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Abstract—The height of a rational number §

by h(%) and equals max(|p|,|q)) provided £ is written in

lowest terms. The height of a rational tuple (x,...,x,) is
denoted by h(xy,...,x,) and equals max(h(x)),...,h(x,)). Let
Gy={xi+1=x:i,ke{l,....n}}U{x;-x;=xc 11, jkef{l,...,n}}L

is denoted

Let f(1)=1,and let f(n+ 1) = 22f(n) for every positive integer n.
We conjecture: (1) if a system S C G, has only finitely many

solutions in rationals x,...,x,, then each such solution
ifn=1)

Xi,...,X,) satisfies h(x,...,x < -2 . H

( 1 n) ( 1 n) { 22” (lf n> 2) ’

(2) if a system S C G, has only finitely many solutions in
non-negative rationals x;,...,x,, then each such solution
(x1,...,x,) satisfies h(xy,...,x,) < f(2n). We prove: (1) both
conjectures imply that there exists an algorithm which takes
as input a Diophantine equation, returns an integer, and this
integer is greater than the heights of rational solutions, if
the solution set is finite; (2) both conjectures imply that the
question whether or not a given Diophantine equation has only
finitely many rational solutions is decidable by a single query
to an oracle that decides whether or not a given Diophantine
equation has a rational solution.

Index Terms—Diophantine equation which has only finitely
many rational solutions, Hilbert’s Tenth Problem for Q, relative
decidability, upper bound on the heights of rational solutions.

1. Introduction

HE height of a rational number

and equals max(|p|,|g|) provided = is written in lowest
terms. The height of a rational tuple (xy, ..., x,) is denoted by
h(xy,...,x,) and equals max(h(x;),...,h(x,)). We attempt to
formulate a conjecture which implies a positive answer to the
following open problem:

g is denoted by h(ﬁ)
q

Is there an algorithm which takes as input a Diophantine
equation, returns an integer, and this integer is greater than
the heights of rational solutions, if the solution set is finite?

II. Conjecture 1 and its equivalent form

Observation 1. Only x; =0 and x; = 1 solve the equation
X1 - X| = x| in integers (rationals, real numbers, complex num-

IEEE Catalog Number: CFP1785N-ART (©2017, PTI

bers). For each integer n > 2, the following system

X1 - X1 = X
x1+1 = x
X1-X2 = X2

Vie{2,....n=1} x; - x;

Xxiy1 (if n>3)
has exactly one integer (rational, real, complex) solution,
n-3 n-2
namely(1,2,4,16,256,...,22 22 )
Let
G,={xi+1=x: i,ke{l,...,n}ju

{xi-xj=xc:4,j,kefl,...,n}}

Conjecture 1. If a system S C G, has only finitely many
solutions in rationals x,...,x, then each such solution
(x1,...,x,) satisfies

1 ifn=1)
h(x1,...,x,) < on=2 .
2 (ifn>=2)

Observation 1 implies that the bound

1
22n—2

cannot be decreased.

(fn=1)
(f n>2)

Conjecture 1 is equivalent to the following conjecture on

rational arithmetic: if rational numbers xi,..., x, satisfy
" ) 1 ifn=1)
X1yeoesXp) > n-2
' " 22 (if n>2)

then there exist rational numbers yy,...,y, such that

h(xi, ..., %) <h(yi,...,y0)
and for every i, j, k€ {l,...,n}
(xi+l=xy=yi+1=y) Axi-X;=x=>yi Y=k

Theorem 1. Conjecture 1 is true if and only if the execution
of Flowchart 1 prints infinitely many numbers.
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i=i+1

Does the number of prime No
factors of i is divisible by 37

lYes

Compute prime numbers Ay, By,Cq, -+ ,An, Bn,Cn
and positive integers ay,by,cy, " ,an,bn,cn
such that i = A% BP1CC1 ... a% ghn cCn

and A| <By <C; <--<Ap<Bp<Cp

L

X = [(-D)% . M, (=% . bn =1
4] Cn
1 if n=1 No
Is h(X) > 2 ?
@0 {22” if n>2
Yes
ji=2

—)l ji=j+1 I—)
No | Does the number of prime
factors of j equal 3n?

Z Print i 7
lYes

Compute prime numbers 1,71, Wy, -+ ,8n, Tn, Wn
and positive integers sy,f1,W{, **, Sn,In, Wn
such that j =SS TIWMT ..oy
and S <Ty <Wp < <Sp<Tp<Wy

i}
-1

Y= (=D . E, L(=D)Sn . !
w1

wn

No

Is h(Y) > h(X)?

Yes

Is Vp,q,ref{l,- - ,n}
(X[p]+1=X[r1=Y[p]+1=Y[)A

(X[p]-X[q] = X[r1= Y [p]- Y[q] = Y []))?

