. (10)

The minimum number of required data is usually small. For
the second order system, at least four consecutive data from
the data set must be available. The complexity of the system
also increases the minimum number of data points needed for
sufficient accuracy. This has the effect that P is much larger
(the number of rows of the A matrix grows). A larger P should
provide more accurate definition of system parameters. The
equation used to find optimal parameters (the smallest error)
is

θ̂p = A+
p ŷp, (11)

where A+
p represents a pseudo-inverse matrix to Ap (12) [6].

A+
p = (AT

p Ap)
−1AT

p (12)

From the definition of this method, it can be deduced that
choosing a larger number of input-output sample pairs leads
to a more accurate system determination (Fig. 2).

Fig. 2. Comparison of the system and models obtained using different number
of samples.
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The error we commit when identifying depends on the num-
ber of samples used to determine the model parameters (Tab.
I). However, it is important to be aware of the computational
difficulty that grows with the addition of additional samples
to be classified.

TABLE I
A COMPARISON OF OVERALL ERROR OF MODELS USING DIFFERENT

NUMBER OF SAMPLES.

Number of used samples RMS error

10 295,4
20 202,4
40 196

100 172,3
200 190,9
400 3,905

When designing the simulation, we considered the appro-
priate choice of parameters. Based on the conducted initial ex-
periment, we considered sampling frequency 400Hz, damping
ratio 0.05 and a resonant frequency of 28Hz as the parameters
of second order system.

The nature of the input signal has also an impact on the
system identification. In some cases, the process of determin-
ing system parameters can not be defined as the reaction of
the system to a signal in the prescribed form, which results in
a limitation resulting from the suitability of the control signal
being used. The response of the system to various input signals
(Fig. 3) determines the parameters of the identified system
differently. In our case, we chose the size of the identifying
set to 20 input and 20 output data. The error that occurs in
the input and output signals reaches a maximum of 1% of the
range.

Fig. 3. Behaviour of selected control signals.

Adequacy of the use of different types of control signals
for identification purposes may be expressed as a root mean
square error (RMS error) (Table II). From the test results, it
can be observed that in the least squares method it is advisable
to use jump control signals for identification. Introducing an
error in the input and output signal representing noise from the
sensor device greatly affects the quality of the identification.

The simulation showed, that if no error occurrs in the signal,
this method has excellent results. By adding noise to the ideal
signal, the result becomes less accurate, which in some cases
has led to a poor classification of the system. White noise
with normal distribution is generated and has a zero average
value within a certain range and is then added to the input

TABLE II
A COMPARISON OF OVERALL ERROR OF MODELS USING DIFFERENT

CONTROL SIGNALS.

Identification control signal RMS error

unit pulse 1,161
unit step 0,9191

ramp 1,344
harmonic aperiodic function 2,081

and output signal (Figure 4). Thus affected input and output
signal are used in the identification process.

Fig. 4. Histogram and normal distribution function of generated error.

By enhancing the set of input and output signal samples,
the quality of identification improves, but not sufficiently. The
influence of selected noise levels at the value of the twenty
inout samples used for identification is shown in Tab. III.

TABLE III
THE IMPACT OF NOISE ON THE QUALITY OF IDENTIFICATION.

established error RMS error

0% 0,009812
1% 2,266
2% 2,401
3% 2,484
4% 2,547
5% 2,606

Practical application has shown that when eliminating resid-
ual vibrations, it is important to determine the exact frequency
of the system as accurately as possible. These results served
as a basis for modifying the identification of systems in the
frequency domain.

V. EXPERIMENTAL RESULTS

Based on the need to control the coin hopper tester device,
we have chosen this device as a system that needed to be
identified. When identifying the dynamic properties of the sys-
tem, we used printed circuit board featuring an accelerometer
(Fig. 5).

As a control element, ATmega168 microcontroller was used.
Its task was to provide the LSM303DLHC accelerometer
configuration and send the recorded data via the RF module
RFM73 to eliminate the undesirable phenomena associated
with the use of wire communication. The accelerometer has
been set to measure acceleration in the x, y and z axes. The
sampling rate was set to 400Hz, which corresponds to the

PETER ŠARAFÍN ET AL.: MODELLING AND IDENTIFICATION OF LINEAR DISCRETE SYSTEMS USING LEAST SQUARES METHOD 893



Fig. 5. Coin hopper tester device with marked critical part.

maximum possible recording speed when the accelerometer is
used.

As the receiver, we used a PCB with ATmega8A micro-
controller. The role of this microcontroller was to receive the
recorded data sent to the RFID measurement module via the
RFM73 RF module and then to send results using the UART
peripheral. In order to be able to continue working with this
data on the computer, we used a communication interface
converter to convert between USB and UART peripherals.

The measuring device was positioned such that the move-
ment of the arm manifested mainly in one axis of the
accelerometer (Fig. 6). On the PC, the incoming data has
been aggregated into a file so it could be analyzed. We used
Matlab to analyze measured signals representing acceleration
in individual axes of the accelerometer.

Fig. 6. Data obtained from critical accelerometer axis.

Using the least squares method, we determined the ze-
roes and poles of the system. After a series of parameter
estimations, when it was not possible to minimize the error
below the set level (Fig. 7), a situation occurred, in which
the analyzed signal represented residual vibrations (Fig. 8).
When approximating such a signal, we made errors as shown
in Fig. 9.

VI. CONCLUSION

This paper presents error comparison when identification
using least squares method is applied. The obtained results
confirm that the error we commit by identification directly
depends on the number of samples used for model parameters
determination.

Fig. 7. Comparison of system and model reaction.

Fig. 8. Comparison of system and model reaction.

Fig. 9. Satisfactory identification of system parameters - identification error.

Another aspect that needs to be noticed is the control signal
that is used in identification process. The deviation of model
parameters results in the error on system output. It was shown
that the input signal should generate adequate excitation of the
system, otherwise the error significantly affects the parameter
estimation.
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