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Abstract—Head pose estimation from camera images is a com-
putational problem that may influence many sociological, cogni-
tive, interaction and marketing researches. It is especially crucial
in the process of visual gaze estimation which accuracy depends
not only on eye region analysis, but head inferring as well.
Presented method exploits a 3d head model for a user head
pose estimation as it outperforms, in the context of performance,
popular appearance based approaches and assures efficient face
head pose analysis. The novelty of the presented approach lies in
a default head model refinement according to the selected facial
features localisation. The new method not only achieves very high
precision (about 4◦), but iteratively improves the reference head
model. The results of the head pose inferring experiments were
verified with professional Vicon motion tracking system and head
model refinement accuracy was verified with high precision Artec
structural light scanner.

I. INTRODUCTION

O
RIENTATION and movement of human head allow not

only to interpret person intentions, but become a part of

nonverbal communication as well. It might be exploited in so-

ciological children behaviour monitoring [4], [5], distant com-

puter interface control [6], [31], crowdsourcing systems [7],

[8] or in cognitive computation researches [9], [29]. Though

very intuitively and naturally accomplished by humans, the

problem of head pose estimation is still a challenging problem

for current computer systems.

From the computer vision point of view head pose estima-

tion is a process of evaluating head position and orientation

from digital images. Eye tracking process which the authors

studied in previous researches [1], definitely requires infer-

ring head position and orientation as it considerably affects

gaze tracking precision. Moreover psychological investigations

show that both head pose and eye direction are strongly

correlated and influence person’s gaze prediction [2]. In such

context (gaze controlled interaction) head pose tracking can

be considered relatively to the view direction of the camera

rather than global coordinating system.

Current state of art methods [3], [23], targeting at RGB

camera image head pose inferring, claim to achieve head

orientation angular precision of about 5◦ for individual axes:

pitch, yaw, roll. Proposed head 3d model based solution can

not only obtain comparable estimation precision, but also

reveals high performance due to robust head image to model

assignment - aligned just with a few face predominant key

features. The method can start without prior knowledge of

user head dimensions and iteratively, during the process of

alignment, refines considerably default head model parameters.

II. HEAD POSE ESTIMATION METHODS

Geometrical based approaches to head pose estimation rely

on cues such as deviations of the head from bilateral symmetry

[10]. They consider both a head shape and a configuration

of local features to estimate its pose. Features search-space

can be effectively reduced by using knowledge of human face

structure. The key aspect seems to be a proper selection and

in-face localisation of the face fiducial points.

Horprasert et al. [13] proposed selection of 5 feature points

(outer eyes and outer mouth corners and tip of the nose) for

reconstruction of head pose. Authors suggested geometrical

analysis of vectors connecting feature points: face normal

vector rotation and feature points spanned vectors affine pro-

jection. Gee et al. [12] and Wang et al. [17] analysed eyes’

crossing line and mouth vertically crossing line interrelation.

They provided an approach where head pose expectation max-

imisation was obtained due to eyes and mouth lines perspective

convergence analysis. More recently Baltrusaitis et al. [23]

considered conditional local neural fields (CLNF) [24] for face

features detection and applied their orthographic projection on

the camera image plane. Subsequently PnP problem solution

was used for an appropriate head pose estimation. Though

authors claim that their method head inferring precision varies

between 2.8◦ - 6◦ (depending on a tested dataset) 3d head

model, obtained in the reprojection stage, was not verified

for its precision. There are also auxiliary sensors considered

for supporting camera view head pose estimation. Morency

et al. [25] suggested additional inertial and magnetic sensor

drift reduction and Funes et al. [30] used depth data for head

orientation analysis.

The geometric methods are fast and simple however their

difficulty lies in detecting the features with high precision

and accuracy. The process might be even more challenging

when features become outlying or missing. The most frequent

approaches for in-image face detection, relies on active appear-

ance model (AAM) [28] or active shape model (ASM) [27].

Competitive local approaches, constrained local model (CLM)
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TABLE I
INITIAL HEAD SELLION RELATED COORDINATES OF AN AVERAGE

ANTHROPOMETRIC HEAD MODEL FEATURE POINTS

Point name X[mm] Y[mm] Z[mm]

Sellion 0 0 0

Right eye 65,5 -5 20

Left eye -65,5 -5 20

Right ear 77,5 -6 100

Right ear -77,5 -6 100

Nose 0 -48 -21

Stomion 0 -75 -10

Menton 0 -133 -0

[18] and constrained local neural fields (CLNF) [24], claim

to obtain higher precision of landmark detection, especially in

strictly constrained, restricted environment (inconvenient light,

partial face occlusion). Highly efficient local analysis may also

base on gradient templates [29].

