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Abstract—Currently used motion estimation is usually based
on a computation of optical flow from individual images or short
sequences. As these methods do not require an extraction of the
visual description in points of interest, correspondence can be
deduced only by the position of such points.

In this paper, we propose an alternative motion estimation
method solely using a binary visual descriptor. By tuning the
internal parameters, we achieve either a detection of longer time
series or a higher number of shorter series in a shorter time.
As our method uses the visual descriptors, their values can be
directly used in more complex visual detection tasks.

I. INTRODUCTION

M
OTION ESTIMATION can be considered one of the

basic tasks in video signal processing. The detection

of object position changes is fundamental for areas such as

robotics and video surveillance. Generalisation to the tracking

of interest point positions is then used in many fields of image

processing, including image stitching (to acquire panorama [1]

or super-resolution [2]), tracking of facial features (for emotion

detection [3]) or image stabilisation [4].

Many other methods can utilise a tracking algorithm to

reduce the complex payload computation. Processing (based

e.g. on Deep Convolutional Neural Networks [5]) could be

limited to only several “best” frames. The extracted features

would be then extrapolated to the rest of the video segment if

needed [6]. Therefore, the motion estimation approach could

present a lightweight counterpart to an expensive processing

of all frames in new Video to Text (VTT) tasks.

An important motivation for our interest in motion estima-

tion is the search for suitable meta-features in multimedia, as

the extracted motion can be used either directly as a meta-

feature or as a basis for obtaining other meta-features.

In the next section, we present state of the art in video

motion estimation, including the traditionally used Kanade-

Lucas-Tomasi (KLT) algorithm, and its drawbacks. In II-B we

also briefly discuss other feature point selection and descrip-

tion algorithms. Moreover, in II-C we provide a summary of

our previous experiments. Section III discusses a proposal of

Oriented FAST and Rotated BRIEF (ORB) feature descriptor

use for interest point registration between two consecutive

frames. Section IV introduces the use of registered key points

for the deduction of continuous motion time series. Section V

provides the preliminary results and compares our approach

with the KLT feature tracker. We will discuss possible exten-

sions of the herein presented method in Section VI.

II. STATE OF THE ART

A naïve motion estimation algorithm could be, in theory,

constructed by the selection of a patch from one video frame

and its convolution with the next frame. An area of the frame

containing similar intensities would give a strong response.

However, with transformations other than translation, such a

method would be prone to many errors. Therefore, more so-

phisticated motion estimation algorithms are commonly used.

A. Kanade-Lucas-Tomasi

One of the widely adopted approaches to point tracking is

the Lucas-Kanade algorithm [7] combined with feature point

selection of Shi-Tomasi [8]. This point tracking algorithm

exploits the assumption that motion in video sequences with

sufficient frame rate can be estimated by a smooth optical

flow function. Therefore, the new position of a feature point

is expected to be in a relatively small proximity.

For computation of the new feature point position, a corre-

sponding spatial intensity gradient of a window around a given

point of interest (typically 31× 31 pixels) is to be found. The

iteratively discovered displacement of the intensity gradients

is then considered as the optical flow vector and translated to

motion vectors of the nearby points of interest. To ensure scale

invariance and faster detection in a larger neighbourhood, the

Lucas-Kanade algorithm uses a pyramidal approach, where the

optical flow is computed on the coarsest level of the pyramid

and then refined on the lower levels, ultimately in the full

resolution. Backwards tracking is used to assess the error of

the point tracking. Feature points with a bidirectional error of

more than 3 pixels are usually considered as lost.

As Shi and Tomasi stated in [8], the point tracking algorithm

will yield insufficient results if unsuitable feature points are

selected in the first frame. However, “good features to track”

should be based only on the ability to track them, not an

a priori quality. This definition is rather unfortunate, as we

cannot use a multi-pass approach in the real-time environment.
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Requirements on the feature points stated by Shi and Tomasi

are however widely accepted.

The Kanade-Lucas-Tomasi (KLT) is a powerful and fast

keypoint tracker. However, it has several drawbacks:

(i) Lost feature points are not reconnected if they reappear.

(ii) New feature points should be added in place of lost ones.

(iii) The feature points are described only in the first frame.

The point replacement, mentioned in (ii), should favour an

ability to track new objects as soon as possible. Detection

of new features, however, slows down the motion estimation.

Omitting the feature point regeneration, on the other hand,

degrades the quality of tracked points throughout time.

If opposed to (iii), the description of feature points is

available in all frames, it can be passed directly to more

complex image processing methods.

