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Abstract—In the article a new optimization approach for
thermal processes modeling has been presented. In the designed
method, the considered process is monitored by a measurement
system with a thermal camera. Then, a spatio-temporal dynamics
is discretized and transformed into a large-scale optimization
problem with differential-algebraic constraints. To preserve the
process dynamics in the assumed range, variability constraints
have been imposed. Finally, a new interior-point optimization
algorithm has been designed to solve the optimization problem
with the variability constraints. The applicability of the new
approach has been investigated experimentally.

Index Terms—variability constraints, DAE systems, nonlinear
optimization, thermal processes, thermal camera,

I. INTRODUCTION

O
PTIMIZATION and control of thermal processes is a

complex issue, which has a large impact on various

branches of industry. Therefore, a general solution procedure

is consisted on the following steps:

1) Thermal camera-based measurement system to perform

observations of the considered surface [15].

2) The obtained measurements represent the spatio-

temporal dynamics of the process. Therefore, it is

needed to design an appropriate model of the considered

process [17].

3) A direct transcription method enables us to apply

a large-scale nonlinear optimization algorithms to solve

a model optimization problem.

The complexity of the considered issue motivates a recently

progress in the optimization of many real-life technological

processes. In the work [18] a three-dimensional numerical

model using enthalpy technique to describe the solidification

of phase change material has been developed. Therefore, the

effect of geometrical parameters on the thermal performance

of latent heat thermal energy storage system has been studied.

Finally, the optimum system geometry could be identified.

Mei and Xia [14] designed a multi-input-multi-output (MIMO)

model predictive control (MPC) for a direct expansion air

conditioning system to improve an indoor thermal comfort,

as well as air quality. Moreover, the energy consumption

has been minimized. The considered direct expansion air

conditioning system has been described by nonlinear algebraic

equations. The designed procedure has been verified by ob-

tained simulation results. In the article [11] a heat management

in optimization of highly exothermic reactions during gas-

phase olefin polymerization in fluidized bed reactors has been

discussed. Moreover, a high speed infrared (IR) camera and a

visual camera have been coupled to present the hydrodynamic

and thermal behavior of a pseudo-2D fluidized bed. The

applied infrared/visual camera technique generated detailed

information on the thermal behavior of the bed and enabled

to optimize a combined computational fluid dynamics and

discrete element model. Mariani et al. [12] considered a gas-

solid cyclone separator used in a complex cement production

plant. The objective of the study was aimed at optimization of

the performance evaluation, as well as the cyclone separator

in terms of particle separation and heat transfer efficiencies.

The losses of the pressure were treated as the additional

technological constraints. Bhaduri et al. [2] reported results

from process optimization experiments aimed at investigating

the influence of laser fluence and pulse overlap parameters on

resulting workpiece surface roughness following laser polish-

ing of planar 3D printed stainless steel (SS316L) specimens.

The optimized laser polishing technology was implemented for

serial finishing of structured 3D printed mesoscale SS316L

components. Finally, Uribe-Soto et al. [19] presented recent

approaches to significantly reduce or avoid CO2 emissions by

a designed process optimization procedure.

A detailed analysis of the thermal processes is possible by

efficient numerical optimization algorithms. Among the com-

monly known nonlinear optimization algorithms, the family of

internal point methods is of a significant importance. Recently,

an interior-point trust-funnel algorithm for solving large-scale

nonlinear optimization problems has been presented in [5].

The designed method achieves global convergence guarantees

by combining a trust-region methodology with a funnel mech-

anism. Moreover, it has a capability to solve problems with

equality, as well as inequality constraints. An efficient primal-

dual interior-point algorithm using a new non-monotone line

search filter method was presented in [20]. The designed non-

monotone line search technique has been introduced to lead to

relaxed step acceptance conditions and improved convergence

performance. Klintberg and Gros [10] designed an interior

point method with an inexact factorization technique for

optimal control of systems described by Differential-Algebraic

Equations (DAEs). A class of convex optimization problems,
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where both the objective function and the constraints have

a continuous dependence on time, have been considered in

[9]. The designed method utilized a time-varying constraint

slack and a prediction-correction structure that relies on time

derivatives of functions and constraints and Newton steps in

the spatial domain. Zorkaltsev [21] discussed a family of

interior point algorithms for linear programming problems.

