


Abstract—This  paper  presents  a  deep  analysis  of

literature on the problems of optimization of parameters

and  structure  of  the  neural  networks  and  the  basic

disadvantages  that  are  present  in  the  observed

algorithms and methods. As a result, there is suggested a

new  algorithm  for  neural  network  structure

optimization, which is free of the major shortcomings of

other  algorithms.  The  paper  describes  a  detailed

description  of  the  algorithm,  its  implementation  and

application for recognition problems.

I. INTRODUCTION

HE  unit  of  neural  networks  is  widely  used  to  solve

various  problems  including  recognition  tasks.  The

existence  of  a  method  for  automatic  search  of  neural

network optimal structure could provide an opportunity to

get the structure of  a neural network much faster, that would

better suit the subject area and existing incoming data.

T

Since there are no well-defined procedures for selecting

the parameters of a NN and its structure for a given applica-

tion, finding the best parameters can be a case of trial and er-

ror.

There are many papers, like [1-3] for example, in which

the authors  arbitrarily  choose  the  number  of  hidden  layer

neurons, the activation function, and number of hidden lay-

ers. In [4], networks were trained with 3 to 12 hidden neu-

rons, and it was found that 9 was optimal for that specific

problem. The GA had to be run 10 times, one for each of the

network architectures. 

Since selecting NN parameters is more of an art than a

science, it is an ideal problem for the GA. The GA has been

used in numerous different ways to select the architecture,

prune, and train neural networks. In [5], a simple encoding

scheme  was  used  to  optimize  a  multi-layer  NN.  The

encoding  scheme consisted  of  the number  of  neurons  per

layer, which is a key parameter of a neural network. Having

too few neurons does not allow the neural network to reach
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an  acceptably  low error,  while  having  too  many  neurons

limits the NN’s ability to generalize. 

Another important design consideration is deciding how

many connections should exist between network layers. In

[6],  a  genetic  algorithm  was  used  to  determine  the  ideal

amount of connectivity in a feed-forward network. The three

choices were 30%, 70%, or 100% (fully-connected). 

In general, it is beneficial to minimize the size of a NN to

decrease learning time and allow for better generalization. A

common  process  known  as  pruning  is  applied  to  neural

networks after they have already been trained. Pruning a NN

involves  removing any unnecessary  weighted synapses.  In

[7], a GA was used to prune a trained network. The genome

consisted of one bit for each of the synapses in the network,

with  a  ‘1’  represented  keeping  the  synapse,  while  a  ‘0’

represented  removing  the  synapse.  Each  individual  in  the

population  represented  a  version  of  the  original  trained

network with some of the synapses pruned (the ones with a

gene  of  ‘0’).  The  GA  was  performed  to  find  a  pruned

version of the trained network that had an acceptable error.

Even  though  pruning  reduces  the  size  of  a  network,  it

requires  a  previously  trained  network.  The  algorithm

developed in this research optimizes for size and error at the

same  time,  finding  a  solution  with  minimum  error  and

minimum number of neurons. 

Another  critical  design  decision,  which  is  application-

specific,  is  the  selection  of  the  activation  function.

Depending  on  the  problem  at  hand,  the  selection  of  the

correct  activation  function  allows  for  faster  learning  and

potentially a more accurate NN. In [8], a GA was used to

determine  which  of  several  activation  functions  (linear,

logsig, and tansig) were ideal for a breast cancer diagnosis

application. 

Another common use of GA is to find the optimal initial

weights  of  back-propagation  and  other  types  of  neural

networks. As mentioned in [9], genetic algorithms are good

for global optimization, while neural networks are good for

local  optimization.  Using  the  combination  of  genetic

algorithms  to  determine  the  initial  weights  and  back

propagation learning to further lower error takes advantage

of both strengths and has been shown to avoid local minima

in  the  error  space  of  a  given  problem.  Examining  the

specifics of the GA used in [1] shows the general  way in
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which  many  other  research  papers  use  GA  to  determine

initial weights. In [1], this technique was used to train a NN

to perform image restoration. The researchers  used fitness

based  selection  on  a  population  of  100,  with  each  gene

representing one weight in the network that ranged from -1

to 1 as a floating point number. Dictated by the specifics of

the problem, the structure of the neural network was fixed at

nine input and one output node. The researchers arbitrarily

chose five neurons for the only hidden layer in the network.