Face feature points, retrieved within face analysis, can be

subsequently structured in a face or head reference model.

3d model is used for optimizing temporal face features

spatial positioning and face image features alignment. For

example Kazemi et al. [14] suggested regression trees for

one millisecond face alignment. The head model can be

reconstructed basing on real head of the user [11] or it can

be constructed basing on default average anthropological

measures.

On contrary to previous approaches, presented solution

coherently refines 3d model while head pose estimation and

uses it directly for better head inferring. Elaborated method

preserves and in some scenarios outperforms, state-of-the-art

methods accuracy.

III. METHOD

Presented method consists of two main steps: head pose es-

timation and head model refinement. The head model consists

of 8 points: sellion, eyes outer corners, ears, top of the nose,

stomion (center of mouth) and menton. Points locations are

presentened in image 1.

At the beginning, the average anthropometric head model

was retrieved. This head model corresponds to the head shape

of averaged male adult and was based on anthropometric data

collection [20], [21]. The initial values of points coordinates

(sellion related) are presented in the table I.

A. Head pose estimation

Head pose estimation stage is divided into 2 substeps: local-

izing facial landmarks (points corresponding to the 8 selected

head model points) and head pose calculation.

Facial landmarks detection method should work in real time

and reliably calculate landmarks positions, even in difficult

lighting conditions. In our tests, we decided to use the method

described in [14] (implemented in [15]), however it is

possible to replace it with other methods satisfying mentioned

requirements. We decided to use this method, because it

performs well even in poor lighting conditions and can deal

with long hair, glasses and different skin colors as well.

Additionaly it provide more precise results than other currently

used methods, such as Supervised Descent Method [32] or

Face Alignment by Explicit Shape Regression [33]. The

method can retrieve up to 68 face fiducial points from which

several facial landmarks should be selected. Though 8 specific

points (fig. 1) were selected some substitutions are possible

(for example - eyes inner corners instead of outer corners),

as well as it might be necessary to change the number and

coordinates of the initial points.

Once the facial landmarks are detected, it’s possible to

calculate algebraically the head position and rotation. We

decided to use classic solution of PnP problem - iterative

method based on Levenberg-Marquardt optimization. This

method is implemented in OpenCV library. Obviously, the

calculated pose is not perfect. The most important reasons

of pose inaccuracies are: not accurate head model (initial

head model was based on averaged anthropometric values)

and facial landmarks detection imprecision. First problem

is handled during head model refinement step and second

problem is addressed in the next substep.

All, currently available, facial landmarks localization meth-

ods produce some errors. Usually it’s not a real problem,

since subpixel accuracy is not required in most use-cases.

It is important to note, that usually most of the detected

points, are localized with high accuracy and only some points

contains errors big enough to produce meaningful inaccuracies

in head rotation and translation estimation process. Due to this

fact, we decided to use easy method to improve accuracy of

our system. After initial head pose calculation, we calculate

head model points reprojections. Next, for each point, the

reprojection error (distance between detected and reprojected

points) is calculated. After that, we repeat calculation of

rotation and translation, using all points except the point with

the biggest error. The calculated values are final head rotation

and translation values. The rationale of this decision is that

the removed point most likely contains the biggest localization

error and generally makes it much harder (or even impossible)

to find good PnP solution. Obviously the removed point, can

be perfectly fine, but in this situation it’s possible to calculate

descent solution from only 7 (instead of 8) points. It’s quite

easy to note, that this approach is a bit similar to RANSAC

method [16]. RANSAC method solves PnP problem multiple

times for different random points selected from all 8 points,

which makes it robust in precision, but relatively slow (because

it tests all 8 possibilites, assuming only 1 outlier). Our method

solves PnP problem only twice, which makes it much faster

than RANSAC approach. Since we already know which point

burdens solving PnP problem, we can achieve optimal solution

without testing all other possibilities. In contrast to RANSAC,

our method is not based on randomness, which makes testing,

evaluating and debugging much easier.

