


Abstract—Code review is a key tool for quality assurance in

software development.  It is intended to find coding mistakes

overlooked during development phase and lower risk of bugs in

final  product.  In  large  and  complex  projects  accurate  code

review  is  a  challenging  task.  As  code  review  depends  on

individual  reviewer  predisposition  there is  certain  margin of

source code changes that is not checked as it  should.  In this

paper  we  propose  machine  learning  approach  for  pointing

project  artifacts  that  are  significantly  at  risk  of  failure.

Planning and adjusting quality assurance (QA) activities could

strongly  benefit  from  accurate  estimation  of  software  areas

endangered by defects. Extended code review could be directed

there. The proposed approach has been evaluated for feasibility

on large medical software project. Significant work was done to

extract features from heterogeneous production data, leading

to  good  predictive  model.  Our  preliminary  research  results

were  considered  worthy  of  implementation  in  the  company

where  the  research  has  been  conducted,  thus  opening  the

opportunities for the continuation of the studies.

I. INTRODUCTION

EFINING QA processes is a challenging task for orga-

nizations developing  software-intensive  systems.  QA

efforts could strongly benefit from accurate estimation of er-

ror prone project areas. Taking into account relative cost of

fixing software defects based on time of detection, any im-

provements in early development stage are worth the effort

(Fig. 1). The National Institute of Standards and Technology

(NIST) estimates that code fixes performed after release can

result in 30 times the cost of fixes performed during the de-

sign phase  [1]. Additional costs may include a significant

loss of productivity and confidence. The NIST report  also

indicates,  that involving programmers in tracking and cor-

recting their own errors, by reviewing code before run time

testing  improves  their  programming  skills.  Curhan  states

that “some types of defects have a much higher costs to fix

due to the customer impact and the time needed to fix them

or the wide distribution of the software in which they are

embedded” [2]. Adam Kolawa [3] defines error as a human

mistake and a defect as a fault, bug, inaccuracy, or lack of

expected functionality in a project artifact. Broad definition

of defects, thus includes problems such as contradicting re-

quirements, design oversights or coding bugs. With proper
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processes for requirements and design review in place, when

building prediction model we are focusing on coding prob-

lems only. In fact, every software moved to production con-

tains defects, although many are not detected yet. Thus, un-

deniable increase of corrections costs for subsequent project

stages lead to conclusion that major effort should be put in

the earliest possible phases of software production process.

We assume that best place to focus is code review stage, a

place in the process, when we have a chance to eliminate the

problems at its genesis (Fig. 2) McIntosh et. al. [4] summa-

rized  their  case  study  with  statement:  “Components  with

higher review coverage tend to have fewer post-release de-

fects”.  Their analysis also indicates that “Although review

coverage is negatively associated  with software  quality  in

our  models,  several  defect-prone  components  have  high

coverage rates, suggesting that other properties of the code

review process are at play.”  In our situation, company with

full code review coverage, still face relatively large number

of defects reported. 

We put the thesis, that with predicting code changes fail-

ures we can direct more focus on endangered areas, with ad-

ditional  code review,  and have potential  defects  corrected

before testing phase. That would significantly improve final

software  quality,  with  lower  operational  costs.  Important

part of this research is feature engineering that allows build-

ing  reliable  problem prediction  model.  There  is  also  pro-

posed approach for software development process with de-

fect prevention mechanism, improving QA effectiveness in

large and complex software projects. Particular attention is

paid to having the research applicable in real life scenarios.