To determine the fitness of an individual, the initial weights

dictated  by  the  genes  are  applied  to  a  network  which  is

trained using back propagation learning for a fixed number

of epochs. Individuals with lower error were designated with

a higher fitness value. In [9-10], this technique was used to

train a sonar array azimuth control system and to monitor the

wear  of  a  cutting  tool,  respectively.  In  both  cases,  this

approach  was  shown  to  produce  better  results  that  when

using  back-propagation  exclusively.  In  [11],  the

performance  of  a  two  back  propagation  neural  networks

were compared: one with GA optimized initial weights and

one  without.  The  number  of  input,  hidden,  and  output

neurons  were  fixed  at  6,  25,  and  4,  respectively.  Other

parameters  such  as  learning  rate  and  activation  functions

were also fixed so that the only differences between the two

were the initial weights. 

In [1, 10-12], each of the synaptic weights was encoded

into the genome as a floating point number (at least 16 bits),

making the genome very large. The algorithm developed in

this  research  only encodes  a  random number  seed,  which

decreases  the search  space  by many orders  of  magnitude.

Determining the initial  values using the GA has improved

the performance of non-back propagation networks as well.

In  [13],  a  GA  was  used  to  initialize  the  weights  of   a

Wavelet Neural Network (WNN) to diagnose faulty piston

compressors. WNNs have an input layer, a hidden layer with

the wavelet activation function, and an output layer.  Instead

of using back propagation learning, these networks use the

gradient  descent  learning  algorithm.  The  structure  of  the

network  was  fixed,  with  one  gene  for  each  weight  and

wavelet  parameter.  Using  the  GA was  shown to  produce

lower  error  and  escape  local  minima  in  the  error  space.

Neural  networks  with  feedback  loops  have  also  been

improved with GA generated initial weights. 

Genetic algorithms have also been used in the training

process  of  neural  networks,  as  an alternative  to the back-

propagation algorithm. In [14] and [15], genes represented

encoded weight values, with one gene for each synapse in

the  neural  network.  It  is  shown  in  [16]  that  training  a

network  using  only  the  back-propagation  algorithm  takes

more CPU cycles than training using only GA, but in the

long  run  back-propagation  will  reach  a  more  precise

solution.  In  [17],  the  Improved  Genetic  Algorithm (IGA)

was used to train a NN and shown to be superior to using a

simple  genetic  algorithm  to  find  initial  values  of  a  back

propagation neural network. Each weight was encoded using

a real  number instead of a  binary number,  which avoided

lack of accuracy inherent in binary encoding. Crossover was

only performed on a random number of genes instead of all

of  them,  and  mutation  was  performed  on  a  random digit

within  a  weight’s  real  number.  Since  the  genes  weren’t

binary, the mutation performed a “reverse significance of 9”

operation (for example 3 mutates to 6, 4 mutates to 5, and so

on). The XOR problem was studied, and the IGA was shown

to be both faster and produce lower error. Similar to [2], this

algorithm requires a large genome since all the weights are

encoded.

Previously, genetic algorithms were used to optimize a

one layered network [18],  which is too few to solve even

moderately  complex  problems.  Many  other  genetic

algorithms were used to optimize neural networks with a set

number of layers [1-2, 11, 13, 19-20]. The problem with this

approach is that the GA would need to be run once for each

of  the  different  number  of  hidden  layers.  In  [19],  the

Variable  String Genetic  Algorithm was  used to  determine

both the initial weights of a feed forward NN as well as the

number of neurons in the hidden layer to classify infrared

aerial images. Even though the number of layers was fixed

(input, hidden, and output), adjusting the number of neurons

allowed the GA to search through different sized networks. 

A wide range of algorithms is used to build the optimal

neural network structure. The first of these algorithms is the

tiled constructing algorithm [21]. The idea of the algorithm

is to add new layers of neurons in a way that input training

vectors  that  have different  respective initial  values,  would

have  a  different  internal  representation  in  the  algorithm.

Another prominent representative is the fast  superstructure

algorithm [22].  According to this algorithm new neurons are

added between the output layers. The role of these neurons is

the  correction  of  the  output  neurons  error.  In  general,  a

neural network that is based on this algorithm has the form

of a binary tree. 

In summary, the papers mentioned above studied genetic

algorithms that were lacking in several ways: 

1. They do not allow flexibility of the number of hid-

den layers and neurons. 

2. They do not optimize for size. 

3. They have very large genomes and therefore search

spaces. 