In these algorithms, entering the feasible solution region of

the original problem has been considered as an optimization

process of a new extended problem. To obtain a solution of

a large-scale optimization problem with a considerable time,

Cao et al. [4] proposed an augmented Lagrangian interior-point

approach for general NLP problems that solves in parallel on

a Graphics Processing Unit (GPU).

The presented literature research indicates, that thermal

process modeling with thermal camera-based approach, as well

as with an application of a nonlinear optimization methods, is

nowadays under intensive investigations. Therefore, the article

is aimed at presentation of a general procedure, which enables

us to optimize the temperature distribution model. The new

issues introduced into optimization task are the technological

constraints imposed on a temperature variability. The designed

procedure is independent on a considered process and is

consisted on measurement system, as well as an interior point

optimization procedure.

This work is constructed as follows. In Section 2 the

problem was introduced. The main parts of the measurement

system, as well as data structures were presented. Moreover,

the main solution idea was proposed. In Section 3 the tempera-

ture distribution control problem was transformed into a large-

scale nonlinear optimization problem. The variability of the

state trajectories are treated as additional decision variables.

Finally, the new interior-point optimization algorithm for solv-

ing dynamic optimization tasks with variability constraints was

designed in Section 4. In Section 5 the presented considera-

tions were practically illustrated. The article was concluded in

Section 6.

II. THE PROBLEM STATEMENT

The task considered in this work is to find such parameters

of the surface temperature distribution model T̃ (x, y,vp, t),
that for a given time interval

t ∈ [t0 tF ] (1)

the results obtained by the model simulations are appropriate

to the given measurements

min
vp

∫ tf

t0

∫ xmax

xmin

∫ ymax

ymin

(
T ⋆(x, y, t)− T̃ (x, y,vp, t)

)2
dydxdt

(2)

or

min
vp

∫

t

∫ ∫

S

(
T ⋆(x, y, t)− T̃ (x, y,vp, t)

)2
dSdt (3)

where S = [xmin xmin] × [ymin ymin] denotes a range of

the considered surface, an observation time range t ∈ [t0 tF ],
T ⋆(x, y, t) denotes a wanted temperature distribution on the

surface at time interval t ∈ [t0 tF ], T̃ (x, y,vp, t) is the

model of the temperature distribution for a given vector

parameters vp ∈ Rnvp .

As one can observe, the process is characterized by

the spatio-temporal dynamics. Therefore, the value of

measured temperature is dependent on the time, as well as on

the values of geometrical coordinates. To reduce the number

of independent variables, the spatial discretization approach

was applied. This step enables us to divide the considered

surface into an assumed number of cells. Therefore, each cell

can be characterized by the values of geometrical coordinates.

Assumption 2.1: The considered surface S can be parti-

tioned into a given number of homogeneous cells

cx,y = [x−∆x x+∆x]× [y −∆y y +∆y]. (4)

Therefore, each cell cx,y can be described by a function

dependent only on the time t

cx,y ≡ cx,y(t). (5)

This approach was presented on the Figure 1. The size of each

cell is dependent on a discretization level. The reasonable size

of the cell should be equal or bigger than size of a pixel. In

the measurement system the thermal imaging camera FLIR

A615 was used. The specification of the used hardware was

presented in the Table I.

Fig. 1. An example of a thermal process.

Because each cell can be described by an exactly one-

independent-variable function, therefore a wide class of possi-

ble model functions can be indicated. One of the most general

family of such functions are the index-1 differential-algebraic

models

cx,y(t) =





żx,y,d(t) = Fx,y(zx,y,d(t), zx,y,a(t),vp, t)

0 = Gx,y(zx,y,d(t), zx,y,a(t),vp, t)
(6)
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TABLE I
THE THERMAL IMAGING CAMERA FLIR A615 SPECIFICATION.