Our preliminary research results were considered worthy of

implementation in the company.  The authors’ contribution

to the work is feature set development, data mining from va-

riety of sources, feature selection and building reliable pre-

diction model.  We explicitly define  our  goals  aligned  the

objectives of company in Section 2. We explain how the re-

sults will be evaluated in Section 3. Data acquisition caveats

and the data set are presented in Section 4. We present main

challenges and taken approach to getting results in Section

5. We conclude with summary of our work and future sug-

gestions in Section 6, followed by Appendix with list of all

attributes acquired for this research.
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II. GOALS

The main objective in this work was to build problem pre-

dictor model that could be integrated into process of a large

software project to support decisions and improve quality of

final products. The paper is a case study on building Rework

prediction system for one of the leading companies develop-

ing software for hospitals and medical  laboratories around

the  world.  Company  established  QA  department  over  15

years ago and employs highly qualified testing team work-

ing according to best industry standards. Along with manual

testing there is also automated testing team that is continu-

ously  monitoring  product  quality.  The  company  has  been

certified to the ISO 9001:2008 and ISO 13485:2012 stan-

dards  [5]. With the requirements for a quality management

system, specific to the medical  devices industry,  the com-

pany is expected to constantly improve quality management

processes. A good example of such actions is implementing

static  code analysis  process,  which  increased  source  code

overall  quality,  but it  has not had significant influence on

number of defects in general. Company introduces changes

in processes  on  different  organizational  levels  to  improve

quality, and our research is part of these endeavors.

Number  of  source  code change reworks  is  constant  for

last three years (Fig. 3). This period will be a base for build-

ing a prediction model. Rework stands for “change imple-

mented by programmer that was rejected, qualified for cor-

rection either by code reviewer or testing team”. Software

change can be rejected for multiple reasons and our analysis

will focus on following categories:

• Source code review failed

◦ Source changes rejected by programmer

◦ Static code analysis problems detected

• Functional testing failed

◦ Manual testing (change, integration, etc.)

◦ Automated testing (acceptance, regression)

The expected problem detection moment is when the pro-

grammer completed the work. Ideally, the programmer who

is implementing the change, reviews the code and corrects

bugs that were introduced, before passing the finished work

for code review by other programmer and testing. Also ac-

ceptable  situation  is  when  code  reviewer  (technical  team

leader) is able to track down the problems and move the im-

plementation  back  for  corrections.  Our  goal  is  to  support

this flow of events. The complete change called “an issue”

consists of functional requirements,  design documents and

files that were modified and submitted to Apache Subver-

sion (SVN), a software versioning and revision control sys-

tem. In this work we consider reworks as individual files,

that  were  submitted  to  SVN  after  rejection  of  the  whole

change. The assumption was made, that these files are “re-

worked” and, they require additional changes or corrections.

That is not true for every instance but acceptable for purpose

of building the model in this research.

The  company  requested  to  have  reliable  information

which source code changes require extensive code review.

Information about records with increased risk should be de-

livered  as  soon  as  programmer  completes  the  work  and

marks the task as ready for review. To guide development

Fig 3. Rejected code changes vs. correct changes, in years 2014-2016,
monthly

Fig 2. Software development process stages with flow of coding tasks
rejections (reworks)
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teams, our model should be able to classify particular file

changes either Correct or Rework. 

III. MODEL EVALUATION

Performance of the classifier is measured with Confusion

Matrix,  which is a table describing predictive  ability of  a

classifier  on  test  data  set  for  which  the  true  values  are

known,  as in Table 1.  Rework  denotes  positive value and

Correct  denotes negative value. Tp, Fp, Tn, and Fn denote

the number of true positives, false positives, true negatives,

and false negatives, respectively. Predictive ability of multi-

ple models can be compared by measuring the area under

receiver operational characteristics (AUROC) of each classi-

fier  [6]. Receiver operating characteristic (ROC) is a curve

on  two  dimensional  space  where  x  axis  is  False  Positive

Rate (i.e. Fp/(Fp+Fn)) while y axis is the True Positive Rate

(i.e. Tp/(Tp+Tn)). We measure True Positive Rate and False

Positive Rate of the classifier and the set of attributes. Mea-

surements are taken directly from Weka software. A perfect

classifier's False Positive Rate is zero and True Positive Rate

is one, thus the perfect classifier is a point on ROC curve. A

completely  random  classifier  would  have  equal  true  and

false positive rates, therefore a random classifier is a diago-

nal line on the ROC curve. We expect any good classifier to

be above the random curve and close to the perfect  point

(0.0, 1.0).