Yes

Flowchart 1: An infinite-time computation which
decides whether or not Conjecture 1 is true

Proof. LetI'5 denote the set of all integers i > 2 whose number
of prime factors is divisible by 3. The claimed equivalence
is true because the algorithm from Flowchart 1 applies a

surjective function n: I's — |J Q". m}
n=1

Corollary 1. Conjecture 1 can be written in the form
VxeN Jy e N ¢(x,y), where ¢(x,y) is a computable predi-
cate.
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III. Algebraic lemmas — part 1

Let R denote the class of all rings, and let Rng denote the
class of all rings K that extend Z. Let

E,={1=x:ke{l,...,n}}u
{xi+x;=x: i, j,kefl,...,n}jU
{xi-xj=xc: i,j,ke{l,...,n}}

Lemma 1. ([12, p. 720]) Let D(xy,...,x,) € Z[x1,...,Xp].
Assume that d; = deg(D, x;) > 1 for each i € {1,..., p}. We can
compute a positive integer n > p and a system T C E, which
satisfies the following three conditions:

Condition 1. If K € Rng U {N,N\ {0}, then

VE.....%, €K (D@.....%) =0 =

A pitse s By € K (1, .y %y Fpits .., F) s0lves T)

Condition 2. If KeRngU{N,N\{0}}, then for each

X,....%, €K with D(%,...,%,) =0, there exists a
unique tuple (Xpi1,...,%,) € K"P such that the tuple
(X1, ., Xp, Xps1, ..., Xy) solves T.

Condition 3. If M denotes the maximum of the absolute
values of the coefficients of D(xi,...,x,), then

n=(M+2)(d]+1)'...'(dp+l)_1

Conditions 1 and 2 imply that for each K € Rng U {N, N \ {0}},
the equation D(x1,...,x,) = 0 and the system T have the same
number of solutions in K.

Lemma 2. (/8 p. 100]) If L € RU{N,N\ {0} and x,y,z €L,
then z(x +y —z) = 0 if and only if

(zx+ D(zy+ 1) = z2(xy +1)+1

Let @, B, and y denote variables.

Lemma 3. [f LeRU{N,N\{0}} and x,y,z€L, then
x +y=zif and only if
@x+Dy+1) =y + 1) +1 (1

and
(z+Dx+ D+ DHy+D+1)=(z+ 1)2(x(y+ D+D+1 (2

We can express equations (1) and (2) as a system F such
that ¥ involves x,y,z and 20 new variables and ¥ consists
of equations of the forms a+1 =y and a - = .

Proof. By Lemma 2, equation (1) is equivalent to
Ax+y-2)=0 3)
and equation (2) is equivalent to
Z+Dx+@+D)-(@z+1)=0 “

The conjunction of equations (3) and (4) is equivalent to
x+y =2z The new 20 variables express the following 20
polynomials:
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x, zx+1, zy, wy+l, A xy, ay+l,
Zay+ 1), Zay+ D+l z+1, (2+Dx,
z+Dx+1, y+1, (@+DHOo+1, @E+D@+D+1,
@+ 12 x(y+1), x+D+1,

G+ D2+ D+1D, @+ D*a@+D+D+1.

|
Lemma 4. (c¢f Observation 4) Let D(xi,...,x,)€
Z[xi,...,x,]. Assume that deg(D,x;)>1 for each
ief{l,...,p}. We can compute a positive integer n> p

and a system T C G, which satisfies the following two
conditions:

Condition 4. If K € Rng U{N,N\ {0}}, then

VE.....% €K (D(F),....%,) = 0

Axpst, .. X €K (R4, ..., %y, Xpi1, ..., Xn) solves T)

Condition 5. If KeRngU{N,N\{0}}, then for each

X,..., %, € K with D(%,...,%,) =0, there exists a
unique tuple (Xpi1,...,%,) € K"P such that the tuple
(X1, Xp, Xpitts .- -, Xy) solves T.

Conditions 4 and 5 imply that for each K € Rng U {N,N \ {0}},
the equation D(xy, ..., x,) = 0 and the system T have the same
number of solutions in K.

Proof. Let the system T C E, be given by Lemma 1. For every
L e RU{N,N\ {0}},

VxEL(x=1<:>(x-x:x/\x-(x+1):x+1))

Therefore, if there exists m € {1,...,n} such that the equation
1 = x,, belongs to T, then we introduce a new variable y and
replace in T each equation of the form 1 = x; by the equations
Xp - Xp = Xk, X + 1 =y, x; -y = y. Next, we apply Lemma 3 to
each equation of the form x; + x; = x; that belongs to T and
replace in T each such equation by an equivalent system of
equations of the forms ¢+ 1=y and -8 =. m]

IV. The main consequence of Conjecture 1

Theorem 2. Conjecture 1 implies that there is an algorithm
which takes as input a Diophantine equation, returns an
integer, and this integer is greater than the heights of rational
solutions, if the solution set is finite.

Proof. 1t follows from Lemma 4 for K = Q. The claim of
Theorem 2 also follows from Observation 4. O

Corollary 2. Conjecture 1 implies that the set of all Diophan-
tine equations which have infinitely many rational solutions is
recursively enumerable. Assuming Conjecture 1, a single query
to the halting oracle decides whether or not a given Dio-
phantine equation has infinitely many rational solutions. By
the Davis-Putnam-Robinson-Matiyasevich theorem, the same
is true for an oracle that decides whether or not a given
Diophantine equation has an integer solution.