B. Feature Points and Visual Descriptors

The Harris-Stephens Combined Corner and Edge Detector

[9] uses linked edges from the Canny detector [10]. The corner

candidates are then filtered by the Harris response function

which is still widely used for an assessment of corner quality.

The above mentioned Shi-Tomasi detector [8] directly com-

putes the minimal eigenvalue. If it is close to zero, the

considered point is not added to the set of corners.

Some corner detectors compare the intensity of the proposed

corners to the intensities of points in a circular mask. If the

area with similar intensities is small enough, SUSAN [11]

detects a corner. FAST [12] makes this method faster by

selecting the pixels for comparison in a pre-trained order.

Other feature point detectors search for scale-space extrema

in the Laplacian of Gaussians [13] (or a box filter [14]) on each

octave. This introduces the possibility of a multi-scale feature

that is considered more stable regarding detection repeatability

under various deformations. Modifications of FAST (Oriented

FAST [15] and AGAST [16]) also use the scale pyramid to

provide the scale information.

For the use in image registration and other tasks, detected

points are passed to a visual descriptor. To enable scale and

rotation invariance of the description, dominant direction and

scale are used from the interest point detection. Therefore, the

descriptor is usually connected with a particular point detector.

SIFT [13] and SURF [14] are based on a histogram of

neighbouring gradient orientation (or wavelet response, re-

spectively). The local texture information is scale and rotation

invariant due to information passed from its detector.

ORB [15] and BRISK [17] (Binary robust invariant scalable

keypoints), both binary feature descriptors, use the pixel

intensity differences to the detected corner. Order of pixels in

the descriptor is based on the gradient orientation (and scale

in BRISK).

In the following sections, we will consider only the use

of ORB, for several reasons: According to both [18] and

our experiments [19], ORB provides the same or even better

results on approximately registered features than SIFT and

SURF. The computation time of both corner detection and

description is however significantly reduced. The principles

of our motion estimator can be, however, used in combination

with any point detector and appropriate descriptor, only with

a slight compromise on the speed of feature detection.

C. Our Previous Research

In our previous work [19], we have shown that interest point

registration across consecutive frames is a feasible solution for

motion estimation. The resulting motion vectors were grouped

by hierarchical clustering to propose objects on the scene.

Then we utilised an extended min-cut algorithm to acquire

subpixel precise segmentation boundaries.

The main caveat of this approach was, however, the speed

of feature registration. Each feature descriptor was matched

in a high-dimensional space (especially for SIFT and SURF).

The Approximate Nearest Neighbors [20] approach was in

some cases even slower than a brute-force search. Also,

spatially distant feature points were commonly misregistered.

However, this can be (under assumptions of smooth optical

flow, discussed in [21]) eliminated by considering only the

neighbourhood of the key point in the next frame. We elaborate

on this idea further in this paper. Mainly with a requirement to

speed up the process of key point registration. Our approach

is discussed in the next section.

Another issue is that we use hierarchical clustering on a

relatively large number of not very distinct motion vectors

(represented by position, length and direction). To provide

more information for future clustering, we propose in Section

IV to gather time series of key point position history.

III. VIDEO SEQUENCE POINT OF INTEREST REGISTRATION

Key point registration describes a process through which

the points with similar visual neighbourhood are mapped onto

each other. Instead of actual pixels, feature descriptors are used

to both speed up the method of matching and to introduce

invariance to common deformations.

The search for a matching descriptor is then usually carried

out with the nearest neighbour operator. A point of interest

is represented as a vector in feature space, and an appropriate

measure is used to find its distance to other points. To eliminate

a majority of unpromising comparisons, vectors are usually

indexed in a k-d tree [22] or a PCP tree [23]. FLANN [20] is

a widely used framework for approximate nearest neighbour

search in a k-means tree structure.

A video sequence consisting of a single shot with sufficient

framerate presents only minor changes between consecutive

frames. Points of interest are therefore spatially almost regis-

tered, and detected motion is to some extent smooth. Hence, it

is beneficial to index the key points by their location as well.

Only the adjacent key points are then checked for descriptor

correspondence. Because such index is only two-dimensional,

k-d tree indexing is chosen as the approach with the fastest

query time and the smallest overhead [20].

Our approach uses a k-d tree for indexing of the interest

points by their position. Only points closer than a given

radius (by default 2%) and with the Hamming distance of its

descriptor smaller than 64, as proposed in [15], are considered
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as candidates. The point with the lowest Hamming distance is

considered a match and excluded from the k-d tree.