The algorithm described  in  this  article  addresses  all  of

these issues. The main goal of this work is to analyze the

structure optimization algorithm of neural network during its

learning  for  the  tasks  of  pattern  recognition  [23]  and  to

implement the algorithm using program instruments.

II. THE ALGORITHM OF STRUCTURAL OPTIMIZATION

DURING LEARNING

Structural  learning  algorithm  is  used  in  multilayer

networks  and  directs  distribution  networks  and  has  an

iterative nature: on each iteration it searches for the network

structure that is better than the last one. Network search is

performed by sorting all possible mutations of network and

by selection and combination of the best ones (selection and

crossing).

Consider the basic parameters of the algorithm.

Learning parameters: 

 learning rate: η;
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 inertia coefficient: μ;

 damping weights coefficient: ε ;

 probability of hidden layer neuron activation: ph;

 probability of input layer neuron activation: pi.

Structured learning parameters:

 initial number of neurons in the hidden layer;

 activation function for the hidden layer;

 activation function in the output layer;

 maximum number of mutations in the crossing;  

 number of training epochs of the original network;

 number of training epochs in the iteration;

 acceptable mutation types;

 part of the training sample used for training.

III. ELEMENTARY STRUCTURAL OPERATIONS ON

NEURAL NETWORK

According  to  [24]  the  following  basic  structural

operations on the network have been introduced:

 adding a synapse between two randomly selected

unrelated network nodes or neurons – operation

SynADD;

 removing  the  synapse  between  two  randomly

selected  unrelated  network  nodes  or  neurons  –

operation SynDEL;

 moving synapse between two randomly selected

unrelated network nodes or neurons – operation

SynMOD;

 changing the activation function of the neuron to

randomly selected neuron – operation AMOD;

 serialization  of  the  node  or  the  neuron  –

operations SerNODE and SerNR;

 parallelization  of  the  node  or  the  neuron  –

operations  ParNODE and ParNR;

 adding  a  node  or  a  neuron  –  operations

AddNODE and AddNR;

 create a new layer – operation LADD;

 removing the layer NN – operation LDEL.

The use or nonuse of described structural operations depends

on the complexity of the task. 

For  recognition  problems that  will  be  described  in  this

article operations (mutations) described in [25] are used.

IV. ALGORITHM IMPLEMENTATION

Internally  neural  networks  are  presented  as  numeric

matrix sequences of each layer weight except for the input

one. In Fig.1 the matrix sequence for [2-3-2] network type is

showed: hidden layer matrix 2x3 and output layer one 3x2.

Each  element  aij in  matrix  Ak equals  to  weight  value

between i and j network neurons.

For  realization  of  different  types  of  mutations,  the

operations on matrices are used. When adding a new neuron

to  the  layer  a  combination  of  adding  operations  of  new

matrix row and column is implemented. In Fig. 2, 3 and 4

the realization of neuron addition to the input, hidden and

output layers has been presented.

Fig.2 Neuron addition to the input layer

Fig.3 Neuron addition to the hidden layer

Fig. 4 Neuron addition to the output layer

To extract neurons opposing operations are used. In Fig. 5

there is a realization of extraction of a second neuron in  the

hidden network. 

Fig.5 Hidden layer neuron extraction.

When  adding  a  new  layer,  the  new  weight’s  matrix

insertion operation is performed.

Since some operations change matrices’ structures, there

is  a  certain  difficulty  in  their  combination.  For  example,

when  extracting  the  hidden  layer  O
3
 neuron  in  [2-3-2]

network the  O
4
 neuron in the resulting network will shift

Fig. 1 [2-3-2] Network internal realization example
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one  position  and  become  O
3
 neuron;  when  adding  new

hidden layer,  that  contains  4  neurons  in  front  of  existing

hidden  layer,  next  layer  will  shift  one  position.  When

combining different  mutations their  step-by-step execution

has to be done in a strict order, which depends on type and

parameters  of  each  mutation.  In Listing 1 there  is  a  code

fragment  implemented  in  Clojure  [26],  that  executes

combined mutation. At first the mutations that do not change

structures  -  addition  and  extraction  of  connections,  are

executed, then the addition of new neurons and extraction of

existing ones is executed; new layers are added at the end.

Mutations  which  extract  neurons,  are  executed  in  neuron

number decrease order, similarly as layer addition - in new

layer index decrease order.