Image frequency 50 Hz

Focal Plane Array (FPA)/ Uncooled microbolometer /
Spectral range 7.5-14 µm

IR resolution 640 × 480 pixels

Detector time constant 8 ms

Object temperature -20 to +150oC
range +100 to 650oC

+300 to +2000oC

where zx,y,d(t) ∈ R
nzx,y,d denotes a differential state variable

of the cell cx,y , zx,y,a(t) ∈ Rnzx,y,a is an algebraic state

variable of the cell cx,y , vp ∈ Rnvp denotes a vector of the

model parameters. Moreover, two vector-valued functions are

considered

Fx,y : Rnzx,y,d ×Rnzx,y,a ×Rnvp ×R → R
nzx,y,d (7)

Gx,y : Rnzx,y,d ×Rnzx,y,a ×Rnvp ×R → Rnzx,y,a . (8)

The presented approach enables us to describe each cell cx,y
of the surface by a vector of descriptor variables zx,y(t)

cx,y(t) =





żx,y,d(t) = Fx,y(zx,y(t),vp, t)

0 = Gx,y(zx,y(t),vp, t)
(9)

where

zx,y(t) =




zx,y,d(t)

zx,y,a(t)


 . (10)

In the numerical simulations of the differential-algebraic sys-

tems in the form (6), the index of the system is of a great

importance. In general, the algebraic part of the systems (6)

can be differentiated according to the independent variable t

żd(t) = F (zd, za,vp, t)

0 = G(zd, za,vp, t)
(11)

and as result the following form can be obtained

żd(t) = F (zd, za,vp, t)

∂G
∂zd

żd +
∂G
∂za

ża = −G(zd, za,vp, t)
(12)

Definition 2.1: A differential-algebraic system (6) has an

index one, if it can be rewritten as an ODE after exactly one

differentiation.

Definition 2.2: A system of ordinary differential equations

(ODEs) has an index zero.

To solve an index-one DAE system a vector of consistent

initial conditions need to be known.

Definition 2.3: For the system (6) with the vector of the

consistent initial conditions

zx,y(t0) =




zx,y,d(t0)

zx,y,a(t0)


 (13)

the equation

0 = Gx,y(zx,y,d(t0), zx,y,a(t0),vp, t0) (14)

is fullfilled.

Application of these equations to model thermal phenomena

has the following advantages

• the algebraic equations typically describe conservation

laws or explicit equality constraints,

• it may be difficult or impossible to reformulate the model

as an ODE when nonlinearities are present,

• the implicit models do not require the modeling simpli-

fications often necessary to get an ODE;

• it is easier to vary design parameters in an implicit model,

• the variables keep their original physical

interpretation [3].

In some practical applications an additional type of con-

straints need to be considered - the variability constraints. Es-

pecially, in such technological processes like a metal annealing

or control of airplane, the observed changes cannot happen

to fast, as well as to slow [1]. The variability constraints

are imposed on the left-hand side of the ordinary differential

equations and take the following form

żd(t) < cvar(t), (15)

where zd(t) denotes the differential state variables and cvar(t)
represents the constraint function. The function cvar(t) can

take any appropriate form. In the literature the variability

constraints have been formally introduced in [6]. Till now the

variability constraints have been treated unformally using the

right-hand side of the ODEs model

F (zd, za,vp, t) < cvar(t). (16)

The representation (16) introduces all difficulties connected

with the considered nonlinear differential model into a non-

linear optimization task.

The surface is consisted on the assumed number of cells

cx,y(t). The temperature of each cell can be modeled by the

system of continuous differential-algebraic equations (eq. 6).

Moreover, to simulate the cell behavior, the consisted initial

conditions need to be known, eqs. (13)-(14). The constraints,

which represents the initial conditions, have a pointwise na-

ture. Finally, the model optimization problem can be extended

by the explicitly imposed variability constraints eq. (15). The

presented methodology results in the nonlinear optimization

task with the piecewise-continuous constraints. Therefore, the
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presented method is aimed at minimization of the objective

function (2) subject to the presented constraints.

