
New Content Based Image Retrieval database

structure using Query by Approximate Shapes

Stanisław Deniziak

Kielce University of Technology

al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland

Email: s.deniziak@tu.kielce.pl

Tomasz Michno

Kielce University of Technology

al. Tysiaclecia Panstwa Polskiego 7, 25-314 Kielce, Poland

Email: t.michno@tu.kielce.pl

Abstract—The image retrieval from multimedia databases is
a very challenging problem nowadays. Not only it requires the
proper query form, but also efficient methods of data storage.
The problem is important, because nowadays there are many
different systems which needs image retrieval. As an example
web searching engines may be given, which had to store a
very huge amount of images and needs fast image retrieval of
chosen ones. Also social media portals increasingly face the same
requirements. This paper presents a new Content Based Image
Retrieval database. It is based on new object representation
which is based on approximation of objects by a set of shapes.
The structure of the database is designed in order to reduce
the number of comparisons using a tree structure. The main
advantages of the proposed solution are: easy queries for users,
faster image retrieval and ability to parallelize queries.

I. INTRODUCTION

T
HE image retrieval from multimedia databases is a very

challenging problem nowadays. Not only it requires the

proper query form, but also efficient methods of data storage.

The problem is important, because nowadays there are many

different systems which needs image retrieval. As an example

web searching engines may be given, which had to store a

very huge amount of images and needs fast image retrieval of

chosen ones by users. Also social media portals increasingly

face the same requirements. Other examples may be monitor-

ing systems which have to detect objects and then find them

in the database in order to e.g. check if they are undesirable

and additional actions have to be performed. Also number

plate or face recognition systems have to perform database

queries based on the data present in the image. There are

also some attempts of sketch-based CBIR usage in conjunction

with gesture recognition [1].

This paper presents a new Content Based Image Retrieval

database which is based on our previous researches [2], [3],

[4], [5]. The main idea of the Query by Approximate Shapes

algorithm is based on a new object representation which

consists of approximation of objects by a set of shapes.

There are six base shapes defined [2], called primitives. Each

primitive may contain not only information about its type, but

also parameters which describes each single shape occurrence

(e.g. a slope for lines or an angle for arches) and relations

to other shapes. In order to store all information about the

object, a graph of shapes is proposed. The structure of the

database which stores such graphs in order to be efficient, have

to reduce the number of comparisons, thus a tree structure is

proposed. We defined two types of tree nodes:

• common nodes which are used to organize the data

• data nodes which only stores graphs

The main advantages of proposed solution are: easy queries

for users (both images and graphs drawn by a human are

accepted), faster retrieval of results thanks to the hierarchical

structure and storing similar graphs in congruent nodes, ability

to parallelize operations during query process and possibility

to use different implementations of the database on the lower

level (e.g. using NoSQL data stores, relational databases or

containers).

The paper is organized as follows: the Section II presents re-

lated works in the area of Image Retrieval and database struc-

tures. The Section III contains our motivation and assumptions

which are made for the system. The Section IV describes the

object representation used in the database. The Section V is

dedicated to the database structure and contains descriptions of

inner structure, operations on nodes and queries. The Section

VI shows initial experimental results. The Section VII presents

the plans for the future works and conclusions. The last section

contains bibliography.

II. RELATED WORKS

The multimedia database Image Retrieval algorithms may

be assigned to three types of algorithms:

• based on textual descriptions, most often keywords -

Keywords Based Image Retrieval (KBIR) algorithms

• based on semantic information extracted from the image

- Semantic Based Image Retrieval (SBIR) algorithms

• based on information which is present in the image -

Content Based Image Retrieval (CBIR) algorithms

The Keyword Based Image Retrieval algorithms use textual

annotations in order to describe the whole image or their parts.

Most often descriptions are made by humans and the precision

of keywords is limited to the knowledge and perception of a

person [3]. For objects which are well known it is easy to

represent them by annotations and the results of retrieval are

very satisfactory. For example a car object may be named

very precisely by the brand, model name, version, production

year and color. When the object is not well known or it is

not easy to describe it precisely by keywords, the results

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 613–621

DOI: 10.15439/2017F457

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 613



may be imprecise. This is due to the fact that annotations

are very subjective and different person may use different

words as keywords for the same objects [6], [7]. For example

a landscape with trees and water may be annotated by one

person as a forest and a river, but by another one as trees

and a lake. The third person contrary may use the name of

place where the photo was taken. In this situation the results

of a query may be imprecise and unsatisfactory for the user.

