

Abstract—This paper presents a deep analysis of

literature on the problems of optimization of parameters

and structure of the neural networks and the basic

disadvantages that are present in the observed

algorithms and methods. As a result, there is suggested a

new algorithm for neural network structure

optimization, which is free of the major shortcomings of

other algorithms. The paper describes a detailed

description of the algorithm, its implementation and

application for recognition problems.

I. INTRODUCTION

HE unit of neural networks is widely used to solve

various problems including recognition tasks. The

existence of a method for automatic search of neural

network optimal structure could provide an opportunity to

get the structure of a neural network much faster, that would

better suit the subject area and existing incoming data.

T

Since there are no well-defined procedures for selecting

the parameters of a NN and its structure for a given applica-

tion, finding the best parameters can be a case of trial and er-

ror.

There are many papers, like [1-3] for example, in which

the authors arbitrarily choose the number of hidden layer

neurons, the activation function, and number of hidden lay-

ers. In [4], networks were trained with 3 to 12 hidden neu-

rons, and it was found that 9 was optimal for that specific

problem. The GA had to be run 10 times, one for each of the

network architectures.

Since selecting NN parameters is more of an art than a

science, it is an ideal problem for the GA. The GA has been

used in numerous different ways to select the architecture,

prune, and train neural networks. In [5], a simple encoding

scheme was used to optimize a multi-layer NN. The

encoding scheme consisted of the number of neurons per

layer, which is a key parameter of a neural network. Having

too few neurons does not allow the neural network to reach

 Presented results of the research, which was carried out under the theme

No. E-3/627/2016/DS, were funded by the subsidies on science granted by

Polish Ministry of Science and Higher Education.

an acceptably low error, while having too many neurons

limits the NN’s ability to generalize.

Another important design consideration is deciding how

many connections should exist between network layers. In

[6], a genetic algorithm was used to determine the ideal

amount of connectivity in a feed-forward network. The three

choices were 30%, 70%, or 100% (fully-connected).

In general, it is beneficial to minimize the size of a NN to

decrease learning time and allow for better generalization. A

common process known as pruning is applied to neural

networks after they have already been trained. Pruning a NN

involves removing any unnecessary weighted synapses. In

[7], a GA was used to prune a trained network. The genome

consisted of one bit for each of the synapses in the network,

with a ‘1’ represented keeping the synapse, while a ‘0’

represented removing the synapse. Each individual in the

population represented a version of the original trained

network with some of the synapses pruned (the ones with a

gene of ‘0’). The GA was performed to find a pruned

version of the trained network that had an acceptable error.

Even though pruning reduces the size of a network, it

requires a previously trained network. The algorithm

developed in this research optimizes for size and error at the

same time, finding a solution with minimum error and

minimum number of neurons.

Another critical design decision, which is application-

specific, is the selection of the activation function.

Depending on the problem at hand, the selection of the

correct activation function allows for faster learning and

potentially a more accurate NN. In [8], a GA was used to

determine which of several activation functions (linear,

logsig, and tansig) were ideal for a breast cancer diagnosis

application.

Another common use of GA is to find the optimal initial

weights of back-propagation and other types of neural

networks. As mentioned in [9], genetic algorithms are good

for global optimization, while neural networks are good for

local optimization. Using the combination of genetic

algorithms to determine the initial weights and back

propagation learning to further lower error takes advantage

of both strengths and has been shown to avoid local minima

in the error space of a given problem. Examining the

specifics of the GA used in [1] shows the general way in

The Realisation Of Neural Network

Structural Optimization Algorithm

Grzegorz Nowakowski
Cracow University of Technology

ul. Warszawska 24, 31-155

Cracow, Poland

Email: gnowakowski@pk.edu.pl

Yaroslaw Dorogyy
National Technical University of

Ukraine “Igor Sikorsky Kyiv

Politechnic Institute” av. Victory

37, Kyiv, Ukraine

Email: cisco.rna@gmail.com

Olena Doroga-Ivaniuk
National Technical University of

Ukraine “Igor Sikorsky Kyiv

Politechnic Institute” av. Victory

37, Kyiv, Ukraine

Email: cisco.rna@gmail.com

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 1365–1371

DOI: 10.15439/2017F448

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 1365

which many other research papers use GA to determine

initial weights. In [1], this technique was used to train a NN

to perform image restoration. The researchers used fitness

based selection on a population of 100, with each gene

representing one weight in the network that ranged from -1

to 1 as a floating point number. Dictated by the specifics of

the problem, the structure of the neural network was fixed at

nine input and one output node. The researchers arbitrarily

chose five neurons for the only hidden layer in the network.