For many Diophantine equations we know that the number
of rational solutions is finite by Faltings’ theorem. Faltings’
theorem tells that certain curves have finitely many rational
points, but no known proof gives any bound on the sizes of
the numerators and denominators of the coordinates of those
points, see [5, p. 722]. In all such cases Conjecture 1 allows us
to compute such a bound. If this bound is small enough, that
allows us to find all rational solutions by an exhaustive search.
For example, the equation x} — x; = xj — x, has only finitely
many rational solutions ([7, p. 212]). The known rational
solutions are: (-1, 0), (-1, 1), (0, 0), (0, 1), (1,0), (1, 1), (2, -5),
(2,6), (3,-15), (3,16), (30, -4929), (30,4930), (1. 8). (3. 3).

\4°32)\4> 32
15 _ 185\ (_15 1209 : .

(— 1% 1024), ( 16" 1024), and the existence of other solutions
is an open question, see [10, pp. 223-224]. The system

X3 + 1 = X2

X2X3 = X4

X5 + 1 = X1

X1 X1 = Xp

X6 X = X7

X7°-X5 = X4

2

is equivalent to x] — x; = x — x,. By Conjecture 1, h(x‘]‘) =

how) < h(x,.ox) < 22" _ 9% Therefore, h(xi) <
232)#4 = 256. Assuming that Conjecture 1 holds, the following
MuPAD code finds all rational solutions of the equation
x?—xl =x§—xz.

solutions:={}:

for i from -256 to 256 do

for j from 1 to 256 do

x:=i/j:

y:=4%x"5-4%x+1:

p:=numer(y):

q:=denom(y) :

if numlib::issqr(p) and numlib::issqr(q) then

zl:=sqrt(p/q):

z2:=-sqrt(p/q):

yl:=(z1+1)/2:

y2:=(z2+1)/2:

solutions:=solutions union {[x,yl],[x,y2]}:

end_if:

end_for:

end_for:

print(solutions):

The code solves the equivalent equation
4x) —dx; +1=Q2x - 1)
and displays the already presented solutions.

MuPAD is a general-purpose computer algebra system. The
commercial version of MuPAD is no longer available as a
stand-alone product, but only as the Symbolic Math Toolbox of
MATLAB. Fortunately, this and the next code can be executed
by MuPAD Light, which was offered for free for research and
education until autumn 2005.

V. Algebraic lemmas - part 2

Lemma 5. Lemmas 2 and 3 are not necessary for proving
that in the rational domain each Diophantine equation is
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equivalent to a system of equations of the forms a+1 =7y
and a-B=v.

Proof. By Lemma 1, an arbitrary Diophantine equation is
equivalent to a system 7 C E,, where n and T can be com-
puted. If there exists m € {1,...,n} such that the equation
1 = x,, belongs to T, then we introduce a new variable ¢ and
replace in T each equation of the form 1 = x; by the equa-
tions xi - xx = xx, Xx + 1 =1, and x; -t = t. For each rational
number y, we have y> + 1 # 0 and y(3? + 1) + 1 # 0. Hence,
for each rational numbers x, y, z,

x+y=z = x’+D+y0*+ D) =z0"+1) =
P+ D+y0P+ D+1=z0"+D+1 =
x(y2+1)
yo2+1)+1

We transform the last equation into an equivalent system
W C G, in such a way that the variables xj,..., x|y corre-
spond to the following rational expressions:

Xy 2 v V41, y0r+ 1), yoP+ D+ 1, x(6? + 1),

x(y* + 1) x(y? + 1)
YO+ 1D +17 yo2+1)+1
In this way, we replace in T each equation of the form

X; + x; = x; by an equivalent system of equations of the forms
a+l=yand a-B=1. m}

(y(y2+1)+1)-( +1)=z(yz+l)+l

+1, 202+ 1), z0P+ D+ 1.

The next lemma enable us to prove Theorem 2 without using
Lemma 4.

Lemma 6. For solutions in a field, each system S C E, is
equivalent to T\ V ---V T, where each T; is a system of
equations of the forms a+1 =7y and a - =y.

Proof. Acting as in the proof of Lemma 5, we eliminate
from S all equations of the form 1 = x;. Let m denote the
number of equations of the form x; + x; = x; that belong to S.
We can assume that m > 0. Let the variables y, z, t, w, s, and
r be new. Let

Slz(S\{x,-+xj=xk})U
(xi+1=y, q+1l=y, x;+1=z 2z-x;=2x}

and let
S, = (S\{X,'+)Cj = Xk})U

{t-xj=x;, t+1l=w, w-xj=x, x;+1=35, r-x;=s}

The system S; expresses that x; + x; = x; and x; = 0. The
system S, expresses that x; + x; = x; and x; # 0. Therefore,
S & (81 vV 8). We have described a procedure which trans-
forms S into S; and S,. We iterate this procedure for S
and S, and finally obtain the systems T1,...,To» without
equations of the form x; + x; = x;. The systems T1,...,Ton
satisfy S & (T} V - - - V T) and they contain only equations
of the forms ¢+ 1=y and a-B =1. m]
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VI. Systems which have infinitely many rational solutions

Lemma 7. ([9, p. 391]) If 2 has an odd exponent in the prime
Jactorization of a positive integer n, then n can be written as
the sum of three squares of integers.