Another disadvantage of the KBIR approach is that it is hard

to automatically add keywords without human interaction.

The Semantic Based Image Retrieval algorithms are similar

to Keyword Based Image Retrieval algorithms because they

use also words to perform queries. However, contrary to them,

they allows users to write queries as phrases which are more

natural form for them. Such different query interface is used

in order to overcome the so called ’semantic gap’ which is a

difference between what a human could describe and what is

present in the image [7], [8]. After defining by an user, the

phrases are mapped onto so called semantic features which

are correlated with the content of the image [9]. The use of

semantic based textual approach is more comfortable and easy

for users but still if they does not have the full knowledge

about searched images the results may be insufficient. There

are also approaches which uses graphical queries which are

then transformed into textual description. One of the most

interesting research is [10] which uses a sketch as a query,

then extracts textual annotations - semantic features and then

finds 3D models of objects which are described by similar or

the same set of features.

The Content Based Image Retrieval algorithms use infor-

mation present in the image to perform queries [3]. In this

area two types of algorithms could be distinguished: low-

level and high-level [2]. The first type of algorithms are

based on extraction of features for the whole image. There

may be statistical image features used, e.g. a normalized

color histogram [11]. Another methods may be a difference

moment and entropy [12], a spatial domain image repre-

sentation [13] or a bag of words histogram [14]. There are

also approaches which use different MPEG-7 descriptors, e.g.

shape and texture descriptors [15]. Since the features describes

the whole image, the low-level CBIR algorithms provide very

satisfactory results when a query is performed in order to find

similar images. However, when an user would like to obtain

images with the same object but with different backgrounds,

the low level algorithms are not efficient and the results may be

insufficient. The high-level CBIR algorithms are more suitable

for that situations. Their main idea is to separate objects from

the background and other parts of the image. Most often

the region extraction method is used [2] which is based on

gathering similar groups of pixels into uniform areas which

are then transformed into a graph, storing the mutual relations

between nodes. In order to extract regions, methods based

on e.g. color thresholds, moment-based local operators [16]

or fuzzy patterns recognition [17] may be used. The query

process is strictly based on searching subgraphs between a

graph which was extracted from the stored image and a graphs

stored in the database. The main disadvantage of the region-

based algorithms is the need of query image which have to

store many details. If an user does not have a proper one, it

must be prepared which may require drawing skills.

There are also CBIR algorithms which allows performing

queries without having the full knowledge about the searched

objects. There are algorithms which are low-level e.g. [18].

The approach presented by authors is based on human drawn

sketches which are then transformed into lower resolution

images and compared with sketches in the database using edge

detection techniques. The method provides good results, but

is oriented on finding similar paintings, which is not sufficient

for querying by objects. [19]. Other researches uses global

contour map and salient contour map in order to extract objects

and compare them with images in the database. There are also

researches which use additionally relevant feedback (e.g. SIFT

algotihm) an re-ranking to improve the results precision [20].

In our previous researches [4], [2], [5], [3] we proposed a high

level algorithm which is based on decomposing object into

its approximated by predefined shapes representation (Query

by Approximate Shape). The shapes are used for creating a

graph which is then compared with other graphs stored in

the database. In this paper we describe the database structure

based on the Query by Approximate Shape method.

All images or objects representations have to be stored in

an efficient way. Most often a structure based on cells or

trees are used [21]. One of the most interesting approaches

is [22] which is based on a tree storing cells. The similar

images are stored in the same cells, but when the similarity

between images is below the determined threshold, another

cell is created (a process in the paper called a mitosis). In

[4] we proposed the first attempts for the database structure

for our object representation which was based on Scalable

Distibuted Two-Layer Data Structures. The approach provided

good results but was prone to rapid tree height increase.

Moreover we would like to prepare the database structure

which would be more universal and allow to use different

data structures types in the lower implementation level (e.g.