(defmethod mutate ::combined

[net {:keys [mutations]}]

(let [grouped-ms (group-by :operation mutations)

{add-node-ms ::add-node del-node-ms ::del-node

layer-ms ::add-layer} grouped-ms

safe-ms  (mapcat  grouped-ms  [::identity  ::add-

edge ::del-edge])

safe-del-node-ms (reverse

(sort-by #(second (:deleted-node %)) del-node-ms))

safe-layer-ms (reverse (sort-by :layer-pos layer-

ms))

ms  (concat  safe-ms  add-node-ms  safe-del-node-ms

safe-layer-ms)]

(reduce mutate net ms)))

Listing 1 - Code fragment implemented in Clojure, that executes com-

bined mutation

One of the Clojure [8] benefits over other programming

languages  is  usage  of  unchangeable  data  structures  -

collections and containers,  the content of which cannot be

changed. In return, while trying to add a new element to  the

collection the new substance of the collection will be created

containing  this  element.  The  operation  of  creating  a  new

collection is optimized this way: both objects will use the

mutual part of collection. In Fig. 6 the result of adding object

5 to  the  end  of  array  [......]  is  showed.  V denotes  an  old

collection object, v2 denotes newly created collection object.

Fig.6 Principle of data structure work in Clojure

Programming  with  unchangeable  data  structure  usage

makes programs much easier to understand.

 program parallelization  simplicity  -  unchangeable

data can  be  used in  parallel  without  any need  to

synchronize threads;

 no problems with memory leaks;

 caching simplicity;

 major memory economy in some cases.

Due to these characteristics of unchangeable structures the

main part  of  an  algorithms work  is  done in  parallel  with

maximum computing resources usage.

The developed system has a client-server architecture. A

system deployment diagram is showed in Fig. 7. In general

the system consists of 2 parts:

 server  application,  which  does  neural  network

learning  and  implements  structure  optimization

algorithm;

 client application, which implements GUI

Fig.7 System deployment diagram

Clojure  has  been  used  to  implement  the  server

application.  The  Java  platform  [27]  has  been  used  as  a

runtime environment.

For the GUI implementation, the ClojureScript - Clojure

dialect [26], executed in JavaScript, has been used.

V. EXPERIMENTAL RESEARCH

The  implemented program  system  is  used  to  research

problems  of  human  face  recognition.  The  face  image

database of Yale university was used as output data [28]. 

Sampling 10 different persons and 50 different images of

each person were selected. Each image has been scaled to

the  size  of  26x26 pixels  and  coded  into  676-dimensional

vector, the values of pixels’  brightness were normalized to

0…1  range.  Each  output  class  representing  a  particular

person was coded into a 10 element vector which contains 9

zeroes and a single 1 at a different index. The obtained 500

samples  were  randomly  divided  into  training  and  testing

sets 2:1.

In Fig. 8 the source images and images used for neural

network learning are showed.

Architecture of source network. A network architecture

which is shown in Fig. 9 was used to evaluate the work of

the algorithm
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Fig.9 Image recognition network architecture

Research  of  the  algorithm.   The  following  training

values and structural  optimization settings have been used

for SGD with weight decay regularization [29]:

● learning rate: η=0.002;

● inertia coefficient: μ=0.1;

● damping weights coefficient: ε=0.1;

● probability of hidden layer neuron activation:

ph=1;

● probability of input layer neuron activation: pi=1.

Selected parameters following algorithm:

● initial number of neurons in the hidden layer: 3;

● activation function for the hidden layer: ReLU[30];

● activation function in the output layer: softmax;

● maximum number of mutations in the crossing:

M=50;

● number of training epochs of the original network:

T
0
=100;

● number of training epochs in the iteration: T i=5;

● acceptable mutation types: adding and removing 

synapses;

● part of the training sample used for training: 1;

● type of cost function: cross-entropy [31].

During 40 iterations of the algorithm 300 extractions and

128 additions of synapses were carried out.  In Fig.10 and

Fig.  11  the  dependency  of  price  and  precision  values  of

classification from amount of implemented learning epochs

has been presented. Received values are shown in Table 1.

Due  to  connections’  optimization  structure  we  could

lower false classification percentage to 4.2% on testing set. 

An  experiment  has  also  been  made  in  which  T i=3,

which is shown in Fig. 12 and Fig. 13. 

During 100 iterations of the algorithm 645 extractions and

457 additions of synapses were carried out. We could lower

the false recognition percentage from 7.8 to 6.0 on testing

set. The result is shown in Table 2.