Lemma 8. For each positive rational number z, 7 or 2z can
be written as the sum of three squares of rational numbers.

Proof. We find positive integers p and g with z = §. If

2 has an odd exponent in the prime factorization of pgq,
then by Lemma 7 there exist integers i, ip, i3 such that
pq = it + i3 +i3. Hence,

SORGRC)

If 2 has an even exponent in the prime factorization of pgq,
then by Lemma 7 there exist integers j;, j», j3 such that
2pq = j; + j5 + j3. Hence,

SERERE)

Lemma 9. A rational number 7 can be written as the sum
of three squares of rational numbers if and only if there exist
rational numbers r, s, t such that z = r* (s2 (t2 + 1) + 1).

[}

Proof. Let H(r, s,t) = 1 (32 (t2 + 1) + 1). Of course,
H(r,s,1) = r* + (rs)* + (rst)?

We prove that for each rational numbers a, b, ¢ there exist
rational numbers r, s, ¢ such that a®+ b* + ¢ = H(r, 5, 7).
Without loss of generality we can assume that |a| < |b| < [c]. If
b =0, then a =0 and a® + b* + ¢* = H(c,0,0). If b # 0, then
ciOanda2+b2+c2=H(cQ£) m]

v b )
Lemma 10. ([1, p. 125]) The equation x> +y*> = 4981 has
infinitely many solutions in positive rationals and each such
solution (x,y) satisfies h(x,y) > 1016' 106.

Theorem 3. There exists a system T C Gog such that T has
infinitely many solutions in rationals x, . .., xXog and each such
solution (x1,...,xy8) has height greater than 2227.

Proof. We define:
Q={peQn(0.0):AyeQ (p-y)’ +) =4981}

Let Q; denote the set of all positive rationals p such that the
system
4981

24+ b% + 2

' +y =

po=a

is solvable in rationals. Let Q, denote the set of all positive
rationals p such that the system

-y’ +y
20° =

4981
a? + b2+ 2
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is solvable in rationals. Lemma 10 implies that the set Q is
infinite. By Lemma 8, Q = Q; U Q,. Therefore, Q, is infinite
(Case 1) or Q; is infinite (Case 2).
Case 1. In this case the system
®+y = 4981
f}‘—j = a?+b*+c?

has infinitely many rational solutions. By this and Lemma 9,
the system

4981
r (s2 (t2 + 1) + 1)

has infinitely many rational solutions. We transform the above
system into an equivalent system 7~ C G»7 in such a way that
the variables xj,--- , xp7 correspond to the following rational
expressions:

——
=

[
+
(R
[

2 3 2 3 2 X2
xay’xa-x3yay3 v_By ‘_’i+15

17, 289, 22

1, 2, 4, 16, 8,

t, 2, P+1, s 2, 2@+, sSE+D+1, r,

241, 293, 4981,

The system 7 has infinitely many solutions in rationals
X1,...,X7. Lemma 10 implies that each rational tuple
(x1,...,xp7) that solves 7~ satisfies

3 6 27
h(X],.. -7x27) > h(x?,x;) = (h(xl,XZ)) > 1048 . 10 > 22

Since Gy7 € Gag, T C Gog and the proof for Case 1 is com-
plete.
Case 2. In this case the system

P4y = 4981
2;—; = a2+ +2

has infinitely many rational solutions. By this and Lemma 9,
the system

X4yt = 4981
{ 2.5 P(2(2+1)+1)

has infinitely many rational solutions. We transform the above
system into an equivalent system 7~ C Gog in such a way that
the variables xp,...,xpg correspond to the following rational
expressions:

3

2 3 .2 3 2 x
X, ¥, X5 X0 Y5 Y 5, 20 5

3

7 +1,
1,2, 4,16, 17,289, &2 20 11 293, 4981,
t, 2, 2+1, s, 5% 2@+ D, SE+D+1,r 2

The system 7 has infinitely many solutions in rationals
X1,...,Xx8. Lemma 10 implies that each rational tuple
(x1,...,xp8) that solves 7 satisfies

3 6 27
h(xn..oxs) > h(x23) = (R (r,x) > 10487107592
m}

For a positive integer n, let p(n) denote the smallest positive
integer m such that each system S C G, solvable in rationals

X1,...,X, has a rational solution (x,...,x,) whose height is
not greater than m. Obviously, u(1) = 1. Observation 1 implies

n-2
that pu(n) > 22

) for every integer n > 2. Theorem 3 implies
7
that u(28) > 227 .

Theorem 4. The function u: N\ {0} - N\ {0} is computable
in the limit.