SD2DS, but also data containers or relational databases). This

would increase the number of possible applications e.g. to

use our database on devices with very small resources. Our

database structure in some parts is based on the same ideas

as [22] (e.g. storing similar data in the same part of the tree),

but we use different inner structure and different methods of

object representation and querying.

III. MOTIVATION

The multimedia database structure as well as performing

queries is a very broad problem. Not only querying by images

may be complicated, but also storing a very huge amount

of data, because images and their representation used for

comparisons had to be kept. Some attempts for the database

structure were presented in [4], but we would like to obtain

more universal structure which could be used with different

implementations for specific cases. This would allow imple-

menting the Query by Approximate Shape database using for

614 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Fig. 1. The primitives used to describe objects [2].

Fig. 2. The attributes used for line segments (a) and arches (b).

example Scalable Distibuted Two-Layer Data Structures for

data servers, relational databases (e.g. MySQL) for desktops

and containers like vectors or lists for tablets. As a result of

our research we would like to obtain the system which fulfill

the following requirements:

• ability to perform queries using graphs extracted from a

query image or graphs drawn by a human (without need

of drawing skills)

• easy addition of a new object without rebuilding or

training the whole structure

• fast access to the data

• the database structure which allows parallelization in or-

der to improve the efficiency of queries (and for example

use different machines to process searching in different

subtrees)

• the ability to set the minimum similarity between objects

which is needed to add them to the result set

• higher level of database structure, which allows different

implementations e.g. using NoSQL data stores, relational

databases, containers etc.

IV. OBJECT GRAPH

The main idea of our algorithm is based on representing

objects by shapes. Each object can be described using ap-

proximation by a set of geometrical shapes. The example

representation was shown in a Fig. 3. In our previous research

[2] we proposed to use following shapes, called primitives:

line segments, polylines, polygons, arches, polyarches and arc-

sided polygons (polygons constructed from arches) (Fig. 1).

Each shape is defined by its type and its attributes:

• line segments are defined by the angle of its slope and

optionally by their length (Fig. 2 a)

• polylines and polygons are defined by the number of line

segments from which they are built and attributes of each

of them

• arches are defined by the angle of the arc and optionally

by its radius or diameter (Fig. 2 b)

• polyarches and arc-sided polygons are defined similarly

like polylines and polygons by the number of arches from

which they are built and attributes of each of them

The proposed object representation allows using two types of

queries: a manually hand drawn sketches (e.g. using predefined

Fig. 3. The example sailboat object representation: a) an image, b) an object
drawn with lines (black color) and arches (red color).

shapes, like in vector graphics) or to automatically extract

shapes from the query image. Thanks to that, the database

human interface may be more universal and more suitable

for people without drawing skills. Moreover automatically

generated queries by e.g. by monitoring systems would be

also easily performed. The manually drawn sketches may be

prepared using a set of predefined shapes and they may be very

schematic without many details. Due to that fact they may be

prepared fastly and easilty without high drawing skills. The

automatically extraction of shapes from images is based on

line segments and arches detection e.g. using Line Segment

Detector algorithm and Circular Hough Transform[2]. Firstly

all lines and arches are detected and then if it is possible, they

are joined constructing more complex shapes like polylines,

polygons, poly-arches and arc-sided polygons. The extraction

procedure is described with more details in [2].

When representing an objects by set of shapes, there may

be also needed an information how they are positioned to each

others or which of them are connected. In order to store such

an information a graph may be used [2].

Each graph may contain not also a description used to

comparisons with other graphs, but also some metadata which

is useful when returning results. For example metadata may

contain the image name, its description and image file path or

image binary pixels data.

In order to compare graphs with each others, a coefficient

called similarity is used which describes how similar two

graphs are. The values of similarity are between 0 and 1.

The value 1 means that the graphs are the same, 0 that they

are completely different. When generating a results set, some

minimal threshold should be used to mark which graphs are

similar and should be taken into account.