TABLE 1 THE RESULTING ACCURACY OF IMAGE CLASSIFICATION

FOR T i=5

Type NN Training, % Testing, %

Common 97.59 93.41

Optimized 98.19 95.80

Fig.10 Image classification accuracy for T i=5

Fig.11 Price value for image classification for T i=5

TABLE 2 THE RESULTING ACCURACY OF IMAGE CLASSIFICATION

FOR T i=3

Type NN Training, % Testing, %

Common 98.79 92.21

Optimized 99.09 94.01

Fig.8 Data set formation example
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Fig.12 Image classification accuracy for T i=3

Fig.13 Price value for image classification for T i=3

VI. CONCLUSION

The  problem  of  a  structural  optimization  algorithm

implementation  was  considered  in  this  article,  and  the

possible appliance of this algorithm in an image recognition

problems was analyzed. 

Due to the optimisation structure of connections we could

lower  the  false  classification  percentage  to  4.2%  in  the

testing  set  and  also  we  could  lower  the  false  recognition

percentage from 7.8 to 6.0 in the testing set. The proposed

algorithm has  flexibility  in  the  number  of  hidden  layers,

neurons and links.

The obtained results prove the efficiency of the proposed

algorithm for using with recognition problems.

REFERENCES

[1]    Q. Xiao, W. Shi, X. Xian and X. Yan, “An image restoration method

based on genetic algorithm BP neural network”, Proceedings of the

7th  World  Congress  on  Intelligent  Control  and  Automation,  pp.

7653-7656, 2008.

[2]    W.  Wu,  W.  Guozhi,  Z.  Yuanmin  and  W.  Hongling,  “Genetic

Algorithm  Optimizing  Neural  Network  for  Short-Term  Load

Forecasting”, International Forum on Information Technology and

Applications, pp. 583-585, 2009.

[3]    S. Zeng, J. Li and L. Cui, “Cell Status Diagnosis for the Aluminum

Production  on  BP  Neural  Network  with  Genetic  Algorithm”,

Communications in Computer and Information Science, Vol. 175,

pp. 146-152, 2011.

[4]    W.  Yinghua  and  X.  Chang,  “Using  Genetic  Artificial  Neural

Network  to  Model  Dam Monitoring  Data”,  Second  International

Conference on Computer Modeling and Simulation, pp. 3-7, 2010.

[5]    R. Sulej, K. Zaremba, K. Kurek and R. Rondio, “Application of the

Neural Networks in Events Classification in the Measurement of the

Spin Structure of the Deuteron”, Warsaw University of Technology,

Poland, 2007.

[6]    S. A. Harp and T. Samad, “Genetic Synthesis of Neural Network

Architecture”, Handbook of Genetic Algorithms, pp. 202-221, 1991.

[7]    D. Whitley, T. Starkweather and C. Bogart, “Genetic Algorithms

and Neural Networks: Optimizing Connections and Connectivity”,

Parallel Computing, Vol. 14, pp. 347-361, 1990.

[8]    V. Bevilacqua, G. Mastronardi, F. Menolascina, P. Pannarale and A.

Pedone, “A Novel Multi-Objective Genetic Algorithm Approach to

Artificial  Neural  Network  Topology  Optimisation:  The  Breast

Cancer Classification Problem”, International Joint Conference on

Neural Networks, pp. 1958-1965, 2006.

[9]    Y. Du and Y. Li, “Sonar array azimuth control system based on

genetic neural network”, Proceedings of the 7th World Congress on

Intelligent Control and Automation, pp. 6123-6127, 2008.

[10] S. Nie and B. Ye, “The Application of BP Neural Network Model

of DNA-Based Genetic Algorithm to Monitor Cutting Tool Wear”,

International  Conference  on  Measuring  Technology  and

Mechatronics Automation, pp. 338-341, 2009.

[11] C. Tang, Y. He and L. Yuan, “A Fault Diagnosis Method of Switch

Current  Based on Genetic Algorithm to Optimize the  BP Neural

Network”.  International  Conference  on  Electric  and  Electronics,

Vol. 99, pp. 943-950, 2011.

[12] Y. Du and Y. Li,  “Sonar array azimuth control  system based on

genetic neural network”, Proceedings of the 7th World Congress on

Intelligent Control and Automation, pp. 6123-6127, 2008.