Proof. Let us agree that the empty tuple has height 0. For a
positive integer w and a tuple

)}

n—times

(X152 sX0) € ([—w, W] NZY"\ {(w, ...

let succ ((xq,...,x,),w) denote the successor of (xi,...,x,)
in the co-lexicographic order on ([—-w,w] N Z)". Flowchart 2
illustrates an infinite-time computation of u(n).

/Input a positive integer n/

A= [_k’l.. ’_k]
- =
2n—times
|
4
X := [A[‘?[J:]n] (I<i<n)AAi+n] # 0)}
Pl A
2n—times
T t
4 ]
R B = B,k
= B[?Ei]n]:(1<i<n)A(B[i+n]¢0)] I—Sulcc(—)l

No
1 s
k1?

I
1 No JdB=(k.---
[Is length(X) = length(y)?| S

Yes

2n—times
Is Vi jke(l, - ,length(X)}
(X[ + 1 = X[k = Y[i]+ 1 = Y[k]) A
(X[ - X[j1 = X[kl = Y[ - Y[j] = Y[k]))?

Yes
Yol [ = max(uh)
lYes

h:= min(h, height(Y)) —

Is
Yes —
A=lho
2n—times
No

A :=succ (4, k)

Flowchart 2: An infinite-time computation of u(n)
[m]

The next MuPAD code implements the algorithm from
Flowchart 2. In MuPAD, nops(-) denotes the length of a list.
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The code is useless for practical computations because the
algorithm from Flowchart 2 is very time-consuming.

succ:=proc(X,w)

local p,i;

begin

p:=1:

while (p<=nops(X) and X[p]=w) do p:=p+1
end_while:

for i from 1 to p-1 do X[i]:=-w end_for:
X[pl:=X[p]+1:

return(X) :

end_proc:

ratios:=proc(X)
local T,u,i;

begin

T:=[]:

u:=nops(X)/2:

for i from 1 to u do
if X[i+u]<>0 then T:=append(T,X[i]/X[i+u])
end_if:

end_for:

return(T) :

end_proc:

fit:=proc(X,Y)

local f£,s,i,j,k;

begin

f:=TRUE:

if nops(X)<>nops(Y) then f:=FALSE end_if:
s:=min(nops(X),nops(Y)):

for i from 1 to s do

for j from 1 to s do

for k from 1 to s do

if X[i]+1=X[k] and Y[i]+1<>Y[k] then
f:=FALSE end_if:

if X[i]1*X[j1=X[k] and Y[i]*Y[j]l<>Y[k] then
f:=FALSE end_if:

end_for:

end_for:

end_for:

return(f):

end_proc:

height:=proc(X)

local h,i;

begin

h:=0:

for i from 1 to nops(X) do

h:=max(h, abs(numer(X[i])),denom(X[i])):
end_for:

return(h):

end_proc:

input ("Enter a positive integer:",n):

k:=1:
while TRUE do
m:=1:

X:=[-k $i=1..2*n]:

for i from 1 to (2*k+1)"(2*n)-1 do
h:=height(ratios(X)):

Y:=[-k $i=1..2*n]:

for j from 1 to (2*k+1)"(2*n)-1 do

if fit(ratios(X),ratios(Y))=TRUE then
h:=min(h,height(ratios(Y))) end_if:
Y:=succ(Y,k):
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end_for:
m:=max(m,h):
X:=succ(X,k):
end_for:
print(m):
k:=k+1:
end_while:

VII. Conjecture 2 and its equivalent form
Let [-] denote the integer part function.
Lemma 11. For every non-negative real numbers x and y,
A 20 ol 21
x + 1 =y implies that 2% 2=~ =2"".

Proof. For every non-negative real numbers xandy, x+ 1 =y

implies that [x] + 1 = [y]. O
2 f(n) .

Let f(1)=1, and let f(n+1)=2 for every positive

integer n. Let g(1) =0, and let g(n+1) = 22g(n) for every

positive integer n.

Conjecture 2. If a system S C G, has only finitely many
solutions in non-negative rationals x, ..., X,, then each such
solution (xi,...,x,) satisfies h(xy,...,x,) < f(2n).

Observations 2 and 3 justify Conjecture 2.

Observation 2. For every system S C G, which involves all
the variables x, ..., x,, the following new system

[xc]
SU{22 =yk:k€{1,---,n}}u U i - yi = v}
xi+1=x;,€S8

is equivalent to S. If the system S has only finitely many
solutions in non-negative rationals xi,...,Xx,, then the new
system has only finitely many solutions in non-negative ratio-
nals xi,..., Xn, Vis- - Yn-

Proof. 1t follows from Lemma 11. |

Observation 3. For every positive integer n, the following
system

X1 ° X1 = X

{Vie{l,...,n—l}zz[xi]

Xit1 (lf n> 1)

has exactly two solutions in non-negative rationals, namely
(g(1),...,g(n)) and (fQ1),..., f(n)). The second solution has
greater height.