V. THE DATABASE STRUCTURE

The database structure is based on a tree which is build from

different types of nodes. There are two types of elements:

• common (graphs) nodes which are used to organize the

data

• data nodes which only stores graphs

STANISŁAW DENIZIAK, TOMASZ MICHNO: NEW CONTENT BASED IMAGE RETRIEVAL DATABASE STRUCTURE 615



Fig. 4. The overview of the tree database structure

The database structure is partially based on our previous

research [4]. In order to improve the time of comparisons,

similar graphs are grouped into the same node or nodes, called

data nodes. Moreover this could reduce greatly the height of

the tree which was a problem in [4].

The root node is used as an entry point to the tree and does

not contain a graph thus when compared with the query graph,

it always returns the highest similarity. It may contain many

children which are then compared on the next level of query.

The common graphs nodes are gathering similar parts of

their children nodes as a graph. Therefore when the query

graph is compared and does not have enough similarity, there

is no need to compare other levels of tree and the whole

subtree can be abandoned, which highly decrease the time

of the query.

The data nodes does not have any children but contains one

or more object graphs (which are correlated to images using

metadata). They are used to gather similar graphs in the same

node of the tree. Graphs are stored in a so called slice which

is strictly a vector of graphs. The first vector element is the

most similar graph to the common graph stored in the parent

common node. Next graphs stored in the vector are compared

to the first element and sorted from the most similar to the

least. In order to improve the query time and to allow using

parallelism or different machines to store some parts of graphs

Algorithm 1 Splitting a vector of graphs when the maximum

size is reached

Ensure: Ts - maximum number of graphs in the slice; dh -

data node, vec - vector with graphs

vSize← size(vec);
2: if vSize > Ts then

create new vector vec2;

4: copy into vec2 graphs from vec[Ts] to vec[vSize];
remove vec[Ts] to vec[vSize];

6: add vec2 to dh;

end if

and images, there may be more than one slices of graphs stored

in a one data node. Therefore, the first slice should store the

most similar graph to the parent common graph and when a

desired maximum number of graphs in a vector is achieved,

the next vector slice is created (Alg. 1).

A. Inserting new graphs

Inserting a graph into the database is similar to the approach

presented in [4]. Firstly the tree root is reached and then

comparisons with all its children’s graphs are performed.

Comparisons are performed in order to find the best match

between children’s graphs nodes and the inserted graph (Fig.

5). When computing the similarity we divide the sum of

found similarities between matched nodes by the minimum

number of nodes in both graphs (Fig. 5 e) in order to avoid

the situation when for the same matching, different similarity

values are obtained (Fig. 5 c, d). If the similarity is high

enough then its children are tested. If comparisons with two or

more nodes returns high similarity, the node with the highest

similarity value is used as a direction of the tree traversal. The

new graph and common graphs comparisons are performed

until the data node is reached. Then the graph insertion is

performed, as described previously. Firstly the comparison of

the first graph in the first slice is performed and then, based

on the similarity result, the graph is put into the graphs vector

in the position which is correlated with the sim value. If the

maximum number of graphs in the vector is reached, the split

operation is performed (Alg. 1). If during the tree traversal

the comparison with the node’s graph does not give enough

similarity value, then a pair of new common and data nodes

have to be created. The creation process is as follows: firstly a

new graph which contains only common parts of the inserted

graph and nodes’s graph is being created and stored as a new

common node. Next a new data node is created and the new

graph is inserted into its data vector. Finally, the new common

node is used as a parent for the node graph and new data node.

The whole process is shown in the Fig. 6.

The graph insertion algorithm is presented in Alg. 2.

B. Querying the database

The database querying by a graph is much easier and faster

with the proposed structure. Firstly, comparisons with all root

children are performed. If similarity with one or more of

616 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Fig. 5. Comparisons between graphs: a), b) example graphs with common
nodes; c) comparison of a) with b); d) comparison of b) with a) e) the
similarity computed using minimum number of nodes in graphs.

Fig. 6. The insertion of a new node with graph to the tree: a) the graph which
has to be inserted, b) the tree structure c) two types of nodes after creation
d) the tree after insertion of the nodes from c)

Algorithm 2 Inserting a new graph into the tree

Ensure: g - the graph which has to be inserted; Tsim -

minimal similarity of graphs

node← root;

2: while node is not NULL do

traverse← true;

4: if node is a data node then

compare g with first graph in first slice of node

[compare graphs using Alg. 3];

6: insert g into node in the position related to the

similiarity;

exit

8: end if

if node is not a root then

10: sim ← compareCommon(g, node− >

commonGraph) [compare graphs using Alg.