Results of the classification can be said to be precise if the

values are close to the average value of the quantity being

measured, while the results can be said to be accurate if the

values are close to the true value of the quantity being mea-

sured. Precision and accuracy are defined [7] as follows:

Precision=
T p

T p+F p

(1)

Accuracy=
T p+T n

T p+F p+T n+F n

(2)

Sensitivity is the probability that a model will indicate  Re-

works among those which actually are Reworks:

Sensitivity=
T p

T p+ F n

(3)

Specificity is the fraction of  Correct  records which will be

qualified as Correct

Specificity=
T n

T n+F p

(4)

Sensitivity and specificity are characteristics of the model

that  does not depend on Correct  and Rework proportions.

Although in our situation significant classes imbalance has

to be taken  into consideration  as  there  are only 17% Re-

works in data. Thus, important variable in model evaluation

is the prevalence of the  Reworks in question. Prevalence is

defined as the percent of instances in the test set that actu-

ally are Reworks.

Positive Prevalence=
T p+F p

T p+F p+T n+ Fn

(5)

Development team would like to get answer to question:

what is the chance that a file change classified as a Rework

truly is a Rework? If classified record is in the second row of

Table 1, what is the probability of being Tp as compared to

Fp? An answer to these questions would be Positive Predic-

tive  Value  (PPV)  and  Negative  Predictive  Value  (NPV).

Both PPV and  NPV are influenced by the positive preva-

lence of Rework instances in the test set. If we test in a high

prevalence setting, it is more likely that instances qualified

as Rework truly are Reworks than if the testing is performed

in a set with low prevalence.

Positive Predivtive Value=
T p

T p+ F p

(6)

Negative Predivtive Value=
T n

T n+F n

(7)

IV. DATA

The data set used to build and test the model consists of

files changes registered during development of medical lab-

oratory  software,  between  years  2014-2016.  The  data  set

contains  237128  observations  and  a  large  number  of  ex-

planatory variables (20 nominal, 6 ordinal and 51 numeric)

involved  in  assessing  file  change  values.  Data  were  col-

lected from many data sources  (project  management  data-

base,  issue  tracker,  requirements  library,  human  resource

management database,  source control  repository,  and code

metrics software) and consolidated into one data set. Each

record is an individual file, changed in context of bigger en-

tity which is a task. For each record (file change) there has

been class assigned, appropriately Correct or Rework. 

The combination of data from different systems was pos-

sible thanks to the processes that were introduced by the QA

department and good integration of these systems. To com-

mit changes to source control (in our case it was SVN), pro-

grammer  should  have  created  earlier  and  approved  valid

task number. SVN was configured in the way that changes

with  wrong  task  number  were  rejected.  If  a  programmer

passes  valid  task  number,  information  about  all  changed

files with change type (A- added, U – updated, D – deleted)

and information about author are stored in issue tracker sys-

tem. This way data about all revisions are stored in system.

TABLE I.

CONFUSION MATRIX FOR REWORK PREDICTOR

Predicted

Correct

(negative)

Rework

(positive)

Actual

Correct

(negative) Tn Fp

Rework

(positive)
Fn Tp
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The company uses proprietary system for development man-

agement called SoftDev. 

To query data from the company systems related to devel-

opment management we used SQL queries. For manipulat-

ing the data, we used Java JDMP [8] and Python Pandas [9]

libraries.  The  data  was  stored  in  CSV (comma  separated

value) format. For basic data set, we have created collection

of  additional  mining  scripts  that  queried  other  systems

(source control  system (SVN),  HR database,  requirements

library and code metrics software) for contextual data.