III. THE OPTIMIZATION PROCEDURE

The structure of the nonlinear optimization task, as well

as an optimization procedure, is dependent on the discretiza-

tion of the considered model-optimization problem. The new

optimization-based procedure takes a form of a five step

procedure.

1) The process duration time

t ∈ [t0 tF ] (17)

is divided into given number N subintervals. The length

of each subinterval is equal ∆t and the duration of each

interval is equal or larger than a measurements frequency

∆t ≥ δt, (18)

where δt is the measurements frequency. Therefore, the

following relation can be observed

t0 < t1 < t2 < . . . < tN−1 < tF , (19)

where

tn = t0 + n ·∆t (20)

with n = 0, 1, · · · , N .

2) The model discretization can be executed according

to the obtained subintervals. The cell cx,y(t) can be

represented by a series of submodels cnx,y(t
n),

n = 0, 1, · · · , N, where

żnx,y,d(t
n) = Fn

x,y(z
n
x,y,d(t

n), znx,y,a(t
n),vp, t

n)

0 = Gn
x,y(z

n
x,y,d(t

n), znx,y,a(t
n),vp, t

n)
(21)

and

tn = [tn
0

tnF ] (22)

3) The obtained measurements mx,y(t) represent the state

of each cell cx,y at the time t. Moreover, in practical

applications the process can be influenced by addi-

tional parameters. This remark indicates, that an external

vector-valued control function u(t) can be also under

considerations.

4) Model parameters optimization. At this stage the un-

known model parameters need to be identified. The

identification can be treated as a model parameters

optimization according to the obtained measurements

min
vp

nx∑

i=1

ny∑

j=1

N∑

n=1

(ci,j(t
n)−mj,j(t

n))2. (23)

subject to the piecewise-continuous differential-

algebraic constraints. In some cases, the chosen cells

can be can be characterized by the different properties.

Therefore, the extended vector of the model parameters

need to be defined

V =




vp1,1

...

vp1,ny

vp2,1

...

vp2,ny

...

vpnx,1

...

vpnx,ny




, (24)

where in vpa,b : a = 1, · · · , nx and b = 1, · · · , ny .

5) The aim of the optimization algorithm is to find such

values of the surface temperature distribution model V,

which could result in a desired state of the observed

process. The presented discretization procedure enables

us to obtain the discrete form of the differential-algebraic

model constraints and pointwise constraints representing

the initial conditions. Finally, all the obtained constraints

with the unknown consistent initial conditions can be

represented in a short form of the nonlinear optimization

problem

min
V

nx∑

i=1

ny∑

j=1

N∑

n=1

(ci,j(t
n)−mj,j(t

n))2 = min
V

f(V)

(25)

subject to

cE(V) = 0 (26)

cI(V)− s = 0 (27)

s ≥ 0. (28)

The KKT conditions for the nonlinear optimization task

in the form (25)-(28) can be presented as

∇f(V)−AT
E(V)λE −AIλI = 0

SλI − µe = 0

cE(V) = 0

cI(V)− s = 0

s ≥ 0

λI ≥ 0

(29)

where AE(V) and AI(V) are the Jacobian matrices

of the functions cE and cI , respectively. Moreover, λE

and λI are their Lagrange multipliers. S is the diagonal

matrix with diagonal entries given by the vector s, and

let e = (1, 1, · · · , 1)T [16]. To solve the KKT system,
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the interior-point optimization algorithm implemented

in fmincon procedure [13] was used.

In the next section the results of the performed experiment,

as well as the numerical computations, were presented.

IV. THE EXPERIMENTAL RESULTS

The experiment has been performed with a metal key,

which was a part of an electrical circuit. The voltage was

equal to 22 V. The key is an asymmetrical object and built

from different layers. Each layer is characterized by another

properties. The measurement interval was equal to 30 sec. The

obtained results were presented on the Fig. 2-6.