To determine the fitness of an individual, the initial weights

dictated by the genes are applied to a network which is

trained using back propagation learning for a fixed number

of epochs. Individuals with lower error were designated with

a higher fitness value. In [9-10], this technique was used to

train a sonar array azimuth control system and to monitor the

wear of a cutting tool, respectively. In both cases, this

approach was shown to produce better results that when

using back-propagation exclusively. In [11], the

performance of a two back propagation neural networks

were compared: one with GA optimized initial weights and

one without. The number of input, hidden, and output

neurons were fixed at 6, 25, and 4, respectively. Other

parameters such as learning rate and activation functions

were also fixed so that the only differences between the two

were the initial weights.

In [1, 10-12], each of the synaptic weights was encoded

into the genome as a floating point number (at least 16 bits),

making the genome very large. The algorithm developed in

this research only encodes a random number seed, which

decreases the search space by many orders of magnitude.

Determining the initial values using the GA has improved

the performance of non-back propagation networks as well.

In [13], a GA was used to initialize the weights of a

Wavelet Neural Network (WNN) to diagnose faulty piston

compressors. WNNs have an input layer, a hidden layer with

the wavelet activation function, and an output layer. Instead

of using back propagation learning, these networks use the

gradient descent learning algorithm. The structure of the

network was fixed, with one gene for each weight and

wavelet parameter. Using the GA was shown to produce

lower error and escape local minima in the error space.

Neural networks with feedback loops have also been

improved with GA generated initial weights.

Genetic algorithms have also been used in the training

process of neural networks, as an alternative to the back-

propagation algorithm. In [14] and [15], genes represented

encoded weight values, with one gene for each synapse in

the neural network. It is shown in [16] that training a

network using only the back-propagation algorithm takes

more CPU cycles than training using only GA, but in the

long run back-propagation will reach a more precise

solution. In [17], the Improved Genetic Algorithm (IGA)

was used to train a NN and shown to be superior to using a

simple genetic algorithm to find initial values of a back

propagation neural network. Each weight was encoded using

a real number instead of a binary number, which avoided

lack of accuracy inherent in binary encoding. Crossover was

only performed on a random number of genes instead of all

of them, and mutation was performed on a random digit

within a weight’s real number. Since the genes weren’t

binary, the mutation performed a “reverse significance of 9”

operation (for example 3 mutates to 6, 4 mutates to 5, and so

on). The XOR problem was studied, and the IGA was shown

to be both faster and produce lower error. Similar to [2], this

algorithm requires a large genome since all the weights are

encoded.

Previously, genetic algorithms were used to optimize a

one layered network [18], which is too few to solve even

moderately complex problems. Many other genetic

algorithms were used to optimize neural networks with a set

number of layers [1-2, 11, 13, 19-20]. The problem with this

approach is that the GA would need to be run once for each

of the different number of hidden layers. In [19], the

Variable String Genetic Algorithm was used to determine

both the initial weights of a feed forward NN as well as the

number of neurons in the hidden layer to classify infrared

aerial images. Even though the number of layers was fixed

(input, hidden, and output), adjusting the number of neurons

allowed the GA to search through different sized networks.

A wide range of algorithms is used to build the optimal

neural network structure. The first of these algorithms is the

tiled constructing algorithm [21]. The idea of the algorithm

is to add new layers of neurons in a way that input training

vectors that have different respective initial values, would

have a different internal representation in the algorithm.

Another prominent representative is the fast superstructure

algorithm [22]. According to this algorithm new neurons are

added between the output layers. The role of these neurons is

the correction of the output neurons error. In general, a

neural network that is based on this algorithm has the form

of a binary tree.

In summary, the papers mentioned above studied genetic

algorithms that were lacking in several ways:

1. They do not allow flexibility of the number of hid-

den layers and neurons.