In our rework prediction research, large number of fea-

tures has been collected and grouped into following five cat-

egories:

• Employee metrics – metrics containing information

about author of file change. All attributes are time

aware and are in reference when change was made.

We  measure  for  example  experience  in

module(MX)  affected  by  change,  experience  in

sub-module  (DMX) as  well  as  experience  in  file

(UEXP).

• Task metrics – set of metrics related to change re-

quest.

• Changed file metrics – attributes related to modi-

fied file.

• Change  quantitative  metrics  –  metrics  of  file

change size.

• Source code metrics – metrics obtained from static

code analysis using tool SourceMonitor [10].

All attributes description is available in the appendix. 

Medical laboratory system that is subject of this research

is  developed  in  Java  and  .Net  programming  languages.

Client part, Graphic User Interface (GUI) is built with .Net

Windows Forms technology. Server part in Java implements

logic,  database  operations,  and  exposes  web-services  for

GUI. Most of coding tasks require changes in both .Net and

Java classes. This limits the number of source code metrics

only to those applicable to both technologies. The project is

modular with about 4 million Java lines of code and 7 mil-

lion .Net lines of code. All source code files for the analysis

retrieved  from  source  control  repository  took  challenging

85 GB of disk space. This is caused by development running

on several branch lines that are separated from main devel-

opment  for  months  or  years.  All  these  development  lines

were included in the research.

Acquired  historical  data  (2014-2016),  with  only  Java

and .Net files has 237128 records, which gives around 300

files committed a day, where 17% was marked as a Rework.

Learning from historical  instances we could predict which

changes will be  Reworked and assign it for more extensive

review (review could be done by additional programmers or

architects).  With  17%  detected  defects  there  is  certain

amount of overlooked problems that will be included in re-

lease version, but some of them could have been discovered

if critical changes were reviewed more carefully. In defect

prediction studies  [11],[12], both process  and source code

metrics are used. We were not able to get satisfactory results

with  commonly  used  attributes  as  well  as  [13] and  [14].

With  company  software  development  experts,  we worked

out long list of attributes that are worth including in predic-

tion model. Apart from attributes commonly used in defect

prediction practices,  we tried to build other,  like these de-

scribing employee metrics with experience per module (on

different modularization levels), employee history in terms

of failures, task complexity related to number of functional

requirements or number of people involved in task coding.

Final list contains 77 attributes.

V. RESULTS

We  used  WEKA  3.8.1  [15] software  package  to  build

classifiers,  select  features  and  produce  prediction  reports

with  metrics  described  in  section  II.  WEKA  is  an  open-

source package initiated by University of Waikato, with rich

collection of  machine learning algorithms for  data mining

tasks. The algorithms can be either applied directly to a data

set or from the Java source code. Due to large data set in our

research (223712 records with 77 attributes) we had to use

distributed computing when evaluating different classifiers

and subsets of attributes. 

To reflect real use case for the system, we have trained

classifier  with  90% of  all  data  and  tested  with  remaining

10%. Assumption is that the model will be built with histori-

cal data for certain period, and new instances will be classi-

fied with it. Prediction model should be rebuilt every month.

Taking into account software development process changes

and experience with production cycle specifics we chose 3

years period as input for the model. Results of testing with

models built for shorter periods confirmed this decision.

Performance of different classifiers and attribute sets, due

to significant imbalance in class distribution, has to be done

by measuring the AUROC of each classification [7].  From

our experience in this research, the problem of attributes se-

lection was a key aspect to obtain satisfactory results, which

was also confirmed by [16], [17], and [18]. With appropriate

attributes identified, the better accuracy could be achieved

for  a  smaller  sets  of  attributes  with  a  simple  appropriate

classifier. We evaluated the following attribute selection al-

gorithms: 

• CorrelationAttributeEval which  evaluates  the

worth of an attribute by measuring the correlation

(Pearson's) between it and the class

• PrincipalComponents which  performs  a  principal

components analysis and transformation of the data

• ReliefFAttributeEval which evaluates the worth of

an attribute by repeatedly sampling an instance and

considering the value of the given attribute for the

nearest instance of the same and different class.