3];

if sim < Tsim then

12: traverse← false;

end if

14: end if

if traverse then

16: compare all node’s children common graphs with g,

choose maximum similarity as sim [compare graphs

using Alg. 3];

if sim < Tsim then

18: traverse← false;

else

20: node← child with max sim;

continue;

22: end if

end if

24: if !traverse then

commGraph ← common part of g and node’s

commonGraph;

26: create new common node th

insert commGraph into th

28: create new data node dh and add as child to th

insert g into dh

30: add node as child to th

exit

32: end if

end while

them is high enough, each of them is tested until a common

node with unsatisfactory similarity or a data node is reached.

When a tree with not enough similarity is reached, the rest

of the subtree is not tested. When a data node is reached, the

comparisons within slices are performed. Firstly the similarity

with the first and last graphs in slices are computed. If both

are high enough, all graphs from slices are returned, if not,

the proper range is specified using Algorithm 6.

The example querying process is shown in the the Fig.

7. The graph used for query is shown in Fig. 7 a). Firstly,

the graph is compared with the root’s child (id=2) which

STANISŁAW DENIZIAK, TOMASZ MICHNO: NEW CONTENT BASED IMAGE RETRIEVAL DATABASE STRUCTURE 617



Algorithm 3 Comparing a graph which has to be inserted with

the graph in the tree node

Ensure: gi - the graph which has to be inserted; gdb - graph

which has to be matched to gi (the graph which is

stored in a tree); Tconn - minimal similarity threshold for

connections test

countNodes← number of nodes in gi;

2: for each nodegi in gi do

for each nodegdb in gdb do

4: simgi,gdb ← 0
if nodes types are different then

6: continue;

end if

8: simConn ← how many connections to other nodes

in gi has the same type as in gdb;

simConn← simConn÷ countNodes;

10: if simConn < Tconn then

continue;

12: end if

simPrim ← the similarity of primitives stored in

nodes (returned by Alg. 4);

14: try to match all connected nodes to nodegdb onto

the counterparts in nodegi checking the similarity of

primitives stored in nodes (by Alg. 4) and relative

positions to other nodes, store the similarity result in

simPos;

simgi,gdb ← simConn · simPrim · simPos store

as similarity between nodegi and nodegdb;

16: end for

end for

18: sim← 0
for each nodegi in gi do

20: choose the match with nodes in gdb with highest

simgi,gdb value and add to sim ;

end for

22: sim ← sim ÷ min( number of nodes in gi, number of

nodes in gdb;

return sim;

gives the similarity (sim) value equal 1 - all nodes between

graphs were matched. Then the minimal similarity threshold

(Tsim) is checked. The test was passed, the children nodes

(id=3, id=4) are checked. The similarity result with the first

node (id=3) does not passed the minimal similarity threshold

test - the computed sim was equal 0.5 which is lower than

Tsim value (0.8). These resulted in abandoning this tree path

(consequently its child- id=5 is not tested). The comparison

with the second id=2 child (id=4) returned similarity equal

to one, which is higher than Tsim value. Therefore, its children

are tested - id=6 and id=7. The similarity with id=6 node is

equal 0.75 which is fairly high, but lower than Tsim and this

path is also abandoned. Next, the id=7 is tested, the similarity

is equal to 1, then its child (id=9) is tested. Since id=9 is

a data node, other types of tests are performed. Firstly, the

similarity with the first element in the first slice is computed.

Algorithm 4 Comparing graphs nodes between each others.

As a result the similarity coefficient is returned (values: <0,1>).