Conjecture 2 is equivalent to the following conjecture on
rational arithmetic: if non-negative rational numbers xi, ..., X,
satisfy h(xy,...,x,) > f(2n), then there exist non-negative

rational numbers yy,...,y, such that
h('xl9""xn) <h0}]7""yn)
and for every i, ke {l,...,n}

xi+l=xi=yi+1=y) AXi-X;=X=yi Y=Y

Theorem 5. Conjecture 2 is true if and only if the execution
of Flowchart 3 prints infinitely many numbers.
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i=i+1
Does the number of prime No
factors of i is divisible by 27?
Yes
Compute prime numbers B{,Cq, -+ ,Bn,Cn
and positive integers by,cy, - .bn,cn
such that i = B'1cC1... ghnclr
and By <Cy <---<Bp<Cp

L

by —1 -
X::[ 1 ,...,M]
Cl n

No

Is i(X) > f(2n)?

—)l ji=j+1 I—)
No | Does the number of prime
factors of j equal 2n?

lYes

Compute prime numbers 71, Wy, -, Ty, Wy
and positive integers ty,wy, " ,tn, Wn
such that j= T/ W' ... 7wy
and Ty < Wy <---<Tp < Wy

i}

t—1 -
Y::[l_,...,u]
w1 wn

Z Print i 7

No

Is h(Y) > h(X)?

Yes

Is Vp,q,ref{l,---,n}
(X[pl+1=X[r1=Y[p]+1=Y[r])A

(X[p]-X[q) = X[r] = Y[p]-Y[q] = Y [1]))?

Yes

Flowchart 3: An infinite-time computation which
decides whether or not Conjecture 2 is true

Proof. Let T, denote the set of all integers i > 2 whose number
of prime factors is divisible by 2. The claimed equivalence
is true because the algorithm from Flowchart 3 applies a

surjective function from I'; to |J (Q N [0, c0))". ]

n=1
Corollary 3. Conjecture 2 can be written in the form
Vx e N Jy e N y(x,y), where Yy(x,y) is a computable predi-
cate.
VIII. Algebraic lemmas — part 3
Lemma 12. (¢f. [8, p. 100]) For every non-negative real
numbers x,y,z, x +y = z if and only if

(E+Dx+ D+ Do+D+1) =+ D>xG+D+D+1 (5)

Proof. The left side of equation (5) minus the right side of
equation (5) equals (z + D)(x +y — 2). O

Lemma 13. In non-negative rationals, the equation x +y =z
is equivalent to a system which consists of equations of the
forms a+1=vyand a-B=1.

Proof. 1t follows from Lemma 12. O

Lemma 14. Let D(xi,...,x,) € Z[xy,...,X,]. Assume that
deg(D, x;) > 1 for each i € {1,..., p}. We can compute a pos-
itive integer n > p and a system 7 C G, which satisfies the
following two conditions:

Condition 6. For every non-negative rationals X1, ..., %,

D(xy,...,%,) =0

Axpit,. .-, % € QN[0,00) (Xy,...,%p, Xpi1,..., %) solves T

Condition 7. If non-negative rationals Xi,...,%, sat-

isfy D(%i,...,%,) =0, then there exists a unique tu-
ple (Zpi1,..., %) €(@QN[0,00)" 7 such that the tuple
(X1, Xp, Xpe1,..., %) solves T

Conditions 6 and 7 imply that the equation D(xy,...,x,) =0

and the system T have the same number of solutions in
non-negative rationals.

Proof. We write down the polynomial D(xi,...,x,) and re-
place each coefficient by the successor of its absolute value.
Let D(xy,... ,Xp) denote the obtained polynomial. The poly-
nomials D(xi,...,x,) +5(x1,...,x,,) and 5(x1,...,xp) have
positive integer coeflicients. The equation D(xy,...,x,) = 0 is
equivalent to

D(x1,..., %))+ D(x1,...,x,) + 1= D(x1,...,x,) + 1

There exist a positive integer a and a finite non-empty list A
such that

D(xl,...,xp)+5(x1,...,xp)+ 1=

« 2 x{11~...-x{Z‘)+1)+...)+1 ©6)
(s Jise ook, Ju) €A —
a units

and all the numbers k, iy, ji, ..., i, jr belong to N\ {0}. There
exist a positive integer b and a finite non-empty list B such
that

D(xi,...,x,) + 1=

((( Z e ) e ) ()
.. 4 3 Lk
(lly,]h"'slk’.]k)EB .

b units

and all the numbers k, iy, ji,..., I, jr belong to N\ {0}. By
Lemma 13, we can equivalently express the equality of the
right sides of equations (6) and (7) using only equations
of the forms @ + 1 =y and a -8 =y. Consequently, we can
effectively find the system 7. |

Observation 4. Combining the above reasoning with Lemma 3
for L =Q, we can prove Lemma 4 for K = Q.
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IX. Consequences of Conjecture 2

Theorem 6. If we assume Conjecture 2 and a Diophantine
equation D(xy, ..., xp) = 0 has only finitely many solutions in
non-negative rationals, then an upper bound for their heights
can be computed.