• GainRatioAttributeEval which evaluates the worth

of an attribute by measuring the gain ratio with re-

spect to the class

• InfoGainAttributeEval which  evaluates  the  worth

of an attribute by measuring the information gain

with respect to the class
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All  these  attribute  selection  methods  were  tested  with

Weka ranker which ranks attributes by their individual eval-

uations.  Ranker  was  also used  to find best  number  of  at-

tributes, evaluating in range of 15 to 65 attributes with step

6. Combination of 5 classification algorithms, attribute se-

lection methods and number of attributes gave challenging

number of 275 cases for grid search. Calculations were done

with WEKA distributed computing,  using company server

resources.  The best  result  has  been  achieved  for  Random

Forest  algorithm  with  25  attributes  selected  with  Info-

GainAttributeEval algorithm.

Performance  comparison  of  selected  classifiers  is  pre-

sented in Table II. For chosen list of attributes the Random

Forest algorithm provided the highest performance measure

by means of AUROC (0.930). The results for other metrics

are presented in Tables III-IV.

The interpretation of the results for development team is:

If  model  classifies  records  as  Correct, its  confidence  is

94%. Only 11% of all changed files have to be sent for

extended  code  review,  to  hit  79%  potential  problems.

Predictive model is able to recognize correctly 62% of all

Reworks.

We evaluated the classifier using 10 folds cross validation to

find out that results are very close to those done in percent-

age split test. We take this as a confirmation, that prepared

model is stable and ready for use in real life scenarios. List

of all attributes mined in this research is available in Appen-

dix,  with  best  25  preselected  attributes,  marked  with  a

star (*).

VI. Conclusions

Our  Rework  prediction model will support QA activities

with effective estimation of software areas that are at risk by

mistakes  introduced  during  source  code  changes.  System

will direct extended code review to these places. The pro-

posed approach has been evaluated for feasibility on large

medical software project and research results were consid-

ered worthy of implementation in the company where the re-

search has been conducted. With very high precision  (97.12

%) and accuracy (92.27 %), company should expect visible

effects after implementation of the system build upon our re-

search results. We show that by comparing AUROC values,

Random  Forest  provides  Rework prediction  models  with

better  predictive  ability  then  other  algorithms  like  Bayes

Net, C4.5, KNN, and Naive Bayes. We believe that sophisti-

cated mechanisms developed to collect the data for this re-

search will be a base for subsequent analysis,  and knowl-

edge retrieved will support project management. Subjective

medical software project is developed in multiple remote of-

fices  in  different  locations  around  the  world,  making  the

data set even more challenging and interesting from analyti-

cal point of view.

Next  steps  would  include  incorporating  the  prediction

model  into company regular  operations  and follow up on

mechanisms to measure effectiveness of the implementation.

APPENDIX

Attributes collected from project management database:

ISST Problem category with possible values: Defect, De-

ficiency,  Enhancement,  Performance,  Refactoring,

Coding  Standard,  Demo,  Custom  scripts,  Test

Case, External – 3rd party

ISSS Severity of issue with possible values: Non Critical,

Critical, Risk to Health

ISSP Priority of issue. Available values: 0-5 (Low - Ur-

gent)

HLE Task coding time high level estimation in hours (*)

OFF Employee office name

Attributes collected from issue tracker system:

CR Task number. Generally task is created from issue

and is assigned to programmer.

TABLE II.

COMPARISON OF DIFFERENT CLASSIFIERS

Classifica-

tion

algorithm

Attribute selection

algorithm

Number of

attributes
AUROC

Random 
Forest

InfoGainAttributeEval 25 0.930

Bayes Net GainRatioAttributeEval 60 0.816

C4.5 InfoGainAttributeEval 20 0.872

KNN GainRatioAttributeEval 20 0.829

Naive Bayes GainRatioAttributeEval 45 0.787

TABLE IV.