The overall algorithm of head pose estimation, for single

frame, is presented in 1.
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Algorithm 1 Head pose estimation algorithm

Require: head_model - model of head (eight 3D points -

Pi, where i = 1, 2, ..., 8), at the beginning it’s initial head

model from table I, after each head pose refinement points

are adjusted;

1: Detect and assign facial landmarks:

landmarks Li ← detected face landmarks
2: Get rotation (R) and translation (t), solving PnP problem

using landmarks as projected points and head_model as

3D points:

R, t = solvePnP (landmarks− Li, head_model − Pi);
3: Calculate reprojection L′

i
of each point Pi of head_model:

L′

i
← K[R|t]Pi

{K - camera intrinsic (focal length and principal point)

parameters matrix, Pi - 3D point of the head model}

4: Calculate error of each reprojection (using landmarks):

e← distance(L′

i
, Li)

{(L′

i
, Li) - correpsonding_landmarks for i = 1, 2, ..., 8}

5: Find which point Pk, where k ∈ (1, 2, ..., 8) produces the

biggest reprojection error e, where L′

k
- corresponding

facial landmark point

head_model′ ← all points from head_model except Pk

landmarks′ ← all points from landmarks except L′

k

6: Solve PnP using landmarks′ and head_model′ R′, t′ =
solvePnP (landmarks′, head_model′);

7: R′, t′ - final result of algorithm

B. Head model refinement

As already mentioned, inaccurate head model is one of the

most important reasons of head pose inferring. Of course using

model from digital 3D scanner is not available in most of

cases, therefore we had to find another solution. Analysing

results of facial landmarks detection and reprojected head

model points it was easy to note that detected landmarks Li are

much more accurate than reprojected points L′

i
. Discrepancies

were presented in image 1, especially big differences between

left eye corner points and mouth center should be noted.

Based on that fact we decided to create method which adjust

and refine head model points according to the results of

facial landmarks detection (i.e. minimize reprojection error).

A classic approach for such problem is bundle adjustment

method [19], which optimizes both - camera poses and points

positions. However, this method tends to be to slow for real

time applications and can be replaced with our much simpler

approach. Additionally in our method, we can easily use

information from facial landmarks detector.

This part of our method is executed only in every n-th

(usually 175) frame. The algorithm operates on all frames

since last head model refinement.

The result of algorithm 2 (even after single iteration)

retrieves more precise face model. This face model was af-

terwards used in the head pose estimation stage, which results

in overall higher accuracy. The biggest refinement takes place

in first and second iteration of algorithm. For next iterations,

Fig. 1. Detected facial landmarks Li (blue circles), reprojected head model
points L′

i
(yellow circles)

Algorithm 2 Head model refinement algorithm

1: v_array ← array of 8 zero vectors(0, 0, 0)
2: for each frame since last head_model refinement iteration

do

3: for each facial landmark Li do

4: l← line through camera (point(0, 0, 0))
and detected landmarkLi; {line should be in para-

metric form - P = P0 + t~v}

5: R← rotation calculated for this frame;

6: t← translation calculated for this frame;

7: Create [R|t] 3x4 transformation matrix, calculate its

pseudo inverse transform and apply it to line l
8: Pi ← head model point (corresponding

to processed facial landmark pointLi)
9: P ′

i
← Pi projection on line l {Note that P ′

i
is the

nearest point from Pi that is on line l}

10: ~w ← P ′

i
−Pi {~w is the correction vector - if it would

be added to Pi the resulting point would give perfect

reprojection (for this frame)}

11: v_array[i]← v_array[i] + ~w
12: end for

13: end for

14: N ← number of frames used in head model refinement
15: for each head_model point {Pi} do

16: hp = head_model_points[i]
17: hp = hp+ v_array[i]/N
18: head_model_points[i] = hp
19: end for

the changes are much smaller, therefore recommended number

of iterations is 3 to 5.

The resultant model was also interesting on its own - for

example it can be part of face reconstruction or recognition

system, that’s why we decided to check the accuracy of head

model refinement. For this purpose we compared results with

ground truth data from 3d digital scanner 2.
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Fig. 2. Digital scan of author’s head, acquired using Artec Eva [22] scanner

Fig. 3. Images from recorded movies. Note motion tracking system markers
on the head. On (4) we can see markers used to synchronisation. In the
background - 2 IR cameras used by motion tracking system.

IV. EXPERIMENTS RESULTS

The verification of the method accuracy was performed

with a professional ground truth data. Head movements of

user were recorded simultaneously by camera assigned to the

laptop monitor and by professional Vicon passive tracking

system. Tests were performed and recorded with standard

webcam camera of 640x480 resolution. The precision of the

reference Vicon tracking system is very well known and reach

0.5 mm within large (several cubic meters) tracking volume.

Both data streams, video camera and head movement tracking

system were synchronised. Tests were performed in changing

lighting conditions (strong light from one side, blinking light

in different colors, etc.). The distance between subject was in

range 30-100cm, simulating average laptop usage. An example

frames from movies are shown in image 3.