Proof. Tt follows from Lemma 14. o

Theorem 7. If we assume Conjecture 2 and a Diophantine
equation D(x1,...,x,) =0 has only finitely many rational
solutions, then an upper bound for their heights can be
computed by applying Theorem 6 to the equation

D(-DT - xy, .. (=) x,) =0

(irs...oip) € {1,207

Corollary 4. Conjecture 2 implies that the set of all Diophan-
tine equations which have infinitely many rational solutions is
recursively enumerable. Assuming Conjecture 2, a single query
to the halting oracle decides whether or not a given Dio-
phantine equation has infinitely many rational solutions. By
the Davis-Putnam-Robinson-Matiyasevich theorem, the same
is true for an oracle that decides whether or not a given
Diophantine equation has an integer solution.

X. Theorems on relative decidability

Question ([3]). Can the twin prime problem be solved with a
single use of a halting oracle?

Let £(3)=4, and let &(n+1)=¢&@n)! for every in-
teger n>3. For an integer n >3, let ¥, denote the
statement: if a system S C {xi! =x41: 1<i<n-— I}U
{xi CXj= X I<i<js<n- 1} has only finitely many so-
lutions in positive integers xi, ..., X,, then each such solution
(x1,...,x,) satisfies xi,...,x, < &(n).

Theorem 8. ([13]) The statement ¥ ¢ proves the implication:
if there exists a twin prime greater than £(14), then there are
infinitely many twin primes.

Corollary 5. Assuming the statement Y16, a single query
to the halting oracle decides the validity of the twin prime
conjecture.

Conjecture 3. Harvey Friedman’s conjecture in [4]: the set
of all Diophantine equations which have only finitely many
rational solutions is not recursively enumerable.

Conjecture 3 implies Conjecture 4.

Conjecture 4. The set of all Diophantine equations which
have only finitely many rational solutions is not computable.

By Theorem 2, Conjecture 1 implies Conjecture 5. By
Theorem 7, Conjecture 2 implies Conjecture 5.

Conjecture 5. There is an algorithm which takes as input
a Diophantine equation D(xy,...,x,) =0, returns an integer
b > 2, where b is greater than the number of rational solutions,
if the solution set is finite.
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Guess ([6, p. 16]). The question whether or not a given
Diophantine equation has only finitely many rational solutions
is decidable with an oracle that decides whether or not a given
Diophantine equation has a rational solution.

Originally, Minhyong Kim formulated the Guess as follows:
for rational solutions, the finiteness problem is decidable
relative to the existence problem. Conjecture 4 and the Guess
imply that there is no algorithm which decides whether or not
a Diophantine equation has a rational solution. Martin Davis’
conjecture in [2, p. 729] implies the same.

Theorem 9. Conjecture 5 implies that the question whether
or not a given Diophantine equation has only finitely many
rational solutions is decidable by a single query to an oracle
that decides whether or not a given Diophantine equation has
a rational solution.

Proof. Assuming that Conjecture 5 holds, the execution of
Flowchart 4 decides whether or not a Diophantine equation
D(x1,...,xp) =0 has only finitely many rational solutions.

/Input a Diophantine equation D(xl,...,xp) = O/

|Compute the bound bl

Does the equation

[ZDZ(xl,k,...,xp,k)] .
{{ [ Zp:(xi,u—xi,vf).y_l]z _ o

1<u<vgh i=1
have a rational solution?

lYes

Print "The equation D|(xi,...,x,) = 0

7 has infinitely many rational solutions"/
Print "The equation D(xl,...,xp) = 0 has
only finitely many rational solutions"

Flowchart 4: Conjecture 5 implies the Guess

No

m}

Corollary 6. Conjecture 5 implies that the question whether
or not a given Diophantine equation has only finitely many
rational solutions is decidable by a single query to an oracle
that decides whether or not a given Diophantine equation has
an integer solution.
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Lemma 15. A Diophantine equation D(xy,...,x,) =0
has no solutions in rationals (alternatively, non-negative
integers) xi,...,x, if and only if the equation
D(x1,...,x5) +0-x,41 =0 has only finitely many solutions
in rationals (respectively, non-negative integers) xi,. .., Xp41.

Theorem 10. If the set of all Diophantine equations which
have only finitely many rational solutions is recursively enu-
merable, then there exists an algorithm which decides whether
or not a Diophantine equation has a rational solution.

Proof. For a non-negative integer n, we define

e(n):{ g(n+2) (f n+2eTly)

(f n+2¢T3)
where 1 and I'; were defined in the proof of Theorem 1. The
function #: N — [ J Q" is computable and surjective. Suppose

that {A, = 0}7 isa computable sequence of all Diophantine
equations which have only finitely many rational solutions. By
Lemma 15, the execution of Flowchart 5 decides whether or

not a Diophantine equation D(xy,...,x,) =0 has a rational

solution.

/Input a Diophantine equation D(xi,...,xp) = O/

Yes

;D In:=n+1|(—
A

Is (6(n) € Q) A (D(E(m) = 0) ?

Tro

|Is D(x1, ..., %) + 0 Xpuy = Ay ?