For k-d tree indexing and search, we used a header-only

implementation nanoflann [24], which allowed us to con-

trol the indexing of points fully. The time required for the

construction of the index is negligible – O(n log n), where n

is the number of points indexed. The radius search is, however,

significantly improved. Instead of comparing distances to all

points and sorting in O(n+n log n), the search in the k-d tree

takes only O(n
1

2 +m), where m is the number of results. We

can also estimate the feature position from the previous frame,

as we discuss in the next section.

IV. DEDUCTION OF OPTICAL FLOW

After processing the first two frames and with an assumption

of smooth motion, the approximate position of the key point in

the next frame can be estimated. Such an assumption enables

us to provide a more likely query point for the radius search

as well as a possibility to reduce the radius to increase the

speed of registration.

To this end, we keep a list of active tracked features with

current position and ORB description, position delta, radius

and history of positions. Each successive frame is then regis-

tered by the algorithm presented in the previous section and

matched features are updated accordingly. Unmatched features

increase the radius and can, therefore, recover for some time.

When radius exceeds a threshold, the feature becomes lost.

The rest of the newly detected points of interest is appended

to the set of active points with default uncertainty value and

zero position delta, as no history is presumably available.

As a result, we obtain a list of features with their description

and history of positions. This information can be used during

the processing of multimedia content for online recognition

and detection scenarios, or offline for multimedia content

classification and deeper analysis.

V. MOTION ESTIMATION RESULTS AND PERFORMANCE

Figure 1 presents a comparison of the original Kanade-

Lucas-Tomasi algorithm with our proposed method based on

matching ORB descriptors. The test sequences were captured

just for this experiment by Lumix FZ80, as it provides a

4K video recording. The camera moves downwards during

the shot and continuously tilts upwards. The background is

therefore visually moving downwards, and the tap with the

marble fountain moves up throughout the considered sequence.

Figure 1(a) presents a result of feature detection on the

first frame and tracking by the Lucas-Kanade algorithm with

recommended settings, yet without filtering. As can be seen,

the fountain presents many points that are considered as con-

venient for tracking, whereas the Shi-Tomasi detector proposes

no key point in the background, even though visually good (but

unsharp) edges are available on the bench and lamppost. From

the visual perspective, several severe misdetections accumulate

during the processing.

The result of our method, presented in Figure 1(b) shows

features tracked in this frame with rather short history lines.

(a) Kanade-Lucas-Tomasi on all frames without cross
checking and feature renewal

(b) Active motion vectors detected by ORB matching
with history, proposed by our algorithm

Fig. 1: Visual comparison of motion estimation. For full

resolution, please refer to http://github.com/petrpulc/orb-flow/

tree/master/img

We assume that this is mainly caused by the overly precise

matching of the point descriptors, which is however crucial

for the stability of the registration algorithm. When all gath-

ered timelines are overlaid, the combined history length is

comparable. Our proposed algorithm is, however, capable of

considering new points of interest as soon as they appear

without a need to wait for lost features. Due to that, several

good features are detected on the bench, providing at least

some information about the background movement.

Our other goal was to make the motion estimation possible

in a higher resolution video in real time. According to the

results presented in Table I(b), we are currently able to detect

motion on circa 350 newly detected interest points for each

frame in 1440p resolution. Higher parallelism (e.g. in the

feature point matching stage) would lead to higher utilisation

of available resources and possibly even better results.

The processing time of Kanade-Lucas-Tomasi (see Table

I(a)), is dependent almost only on the resolution, which

indicates a slow detection of key points. If the detection is not

carried out on every frame, the time required for processing

is appropriately reduced. However, the problem of connecting

segmented motion time series emerges.

In our implementation, the motion detection speed can

be increased by decreasing the lost point threshold. This,

however, results in detection of many shorter sequences that

would need to be reconnected in further processing.

PETR PULC, MARTIN HOLEŇA: TOWARDS REAL-TIME MOTION ESTIMATION IN HIGH-DEFINITION VIDEO 69



TABLE I: Comparison of elapsed time [ms] required to

process a single frame

Darker green represents processing above 30 fps, lighter green above 25fps.