Ensure: pa, pb - primitives to compare;

if nodes types are different then

2: return 0

end if

4: if nodes types are line segments then

diff ← |angle slope of pa− angle slope of pb|
6: return sim← 1− diff

end if

8: if nodes types are arches then

diff ← |angle of pa− angle of pb|
10: return sim← 1− diff

end if

12: if nodes types are polylines, polygons, polyarches or arc-

sided polygons then

diff ← |number of segments in pa −
number of segments in pb|

14: try to match all segments between pa and pb, choos-

ing the smallest difference of their attributes, sum all

corresponding differences and add to diff

sim← (1+minimum number of segments(pa, pb))−
diff

16: if sim > 1 then

sim← 1
18: return sim

end if

20: end if

Next the similarity with the last element in the first slice is

computed. In this example both values are higher or equal to

Tsim so the whole slice is returned as a result of the query.

Because each subtree is tested independently, the querying

algorithm could be easily paralleled. The querying algorithm

without parallelism is shown in Alg. 5.

C. Deleting nodes

Deleting a graph from the database may be performed as

follows: firstly if a graph is not the only one element in the

slice, it may be removed from the vector without performing

additional operations. If after removing a graph the slice does

not contain any elements, the data node and its parent should

be removed from the tree.

D. Query parallelization possibilities

The proposed database structure allows parallelization of

a query process. Since testing each tree node is independent

from others, it may be executed in different threads or machine

nodes. If a data node stores many slices, they may be also

checked independently. Gathering the results may need some

synchronization if all results have to be sent at the same

time. However, this process could be also implemented as

asynchronous, sending partial results to the client when they

are obtained.

618 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Fig. 7. The example query tree traversal: a) the query object graph, b) the query

Algorithm 5 Querying the database

Ensure: g - the query graph; Tsim - minimal similarity of

graphs; stack - a stack which is used to store nodes to

check;

put root into the stack;

2: while stack is not empty do

node← pop element from stack

4: if node is a data node then

choose all graphs from node slices using Alg. 6;

6: continue;

end if

8: if node is not a root then

sim ← similarity of g and common graph in node

[compare graphs using Alg. 3];

10: if sim >= Tsim then

put all node children to the stack;

12: end if

else

14: put all node children to the stack;

end if

16: end while

VI. EXPERIMENTAL RESULTS

The proposed approach was initially tested using prototype

database structure implementation written in C++ and database

of cars, motorbikes, bicycles and scooters containing 111

images. In order to test the precision two coefficients were

used:

precision =
number of relevant results images

total number of results images
(1)

recall =
number of relevant results images

total number of relevant images in the database
(2)

The test results for the chosen 6 objects are presented in

the Table I. It may be observed that the precision of the

results is high for bicycles, motorbikes and cars objects, but

for scooter it is much lower. This was caused by the high

similarity of scooter graphs to bicycles and motorbikes objects.

However the recall values are much lower than precision.

This is caused by usage of real life images which contained

different variations of objects. As a feature research direction

we would to increase this coefficient values.

Additionally some initial tests for comparisons between

linear and tree database structure were performed in order to

STANISŁAW DENIZIAK, TOMASZ MICHNO: NEW CONTENT BASED IMAGE RETRIEVAL DATABASE STRUCTURE 619



Algorithm 6 Querying the slice in data node

Ensure: g - the query graph; slices[1..n][1..m] - the n

slices which stores vectors of m graphs; Tsim - minimal

similarity of graphs;

for each slice in slices do

2: L← slice[1];
R← slice[m];

4: while l <= r do

simL ← similarity of g and first graph in slice[L]
[compare graphs using Alg. 3];

6: simR ← similarity of g and last graph in slice[R]
[compare graphs using Alg. 3];

if simL >= Tsim and simR >= Tsim then

8: add all graphs from slice between L and R indexes

into the result set;

break while loop;

10: else

if simL >= Tsim then

12: L← L+ 1;

end if

14: if simR >= Tsim then

R← R− 1;

16: end if

end if

18: end while

end for

TABLE I
THE PRECISION AND RECALL RESULTS FOR CHOSEN TEST OBJECTS

object
Query by Shape
precision recall

bicycle 0.93 0.37
bicycle (a sketch) 1.0 0.60

scooter 0.67 1.0
motorbike 0.86 0.40

car (Fiat 500) 0.89 0.33
car (Mercedes Benz) 0.79 0.73

observe how efficient is proposed structure. The results are

presented in the Table II. The tests for two different number of

elements were performed. It could be seen that for the smaller

number of graphs (23) the query time is similar for both

structures. When the number of graphs was increased (to 68)

the tree structure returned results about two times faster than

linear structure, which was expected. As our future research

we would like to perform more similar tests with much higher

number of graphs.