] No
|

Yes

Print "The equation D(xi,...,x,) = 0
is not solvable in rationals"”
Print "The equation D(xy,...,xp) = 0
is solvable in rationals"

I

Flowchart 5: An algorithm that decides the solvability of
a Diophantine equation D(xi,...,x,) =0 in rationals,
if the set of all Diophantine equations which have at most
finitely many rational solutions is recursively enumerable
O
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XI. SUMMARY OF THE MAIN THEOREMS AND CONJECTURES

Flowchart 6 provides an overview of the main theorems and
conjectures.

The set of all Diophantine equations
which have infinitely many rational

solutions is recursively enumerable

Conjecture 1: if a system

S {x,~x_,- = x: i,k € [1,...,n]}U
{x, +1=x:ike {1,...,n}} has only finitely
many solutions in rationals xi,...,X,, -
then each such solution (xi,...,x,) has

i 1 (ifn=1)
height not greater than on-2
2 (ifn>1)

N

Conjecture 2: if a system
S c {x, cxj o= xe ik o€ {1,...,n]}U
{x, +1=x:ike {1,...,71}} has only finitely
many solutions in non-negative rationals

X1,...,%,, then each such solution (x,...,x,) has

height not greater than f(2n), where f(1) = 1

(n)

and f(n+1) = 22f for every positive integer n

— returns an integer, and this integer =

,U,Theorem 7

There exists an algorithm which takes
as input a Diophantine equation,

is greater than the heights of rational
solutions, if the solution set is finite

¥

7 WRIOdYL

There exists an algorithm which takes as input
a Diophantine equation, returns an integer,
and this integer is greater than the number of
rational solutions, if the solution set is finite

,U,Theorem 9

The question whether or not a given Diophantine
equation has only finitely many rational
solutions is decidable by a single query to
an oracle that decides whether or not a given
Diophantine equation has a rational solution

¥

A Minhyong Kim’s Guess ([6, p. 16]):
the question whether or not a given
Diophantine equation has only finitely many
rational solutions is decidable with an
oracle that decides whether or not a given
Diophantine equation has a rational solution

1t
=| The conjunction of the statements A and B
k13
B The set of all Diophantine equations
which have only finitely many =

rational solutions is not computable

nby Lemma 15

s| There is no algorithm which decides

729]

[2, p

whether or not a Diophantine
= equation has a rational solution

Theorem 1@]1

ﬂTheorem 11

Harvey Friedman’s conjecture in [4]:
the set of all Diophantine equations
which have only finitely many rational
solutions is not recursively enumerable

=| Martin Davis’ conjecture in [2, p. 729]

Flowchart 6: Implications between conjectures
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XII. ADDED IN PROOF
Theorem 11. A positive solution to Hilbert’s Tenth Problem

for Q implies that Friedman’s conjecture is false.

Proof. Assume a positive solution to Hilbert’s Tenth Problem
for Q. The algorithm presented in Flowchart 7 stops if and
only if a Diophantine equation D(x,...,x,) =0 has at most
finitely many rational solutions.

/Input a Diophantine equation D(xl,...,x,,) = 0/

|Fix a computable surjection {: N — Q”l

n+1

Does the equation D? (xl, } ..,xp) +
2

v ] im—n)2 -1] =0

(P1reerp)EL(O).... L ()} =1
is solvable in rationals xq,..

lNo

Print "The equation D(xl, .. .,xp) =0 has at
most finitely many rational solutions"”

Flowchart 7: A positive solution to Hilbert’s Tenth
Problem for Q implies that Friedman’s conjecture is false
O

Yes

S Xp,y ?

The set of all Diophantine equations which have at
most finitely many solutions in non-negative integers is
not recursively enumerable (Smorynski’s theorem), see
[11, p. 104, Corollary 1].

Theorem 12. [f the set of all Diophantine equations which
have at most finitely many solutions in non-negative integers
is recursively enumerable, then there exists an algorithm which
decides whether or not a given Diophantine equation has a
solution in non-negative integers. By this and Matiyasevich’s
theorem, the set of all Diophantine equations which have at
most finitely many solutions in non-negative integers is not
recursively enumerable.

Proof. Suppose that {S; = 0};2, is a computable sequence of
all Diophantine equations which have at most finitely many
solutions in non-negative integers. The algorithm presented in
Flowchart 8 uses a computable surjection from N \ {0, 1} onto
NP. By this and Lemma 15, the execution of Flowchart 8 de-
cides whether or not a Diophantine equation D(xy,...,x,) =0
has a solution in non-negative integers.

PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Grar

/Input a Diophantine equation D(xi,...,x,) = O/

L

. ,x,,+1) = D(.Xl, ..

W(xy,.. S Xp) + 0 X0

Yes Is W()C], ..

-9xp+l) :Si ?

lNo
Compute prime numbers By,..., B, and

positive integers by,...,b, such
thati=B...By and B, <... < B,

Is p<n ? No
Yes
Is Db - L,....b, -1 =0 ? 22
lYes
Print "The equation D(xi,...,x,) =0 1is

solvable in non-negative integers"

Print "The equation D(xi,...,x,) = 0 is
not solvable in non-negative integers"

N

Flowchart 8: A new proof of Smoryriski’s theorem
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