[13] L.  Jinru,  L.  Yibing  and  Y.  Keguo,  “Fault  diagnosis  of  piston

compressor  based  on  Wavelet  Neural  Network  and  Genetic

Algorithm”. Proceedings of the 7th World Congress on Intelligent

Control and Automation, pp. 6006-6010, 2008.

[14] D. Dasgupta and D. R. McGregor, “Designing Application-Specific

Neural  Networks  using  the  Structured  Genetic  Algorithm”,

Proceedings of International Workshop on Combinations of Genetic

Algorithms and Neural Networks, pp. 87-96, 1992.

[15] G.  G.  Yen  and  H.  Lu,  “Hierarchical  Genetic  Algorithm  Based

Neural  Network  Design”,  IEEE Symposium on  Combinations  of

Evolutionary  Computation  and  Neural  Networks,  pp.  168-175,

2000.

[16] P. Koehn, “Combining Genetic Algorithms and Neural Networks:

The Encoding Problem”, University of Tennessee, Knoxville, 1994.

[17] Z.  Chen,  “Optimization  of  Neural  Network  Based  on  Improved

Genetic  Algorithm”,  International  Conference  on  Computational

Intelligence and Software Engineering, pp.1-3, 2009.

[18] P. W. Munro, “Genetic Search for Optimal Representation in Neural

Networks”,  Proceedings  of  the  International  Joint  Conference  on

Neural Networks and Genetic Algorithms, pp. 675-682, 1993.

[19] X. Fu, P.E.R. Dale and S. Zhang, “Evolving Neural Network Using

Variable  String  Genetic  Algorithms  (VGA)  for  Color  Infrared

Aerial  Image Classification”, Chinese Geographical Science, Vol.

18(2), pp. 162-170, 2008.

[20] J. M. Bishop and M. J. Bushnell, “Genetic Optimization of Neural

Network Architectures for Colour Recipe Prediction”, Proceedings

of  the  International  Joint  Conference  on  Neural  Networks  and

Genetic Algorithms, pp. 719-725, 1993.

[21] M. Mezard, J.P. Nadal, “Learning in feedforward layered networks:

The Tiling algorithm”, Journal of Physics, 1989, V. A22, P. 2191 –

2203.

[22] M. Frean, “The Upstart Algorithm: A Method for Constructing and

Training  Feed-Forward  Neural  Networks”,  Tech.  Rep.  89/469,

Edinburgh University, 1989.  

[23] B.  D.  Ripley,  “Pattern  recognition  and  neural  networks”,

Cambridge: Cambridge Univ. Press, 2009.

[24] Y.Y.  Dorogiy,  “Accelerated  learning  algorithm of  Convolutional

neural  networks”,  Y.Y.  Dorogiy,  Visnik  NTUU  «KPI»,

«Informatika, upravlinnya ta obchislyuvalna tehnika», #57, 2012, S.

150-154. 

[25] Ya. Yu. Dorohyy, “The algorithm of algorithmic optimization of the

structural neural network is based on classification of data”, / Ya.

Yu. Dorohyy, V. V. Tsurkan, O. O. Doroha-Ivanyuk, D. A. Ferens,

Visnyk  NTUU  «KPI»,  «Informatyka,  upravlinnya  ta

obchyslyuval'na tekhnika», #62, 2015, S. 169-173. 

[26] S. D. Halloway, “Programming Clojure”, Dalles,  Tex.[u.a.] :  The

Pragmatic Bookshelf, 2012. 2nd ed. 

[27] B.  Goetz,  “Java  Concurrency  in  Practice”,  Addison-Wesley

Professional; 1 edition, 2006. 

1370 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



[28] Yale  Face  Database.  homepage:   http://vision.ucsd.edu/~iskwak/

ExtYaleDatabase/Yale/Face/Database.htm (online).

[29] Yoshua  Bengio,  “Practical  recommendations  for  gradient-based

training of deep architectures”, arXiv:1206.5533v2, 2012.

[30] Hüsken, M., Jin, Y. & Sendhoff, B. Soft Computing (2005) 9: 21.

doi:10.1007/s00500-003-0330-y.

[31] Peter  Sadowski,  "Notes  on  backpropagation",  homepage:

https://www.ics. uci.edu/~pjsadows/notes.pdf (online).

GRZEGORZ NOWAKOWSKI ET AL.: THE REALISATION OF NEURAL NETWORK STRUCTURAL OPTIMIZATION ALGORITHM 1371