The results of head pose estimation and head model refine-

ment algorithm are presented separately in two independent

subsections. In both cases the results are dependent on fre-

quency of head model refinement and maximum number of

allowed refinements.

A. Results of head pose estimation

Results of head pose estimation were compared with ground

truth data from reference Vicon motion tracking system. In

the table II we can find the influence of different parameters

on average head rotation angle differences. It can be noticed

TABLE II
RESULTS OF HEAD POSE ESTIMATION ERRORS. x, y, z AXES REPRESENT

RESPECTIVELY PITCH, YAW, ROLL HEAD ROTATIONS;

Head

model

Remove point

with biggest

reprojection error

Frames

between

refinements

X[◦] Y[◦] Z[◦] avg[◦]

Initial
model

no - 6,07 5,69 2,45 4,74

yes - 4,94 6,05 2,91 4,64

Initial
model +

refine-
ments

yes 100 6,46 5,25 5,23 5,65

yes 175 2,87 5,37 2,53 3,59

no 175 4,14 4,95 2,43 3,84

yes 250 3,40 5,47 2,53 3,80

no 250 4,44 5,10 2,51 4,02

yes 500 4,76 5,46 2,52 4,25

that only selected results have been provided (for discrete set

of configuration parameters). The best achieved configuration

considered removing the most erroneous head model point

with refinement for every 175-th frame. Then the average

head orientation error was 3.59 degrees but individual axes

reached an error of about 2.5 degree (Z axis representing roll
head rotation). The average frames per second value during

performing tests was 13.66, which in our opinion is enough

for real-time applications.

B. Results of head model refinement

Table III presents exemplary results of head refinement

process. Provided parameters were obtained for the least head

orientation error described in previous section. The results

were obtained with exclusion of the point with the biggest re-

projection error, with assignment of number of frames between

refinements to 175 and maximum number of refinements set

to 5. The overall head model correction reaches only about

10% and is mainly affected by the noise of ears imprecise

positioning. This is most likely caused, by the imperfection

of tested facial landmarks detection method, especially when

ears feature points are not visible. Assuming exclusion of

ears feature points, from the head model, its considerable

improvement can be presumed.

V. CONCLUSIONS

Performed experiments revealed unquestionable high aver-

age accuracy of head pose estimation. Average orientation

error oscillates around 4◦ what situates presented method at

a comparable position with the state-of-the-art approaches.

Consecutively corresponding 3d head model robust refinement

was performed but still a considerable space for further im-

provements in this field are noticeable. The refinement process

assures much faster, than corresponding bundle adjustment

process, face image alignment and resulting head pose inter-

active (real-time - average FPS 13.66) estimation.

The best results were obtained for relatively seldom refine-

ment (every 175-th frame) and the worst head model point

exclusion appeared to improve the final estimation results.

According to conducted experiments further exclusion of the

worst points, in subsequent iterations, can improve the results
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TABLE III
RESULTS OF HEAD MODEL REFINEMENT

Point
Error of initial model[mm] Error of refined model[mm]

x y z sum x y z sum

Sellion 0 0 0 0 0 0 0 0

Right

eye

-19,62 -0,04 2,76 22,43 0,56 -2,33 0,29 3,18

Left

eye

17,01 0,93 4,39 22,35 0,51 -0,35 5,51 6,38

Right

ear

8,99 26,34 12,16 47,50 16,19 25,30 12,64 54,14

Right

ear

-12,60 27,96 6,43 47,00 -22,58 26,02 11,93 60,55

Nose -3,20 27,86 30,00 61,07 -0,65 13,19 35,62 49,48

Stomion

-1,97 3,22 3,68 8,88 -2,10 -3,01 6,07 11,19

Menton -1,17 -0,93 22,16 24,28 -0,45 3,18 25,16 28,81

Sum - - - 233,52 - - - 213,75

only within one or two further steps - if the points misalign-

ment is relatively big. If not, further bad points removement

results in perceiveable worse general method precision.

The proposed head model refinement corrects the average

head orientation error by about 20% - for considered method

coefficients average head orientation error decreased from

4.64◦ to 3.59◦.

Further perspectives of the method improvements encom-

pass: filtering components of the refinement vectors speci-

fied in the algorithm 2, introducing certain anthropometric

constraints of the head model modifications as not to allow

extensive model degeneration while refinement (in this context

symmetry of the face might be considered for further face

feature points stabilization and for head model refinement

stabilization as well) and calculating head position using

information about facial featues detection uncertainty (for

example - usually ears are detected with bigger error than

nose or eyes).
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