2. They do not optimize for size.

3. They have very large genomes and therefore search

spaces.

The algorithm described in this article addresses all of

these issues. The main goal of this work is to analyze the

structure optimization algorithm of neural network during its

learning for the tasks of pattern recognition [23] and to

implement the algorithm using program instruments.

II. THE ALGORITHM OF STRUCTURAL OPTIMIZATION

DURING LEARNING

Structural learning algorithm is used in multilayer

networks and directs distribution networks and has an

iterative nature: on each iteration it searches for the network

structure that is better than the last one. Network search is

performed by sorting all possible mutations of network and

by selection and combination of the best ones (selection and

crossing).

Consider the basic parameters of the algorithm.

Learning parameters:

 learning rate: η;

1366 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

 inertia coefficient: μ;

 damping weights coefficient: ε ;

 probability of hidden layer neuron activation: ph;

 probability of input layer neuron activation: pi.

Structured learning parameters:

 initial number of neurons in the hidden layer;

 activation function for the hidden layer;

 activation function in the output layer;

 maximum number of mutations in the crossing;

 number of training epochs of the original network;

 number of training epochs in the iteration;

 acceptable mutation types;

 part of the training sample used for training.

III. ELEMENTARY STRUCTURAL OPERATIONS ON

NEURAL NETWORK

According to [24] the following basic structural

operations on the network have been introduced:

 adding a synapse between two randomly selected

unrelated network nodes or neurons – operation

SynADD;

 removing the synapse between two randomly

selected unrelated network nodes or neurons –

operation SynDEL;

 moving synapse between two randomly selected

unrelated network nodes or neurons – operation

SynMOD;

 changing the activation function of the neuron to

randomly selected neuron – operation AMOD;

 serialization of the node or the neuron –

operations SerNODE and SerNR;

 parallelization of the node or the neuron –

operations ParNODE and ParNR;

 adding a node or a neuron – operations

AddNODE and AddNR;

 create a new layer – operation LADD;

 removing the layer NN – operation LDEL.

The use or nonuse of described structural operations depends

on the complexity of the task.

For recognition problems that will be described in this

article operations (mutations) described in [25] are used.

IV. ALGORITHM IMPLEMENTATION

Internally neural networks are presented as numeric

matrix sequences of each layer weight except for the input

one. In Fig.1 the matrix sequence for [2-3-2] network type is

showed: hidden layer matrix 2x3 and output layer one 3x2.

Each element aij in matrix Ak equals to weight value

between i and j network neurons.

For realization of different types of mutations, the

operations on matrices are used. When adding a new neuron

to the layer a combination of adding operations of new

matrix row and column is implemented. In Fig. 2, 3 and 4

the realization of neuron addition to the input, hidden and

output layers has been presented.

Fig.2 Neuron addition to the input layer

Fig.3 Neuron addition to the hidden layer

Fig. 4 Neuron addition to the output layer

To extract neurons opposing operations are used. In Fig. 5

there is a realization of extraction of a second neuron in the

hidden network.

Fig.5 Hidden layer neuron extraction.

When adding a new layer, the new weight’s matrix

insertion operation is performed.

Since some operations change matrices’ structures, there

is a certain difficulty in their combination. For example,

when extracting the hidden layer O
3
 neuron in [2-3-2]

network the O
4
 neuron in the resulting network will shift

Fig. 1 [2-3-2] Network internal realization example

GRZEGORZ NOWAKOWSKI ET AL.: THE REALISATION OF NEURAL NETWORK STRUCTURAL OPTIMIZATION ALGORITHM 1367

one position and become O
3
 neuron; when adding new

hidden layer, that contains 4 neurons in front of existing

hidden layer, next layer will shift one position. When

combining different mutations their step-by-step execution

has to be done in a strict order, which depends on type and

parameters of each mutation. In Listing 1 there is a code

fragment implemented in Clojure [26], that executes

combined mutation. At first the mutations that do not change

structures - addition and extraction of connections, are

executed, then the addition of new neurons and extraction of

existing ones is executed; new layers are added at the end.

Mutations which extract neurons, are executed in neuron

number decrease order, similarly as layer addition - in new

layer index decrease order.