VII. CONCLUSION AND FUTURE WORKS

This paper presents a new Content Based Image Retrieval

database structure. The main idea of the proposed approach is

based on object representation proposed in [2]. Each object

can be represented as a set of predefined shapes: a line

segment, a polygon, a polyline, an arc, a polyarc and an

arc-sided polygon. All shapes are connected into a graph, in

order to store the mutual relations between them. The object

TABLE II
THE COMPARISON OF QUERY EXECUTION TIMES FOR LINEAR AND TREE

DATA STRUCTURE.

structure
query time in microseconds
23 graphs 68 graphs

linear 62 114
tree 58 63

representation allows users to use as a query images or simple

sketches which does not need drawing skills. The proposed

database structure is based on a tree with two types of nodes

- common nodes which are used to organize the data and data

nodes which stores similar graphs. This structure allow faster

retrieval of results, because during the first query steps almost

all not similar graphs are omitted. Moreover the query could be

parallelized very easily in order to increase the performance.

The proposed database structure is also more universal than

our first approach presented in [4] because it is designed in

order to allow different implementations suited for specific

applications (e.g using SD2DS for servers or simple containers

for mobile devices).

The future research includes testing the database struc-

ture with higher number of elements and comparisons with

linear structure. Moreover the recall coefficient should be

improved. Another direction would be implementing the par-

alleled queries in order to test their efficiency. Another set

of tests should be performed in order to evaluate different

lower database level implementations, using e.g. SD2DS data

structures or MySQL. Moreover different graphs comparisons

algorithms may be tested, e.g. using optimization methods

with constrains [23].

REFERENCES

[1] T. Kasai and K. Takano, “Design of sketch-based image search ui for
finger gesture,” in 2016 10th International Conference on Complex,

Intelligent, and Software Intensive Systems (CISIS), July 2016. doi:
10.1109/CISIS.2016.140 pp. 516–521.

[2] S. Deniziak and T. Michno, “Content based image retrieval using query
by approximate shape,” in 2016 Federated Conference on Computer

Science and Information Systems (FedCSIS), Sept 2016, pp. 807–816.

[3] S. law Deniziak and T. Michno, “Query by shape for image re-
trieval from multimedia databases,” Beyond Databases, Architectures

and Structures, p. 377.

[4] S. Deniziak, T. Michno, and A. Krechowicz, “The scalable distributed
two-layer content based image retrieval data store,” in 2015 Federated

Conference on Computer Science and Information Systems (FedCSIS),
Sept 2015. doi: 10.15439/2015F272 pp. 827–832.

[5] S. Deniziak and T. Michno, “Query-by-shape interface for content based
image retrieval,” in 2015 8th International Conference on Human System

Interaction (HSI), June 2015. doi: 10.1109/HSI.2015.7170652. ISSN
2158-2246 pp. 108–114.

[6] C.-Y. Li and C.-T. Hsu, “Image retrieval with relevance feedback based
on graph-theoretic region correspondence estimation,” IEEE Transac-

tions on Multimedia, vol. 10, no. 3, pp. 447–456, April 2008.

[7] H. H. Wang, D. Mohamad, and N. A. Ismail, “Approaches, challenges
and future direction of image retrieval,” CoRR, vol. abs/1006.4568, 2010.

[8] A. Singh, S. Shekhar, and A. Jalal, “Semantic based image retrieval
using multi-agent model by searching and filtering replicated web
images,” in Information and Communication Technologies (WICT), 2012

World Congress on, Oct 2012. doi: 10.1109/WICT.2012.6409187 pp.
817–821.

620 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



[9] C.-Y. Li and C.-T. Hsu, “Image retrieval with relevance feedback
based on graph-theoretic region correspondence estimation,” Multime-

dia, IEEE Transactions on, vol. 10, no. 3, pp. 447–456, April 2008. doi:
10.1109/TMM.2008.917421

[10] B. Li, Y. Lu, and J. Shen, “A semantic tree-based approach for sketch-
based 3d model retrieval,” in 2016 23rd International Conference on Pat-

tern Recognition (ICPR), Dec 2016. doi: 10.1109/ICPR.2016.7900240
pp. 3880–3885.