(a) Kanade-Lucas motion estimation with Shi-Tomasi point of
interest detection in each frame

Vertical resolution

Points 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160

100 2.86 8.0 16.01 27.8 43.03 62.79 84.3 106.87 137.56 167.6 203.23 246.07
200 3.27 8.47 16.83 28.25 43.98 63.57 84.61 107.06 133.76 164.99 201.39 245.36
300 3.6 8.78 16.86 28.62 43.94 63.03 84.8 109.33 135.98 165.48 201.85 246.09
400 3.58 9.16 17.53 28.98 44.72 64.06 84.6 109.88 134.55 169.59 202.4 245.68
500 3.56 9.59 17.93 30.23 45.35 64.08 83.47 108.63 135.25 164.1 205.1 242.84
600 3.56 9.95 18.3 30.38 45.46 64.67 84.81 109.08 139.97 167.74 201.41 243.62
700 3.57 9.03 18.4 30.41 45.02 64.77 87.1 107.72 136.34 167.45 202.32 248.48
800 3.58 9.03 19.08 30.64 46.46 65.12 86.88 108.62 136.68 167.77 207.38 244.43
900 3.59 9.06 17.36 30.77 46.62 65.5 86.66 111.48 138.7 168.93 206.52 247.6
1000 3.56 9.05 17.57 31.71 46.34 66.9 87.77 112.43 135.08 171.98 203.19 253.53

(b) Our algorithm with the detection of interest points by ORB on
each frame and descriptor matching

Vertical resolution

Points 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160

100 2.42 4.54 7.62 11.43 18.24 24.44 32.67 39.83 45.92 55.08 69.95 77.39
200 2.65 5.74 9.61 14.18 19.4 26.92 32.86 41.63 51.48 60.62 68.93 78.53
300 2.87 6.75 11.93 17.32 23.53 30.86 38.1 47.13 54.38 65.07 77.42 84.01
400 3.02 8.14 14.48 20.27 28.07 34.91 40.86 51.47 60.89 68.53 80.15 86.53
500 3.0 9.21 17.19 23.95 33.3 39.2 46.42 57.09 67.17 78.61 89.89 95.32
600 3.01 10.18 19.85 28.85 39.74 46.02 52.78 64.24 75.12 87.28 95.61 103.02
700 2.99 11.25 22.48 32.84 42.71 52.23 59.47 70.97 84.52 95.67 106.25 116.92
800 2.99 11.5 24.23 36.37 49.08 57.02 66.23 78.34 95.32 104.19 121.68 126.52
900 3.0 11.92 26.53 40.93 54.26 65.53 74.12 82.9 97.13 114.92 130.15 146.47

1000 2.99 12.2 28.65 46.52 58.58 72.27 84.01 92.25 111.85 127.17 144.6 152.49

TABLE II: Number of detected features by our algorithm

during a 120 frame long sequence

Vertical resolution

Points 180 360 540 720 900 1080 1260 1440 1620 1800 1980 2160

100 4186 6690 6369 7773 8098 7766 8034 7983 8089 8186 8141 8185
200 4117 9211 10774 14691 15692 13477 16084 15980 16559 16465 16605 16645
300 4614 9901 15577 20011 23007 18790 22798 23117 24293 24402 24810 25031
400 4504 11447 17824 21768 28857 23195 26167 29449 31814 31952 31897 32821
500 4544 13646 21827 24138 35209 28372 26089 35675 38383 39437 39369 40825
600 4544 15303 23188 27623 36086 33597 29883 39590 44788 46700 46878 48054
700 4544 16125 24480 28197 36883 36693 33786 39441 50117 51451 51938 55420
800 4544 16645 24374 31692 40790 40678 38020 41938 55291 58064 58996 60780
900 4544 17225 26527 34282 40792 43610 42742 44220 53890 63718 64920 67925
1000 4544 17811 29024 37062 40665 45416 46872 47854 54732 68837 70498 73681

In Table II, we present the number of detected sequences

with an arbitrary history length in a sequence of 120 frames.

With increasing resolution of the frame, the key point detector

is less likely to select the same point and the more likely the

feature becomes lost. Also, such features may be based on

noise or not very robust image areas.

VI. CONCLUSION

In comparison to the baseline in real-time feature tracking,

Kanade-Lucas-Tomasi algorithm, our approach is able to pro-

vide a sufficient number of tracked points of interest even on a

FullHD or higher resolution without utilising GPU. The time

sequences gathered from our motion estimation are, however,

relatively short and may require additional processing.

Our future research will be, therefore, aimed mainly at

improving the matching capabilities of our algorithm, resulting

in longer time sequences. These sequences will be then more

suitable for clustering of the gathered time sequences for the

purpose of faster object segmentation and ultimately object

detection and description.
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