(defmethod mutate ::combined

[net {:keys [mutations]}]

(let [grouped-ms (group-by :operation mutations)

{add-node-ms ::add-node del-node-ms ::del-node

layer-ms ::add-layer} grouped-ms

safe-ms (mapcat grouped-ms [::identity ::add-

edge ::del-edge])

safe-del-node-ms (reverse

(sort-by #(second (:deleted-node %)) del-node-ms))

safe-layer-ms (reverse (sort-by :layer-pos layer-

ms))

ms (concat safe-ms add-node-ms safe-del-node-ms

safe-layer-ms)]

(reduce mutate net ms)))

Listing 1 - Code fragment implemented in Clojure, that executes com-

bined mutation

One of the Clojure [8] benefits over other programming

languages is usage of unchangeable data structures -

collections and containers, the content of which cannot be

changed. In return, while trying to add a new element to the

collection the new substance of the collection will be created

containing this element. The operation of creating a new

collection is optimized this way: both objects will use the

mutual part of collection. In Fig. 6 the result of adding object

5 to the end of array [......] is showed. V denotes an old

collection object, v2 denotes newly created collection object.

Fig.6 Principle of data structure work in Clojure

Programming with unchangeable data structure usage

makes programs much easier to understand.

 program parallelization simplicity - unchangeable

data can be used in parallel without any need to

synchronize threads;

 no problems with memory leaks;

 caching simplicity;

 major memory economy in some cases.

Due to these characteristics of unchangeable structures the

main part of an algorithms work is done in parallel with

maximum computing resources usage.

The developed system has a client-server architecture. A

system deployment diagram is showed in Fig. 7. In general

the system consists of 2 parts:

 server application, which does neural network

learning and implements structure optimization

algorithm;

 client application, which implements GUI

Fig.7 System deployment diagram

Clojure has been used to implement the server

application. The Java platform [27] has been used as a

runtime environment.

For the GUI implementation, the ClojureScript - Clojure

dialect [26], executed in JavaScript, has been used.

V. EXPERIMENTAL RESEARCH

The implemented program system is used to research

problems of human face recognition. The face image

database of Yale university was used as output data [28].

Sampling 10 different persons and 50 different images of

each person were selected. Each image has been scaled to

the size of 26x26 pixels and coded into 676-dimensional

vector, the values of pixels’ brightness were normalized to

0…1 range. Each output class representing a particular

person was coded into a 10 element vector which contains 9

zeroes and a single 1 at a different index. The obtained 500

samples were randomly divided into training and testing

sets 2:1.

In Fig. 8 the source images and images used for neural

network learning are showed.

Architecture of source network. A network architecture

which is shown in Fig. 9 was used to evaluate the work of

the algorithm

1368 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

Fig.9 Image recognition network architecture

Research of the algorithm. The following training

values and structural optimization settings have been used

for SGD with weight decay regularization [29]:

● learning rate: η=0.002;

● inertia coefficient: μ=0.1;

● damping weights coefficient: ε=0.1;

● probability of hidden layer neuron activation:

ph=1;

● probability of input layer neuron activation: pi=1.

Selected parameters following algorithm:

● initial number of neurons in the hidden layer: 3;

● activation function for the hidden layer: ReLU[30];

● activation function in the output layer: softmax;

● maximum number of mutations in the crossing:

M=50;

● number of training epochs of the original network:

T
0
=100;

● number of training epochs in the iteration: T i=5;

● acceptable mutation types: adding and removing

synapses;

● part of the training sample used for training: 1;

● type of cost function: cross-entropy [31].

During 40 iterations of the algorithm 300 extractions and

128 additions of synapses were carried out. In Fig.10 and

Fig. 11 the dependency of price and precision values of

classification from amount of implemented learning epochs

has been presented. Received values are shown in Table 1.

Due to connections’ optimization structure we could

lower false classification percentage to 4.2% on testing set.

An experiment has also been made in which T i=3,

which is shown in Fig. 12 and Fig. 13.

During 100 iterations of the algorithm 645 extractions and

457 additions of synapses were carried out. We could lower

the false recognition percentage from 7.8 to 6.0 on testing

set. The result is shown in Table 2.