[11] M. Mocofan, I. Ermalai, M. Bucos, M. Onita, and B. Dragulescu,
“Supervised tree content based search algorithm for multimedia image
databases,” in 2011 6th IEEE International Symposium on Applied

Computational Intelligence and Informatics (SACI), May 2011. doi:
10.1109/SACI.2011.5873049 pp. 469–472.

[12] H. P. Kriegel, P. Kroger, P. Kunath, and A. Pryakhin, “Effective simi-
larity search in multimedia databases using multiple representations,” in
2006 12th International Multi-Media Modelling Conference, 2006. doi:
10.1109/MMMC.2006.1651355. ISSN 1550-5502 pp. 4 pp.–.

[13] T. K. Shih, “Distributed multimedia databases,” T. K. Shih, Ed.
Hershey, PA, USA: IGI Global, 2002, ch. Distributed Multimedia
Databases, pp. 2–12. ISBN 1-930708-29-7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=510695.510697

[14] A. Sluzek, “Machine vision in food recognition: Attempts to
enhance CBVIR tools,” in Position Papers of the 2016 Federated

Conference on Computer Science and Information Systems, FedCSIS

2016, Gdańsk, Poland, September 11-14, 2016., M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., 2016. doi: 10.15439/2016F579.
ISBN 978-83-60810-93-4 pp. 57–61. [Online]. Available: https:
//doi.org/10.15439/2016F579

[15] C. Lalos, A. Doulamis, K. Konstanteli, P. Dellias, and T. Var-
varigou, “An innovative content-based indexing technique with linear
response suitable for pervasive environments,” in 2008 International

Workshop on Content-Based Multimedia Indexing, June 2008. doi:
10.1109/CBMI.2008.4564983. ISSN 1949-3983 pp. 462–469.

[16] A. Sluzek, “On moment-based local operators for detecting image
patterns,” Image and Vision Computing, vol. 23, no. 3, pp. 287 – 298,
2005.

[17] M. Bielecka and M. Skomorowski, Fuzzy-aided Parsing for Pattern

Recognition. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 313–318. ISBN 978-3-540-75175-5. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-540-75175-5_39

[18] T. Kato, T. Kurita, N. Otsu, and K. Hirata, “A sketch retrieval method
for full color image database-query by visual example,” in 11th IAPR

International Conference on Pattern Recognition, Vol.I. Conference A:

Computer Vision and Applications, Aug 1992, pp. 530–533.
[19] Y. Zhang, X. Qian, X. Tan, J. Han, and Y. Tang, “Sketch-based

image retrieval by salient contour reinforcement,” IEEE Transactions

on Multimedia, vol. 18, no. 8, pp. 1604–1615, Aug 2016. doi:
10.1109/TMM.2016.2568138

[20] X. Qian, X. Tan, Y. Zhang, R. Hong, and M. Wang, “Enhancing sketch-
based image retrieval by re-ranking and relevance feedback,” IEEE

Transactions on Image Processing, vol. 25, no. 1, pp. 195–208, Jan
2016. doi: 10.1109/TIP.2015.2497145

[21] C. Lalos, A. Doulamis, K. Konstanteli, P. Dellias, and T. Varvarigou,
“An innovative content-based indexing technique with linear response
suitable for pervasive environments,” in International Workshop on

Content-Based Multimedia Indexing, June 2008, pp. 462–469.
[22] S. Kiranyaz and M. Gabbouj, “Hierarchical cellular tree: An efficient

indexing scheme for content-based retrieval on multimedia databases,”
Multimedia, IEEE Transactions on, vol. 9, no. 1, pp. 102–119, Jan 2007.

[23] P. Sitek and J. Wikarek, “A hybrid programming framework for mod-
eling and solving constraint satisfaction and optimization problems,”
Scientific Programming, vol. 2016, 2016. doi: 10.1155/2016/5102616

STANISŁAW DENIZIAK, TOMASZ MICHNO: NEW CONTENT BASED IMAGE RETRIEVAL DATABASE STRUCTURE 621