There are two cells, which have been modeled by the

proposed methodology. The applied model for each of the cells

Sp1 and Sp2, had the general structure

ż(t) = vp,1z(t) + vp,2u. (30)

In order to preserve the too fast changes of the object temper-

ature, it was assumed that

−10 ≤ ż(t) ≤ 10 [oC/sec] (31)

Finally, the optimized model parameters of the assumed

model function are as follows

ṪSp1(t) = −42.0085 · TSp1(t) + 48.1760 · 22 (32)

and

ṪSp2(t) = −38.9154 · TSp2(t) + 73.5950 · 22. (33)

The obtained results indicate two important questions,

which are open for the future research:

1) The number of possible cells is really huge. The im-

portant question is, how to use efficient parallelization

methods to applied the presented methodology in a real-

life optimization algorithms? [7]

2) In order to minimize the number of the obtained models,

new cells aggregation procedures should be designed [8].

Fig. 2. The state of the object at the beginning of the process.

Fig. 3. The state of the object after 30 sec.

Fig. 4. The state of the object after 60 sec.

V. CONCLUSION

In the article a general optimization-based method for

thermal processes modeling has been presented. The discussed

methodology base on the spatio-temporal discretization of the

measured process. To solve the obtained nonlinear optimiza-

tion problem, the interior-point optimization algorithm was

applied. The obtained results suggest two direction of the

future work

• How to make the needed simulations in parallel in order

to minimize a computation time?

• How to aggregate the spaces characterized by the similar

properties in order to minimize the number of considered

cell models?
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[8] P. Dra̧g, K. Styczeń. 2016. The constraints aggregation technique for
control of ethanol production. Studies in Computational Intelligence.
655:179-192. http://dx.doi.org/10.1007/978-3-319-40132-4_11

[9] M. Fazlyab, S. Paternain, V.M. Preciado, A. Ribeiro. 2016. Inte-
rior Point Method for Dynamic Constrained Optimization in Contin-
uous Time. 2016 American Control Conference (ACC), Boston Mar-
riott Copley Place, July 6-8, 2016. Boston, MA, USA. 5612 -5618.
http://doi.org/10.1109/ACC.2016.7526550

[10] E. Klintberg, S. Gros. 2016. An inexact interior point method for opti-
mization of differential algebraic systems. Computers and Chemical Engi-
neering. 92:163-171. http://doi.org/10.1016/j.compchemeng.2016.04.013

[11] Z. Li, T.C.E. Janssen, K.A. Buist, N.G. Deen, M. van Sint Annaland,
J.A.M. Kuipers. 2017. Experimental and simulation study of heat transfer
in fluidized beds with heat production. Chemical Engineering Journal.
317:242-257. http://dx.doi.org/10.1016/j.cej.2017.02.055

[12] F. Mariani, F. Risi, C.N. Grimaldi. 2017. Separation efficiency and
heat exchange optimization in a cyclone. Separation and Purification
Technology. 179:393-402. http://dx.doi.org/10.1016/j.seppur.2017.02.024

[13] MathWorks. 2017. Global Optimization Toolbox. User’s Guide R2017a.
[14] J. Mei, X. Xia. 2017. Energy-efficient predictive control

of indoor thermal comfort and air quality in a direct
expansion air conditioning system. Applied Energy. 195:439-452.
http://dx.doi.org/10.1016/j.apenergy.2017.03.076

[15] M. Mewa-Ngongang, H.W. du Plessis, U.F. Hutchinson, L. Mekuto,
S.K.O. Ntwampe. 2017. Kinetic modelling and optimisation of antimicro-
bial compound production by Candida pyralidae KU736785 for control
of Candida guilliermondii. Food Science and Technology International.
23:358-370. http://dx.doi.org/10.1177/1082013217694288

[16] J. Nocedal, S. Wright. 2006. Numerical Optimization. Springer,
http://dx.doi.org/10.1007/978-0-387-40065-5
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