TABLE 1 THE RESULTING ACCURACY OF IMAGE CLASSIFICATION

FOR T i=5

Type NN Training, % Testing, %

Common 97.59 93.41

Optimized 98.19 95.80

Fig.10 Image classification accuracy for T i=5

Fig.11 Price value for image classification for T i=5

TABLE 2 THE RESULTING ACCURACY OF IMAGE CLASSIFICATION

FOR T i=3

Type NN Training, % Testing, %

Common 98.79 92.21

Optimized 99.09 94.01

Fig.8 Data set formation example

GRZEGORZ NOWAKOWSKI ET AL.: THE REALISATION OF NEURAL NETWORK STRUCTURAL OPTIMIZATION ALGORITHM 1369

Fig.12 Image classification accuracy for T i=3

Fig.13 Price value for image classification for T i=3

VI. CONCLUSION

The problem of a structural optimization algorithm

implementation was considered in this article, and the

possible appliance of this algorithm in an image recognition

problems was analyzed.

Due to the optimisation structure of connections we could

lower the false classification percentage to 4.2% in the

testing set and also we could lower the false recognition

percentage from 7.8 to 6.0 in the testing set. The proposed

algorithm has flexibility in the number of hidden layers,

neurons and links.

The obtained results prove the efficiency of the proposed

algorithm for using with recognition problems.

REFERENCES

[1] Q. Xiao, W. Shi, X. Xian and X. Yan, “An image restoration method

based on genetic algorithm BP neural network”, Proceedings of the

7th World Congress on Intelligent Control and Automation, pp.

7653-7656, 2008.

[2] W. Wu, W. Guozhi, Z. Yuanmin and W. Hongling, “Genetic

Algorithm Optimizing Neural Network for Short-Term Load

Forecasting”, International Forum on Information Technology and

Applications, pp. 583-585, 2009.

[3] S. Zeng, J. Li and L. Cui, “Cell Status Diagnosis for the Aluminum

Production on BP Neural Network with Genetic Algorithm”,

Communications in Computer and Information Science, Vol. 175,

pp. 146-152, 2011.

[4] W. Yinghua and X. Chang, “Using Genetic Artificial Neural

Network to Model Dam Monitoring Data”, Second International

Conference on Computer Modeling and Simulation, pp. 3-7, 2010.

[5] R. Sulej, K. Zaremba, K. Kurek and R. Rondio, “Application of the

Neural Networks in Events Classification in the Measurement of the

Spin Structure of the Deuteron”, Warsaw University of Technology,

Poland, 2007.

[6] S. A. Harp and T. Samad, “Genetic Synthesis of Neural Network

Architecture”, Handbook of Genetic Algorithms, pp. 202-221, 1991.

[7] D. Whitley, T. Starkweather and C. Bogart, “Genetic Algorithms

and Neural Networks: Optimizing Connections and Connectivity”,

Parallel Computing, Vol. 14, pp. 347-361, 1990.

[8] V. Bevilacqua, G. Mastronardi, F. Menolascina, P. Pannarale and A.

Pedone, “A Novel Multi-Objective Genetic Algorithm Approach to

Artificial Neural Network Topology Optimisation: The Breast

Cancer Classification Problem”, International Joint Conference on

Neural Networks, pp. 1958-1965, 2006.

[9] Y. Du and Y. Li, “Sonar array azimuth control system based on

genetic neural network”, Proceedings of the 7th World Congress on

Intelligent Control and Automation, pp. 6123-6127, 2008.

[10] S. Nie and B. Ye, “The Application of BP Neural Network Model

of DNA-Based Genetic Algorithm to Monitor Cutting Tool Wear”,

International Conference on Measuring Technology and

Mechatronics Automation, pp. 338-341, 2009.

[11] C. Tang, Y. He and L. Yuan, “A Fault Diagnosis Method of Switch

Current Based on Genetic Algorithm to Optimize the BP Neural

Network”. International Conference on Electric and Electronics,

Vol. 99, pp. 943-950, 2011.

[12] Y. Du and Y. Li, “Sonar array azimuth control system based on

genetic neural network”, Proceedings of the 7th World Congress on

Intelligent Control and Automation, pp. 6123-6127, 2008.

[13] L. Jinru, L. Yibing and Y. Keguo, “Fault diagnosis of piston

compressor based on Wavelet Neural Network and Genetic

Algorithm”. Proceedings of the 7th World Congress on Intelligent

Control and Automation, pp. 6006-6010, 2008.

[14] D. Dasgupta and D. R. McGregor, “Designing Application-Specific

Neural Networks using the Structured Genetic Algorithm”,

Proceedings of International Workshop on Combinations of Genetic

Algorithms and Neural Networks, pp. 87-96, 1992.

[15] G. G. Yen and H. Lu, “Hierarchical Genetic Algorithm Based

Neural Network Design”, IEEE Symposium on Combinations of

Evolutionary Computation and Neural Networks, pp. 168-175,

2000.

[16] P. Koehn, “Combining Genetic Algorithms and Neural Networks:

The Encoding Problem”, University of Tennessee, Knoxville, 1994.

[17] Z. Chen, “Optimization of Neural Network Based on Improved

Genetic Algorithm”, International Conference on Computational

Intelligence and Software Engineering, pp.1-3, 2009.

[18] P. W. Munro, “Genetic Search for Optimal Representation in Neural

Networks”, Proceedings of the International Joint Conference on

Neural Networks and Genetic Algorithms, pp. 675-682, 1993.

[19] X. Fu, P.E.R. Dale and S. Zhang, “Evolving Neural Network Using

Variable String Genetic Algorithms (VGA) for Color Infrared

Aerial Image Classification”, Chinese Geographical Science, Vol.

18(2), pp. 162-170, 2008.

[20] J. M. Bishop and M. J. Bushnell, “Genetic Optimization of Neural

Network Architectures for Colour Recipe Prediction”, Proceedings

of the International Joint Conference on Neural Networks and

Genetic Algorithms, pp. 719-725, 1993.

[21] M. Mezard, J.P. Nadal, “Learning in feedforward layered networks:

The Tiling algorithm”, Journal of Physics, 1989, V. A22, P. 2191 –

2203.

[22] M. Frean, “The Upstart Algorithm: A Method for Constructing and

Training Feed-Forward Neural Networks”, Tech. Rep. 89/469,

Edinburgh University, 1989.

[23] B. D. Ripley, “Pattern recognition and neural networks”,

Cambridge: Cambridge Univ. Press, 2009.

[24] Y.Y. Dorogiy, “Accelerated learning algorithm of Convolutional

neural networks”, Y.Y. Dorogiy, Visnik NTUU «KPI»,

«Informatika, upravlinnya ta obchislyuvalna tehnika», #57, 2012, S.

150-154.

[25] Ya. Yu. Dorohyy, “The algorithm of algorithmic optimization of the

structural neural network is based on classification of data”, / Ya.

Yu. Dorohyy, V. V. Tsurkan, O. O. Doroha-Ivanyuk, D. A. Ferens,

Visnyk NTUU «KPI», «Informatyka, upravlinnya ta

obchyslyuval'na tekhnika», #62, 2015, S. 169-173.

[26] S. D. Halloway, “Programming Clojure”, Dalles, Tex.[u.a.] : The

Pragmatic Bookshelf, 2012. 2nd ed.

[27] B. Goetz, “Java Concurrency in Practice”, Addison-Wesley

Professional; 1 edition, 2006.

1370 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

[28] Yale Face Database. homepage: http://vision.ucsd.edu/~iskwak/

ExtYaleDatabase/Yale/Face/Database.htm (online).

[29] Yoshua Bengio, “Practical recommendations for gradient-based

training of deep architectures”, arXiv:1206.5533v2, 2012.

[30] Hüsken, M., Jin, Y. & Sendhoff, B. Soft Computing (2005) 9: 21.

doi:10.1007/s00500-003-0330-y.

[31] Peter Sadowski, "Notes on backpropagation", homepage:

https://www.ics. uci.edu/~pjsadows/notes.pdf (online).

GRZEGORZ NOWAKOWSKI ET AL.: THE REALISATION OF NEURAL NETWORK STRUCTURAL OPTIMIZATION ALGORITHM 1371