BEAST PREDICTION MODEL PERFORMANCE METRICS

Metric Value

Precision 97.12 %

Accuracy 92.27 %

Sensitivity 62.23 %

Specificity 97.32 %

AUROC 0.930

Positive Prevalence 11.25 %

Positive Predictive Value 79.64 %

Negative Predictive Value 93.87 %

TABLE III.

CONFUSION MATRIX FOR BEST PREDICTION MODEL

Predicted

Correct

(negative)

Rework

(positive)

Actual

Correct

(negative)
19755 543

Rework

(positive)
1290 2125
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IMPBY Person who marked task as ‘Implemented’ (done).

After this action task is passed to testing team.

IMPD Date when person marked task as ‘Implemented’ 

SOLBY Person who created solution for task. (Generally, it

is more experienced person like architect  or team

leader)

SOLT This is set of 20 predefined values describing type

of solution.

ECH Estimated  hours  for  coding  based  on  all  details

from task (*)

ACH Actual hours spent on coding. (*)

NCMR Number of commits for task (*)

NFCR Number of file changed for task (*)

PINCR Number  of  users  who  committed  changes  within

task

NAM Number of affected modules (*)

NADM Number of affected “dipper modules” (*)

NCSR Number of .net files changed within task (*)

NJVR Number of java files changed within task (*)

ASM Number of affected files in the same module (*)

ASDM Number of affected files in the same “dipper mod-

ule” (*)

AOM Number of affected files in other modules (*)

AODM Number of affected files in “dipper modules” (*)

Data collected from issue tracker system on ‘file change

level’:

CBY Person who committed file change to source con-

trol system

REV Source control revision related to change

OPT File change operation: A – addition, D – deletion,

U – update

PAT Absolute path to modified file in source control tree

RPAT Relative path to modified file

BRA Source control branch name

PROJ Project name of modified file

MOD Module name of modified file

DMOD Very big modules were divided it into small pieces

called “dipper module”

LAN Coding language of modified file

RWRK This  information  stating  if  particular  file  change

was  good  or  was  not.  If  at  least  one  file  was

marked  as  rework,  then  related  task  was  also

marked as rework

URE This is information on how many reworks has per-

son  who  committed  particular  change  in  his/her

history.  Attribute  was  calculated  from the  whole

user history till commit date (*)

URYB This is information on how many reworks has per-

son who committed particular change over the last

year (*)

NOFF Number of commits of file within task (*)

PIIF Number of people involved in file within task

Attributes collected from source control (svn):

MCEXP Sum of all modifications on file made by user who

committed change till commit date

TC Sum of all modifications on file made by all users

till commit date. This attribute may be treated as

file age measures in changes.

CGTC File age categorized by expert into 8 categories

UEXP Contribution of committed user in file till commit

date expressed in percentage

CGUX User Contribution categorized by expert into 6 cat-

egories

NFUX For 63 records we cannot establish user experience

MMX Sum of all modifications on module made by user

who committed change till commit date (*)

DMMX Sum of all modifications on “dipper module” made

by user who committed change till commit date (*)

TMX Sum of all modifications on module made by all

users  till  commit  date.  This  attribute  may  be

treated as module age measures in changes (*)

TDX Sum of all modifications on “dipper module” made

by all users till commit date. This attribute may be

treated as module age measures in changes (*)

MX Contribution  of  committed  user  to  module  till

commit date expressed in percentages (*)

DMX Contribution  of  committed  user  to  “dipper  mod-

ule” till commit date expressed in percentage (*)

CMX User Contribution categorized by expert into 8 cat-

egories

CDMX Same as CMX but on “dipper module” level

DIFI Number of line insertions on a file in last commit

DIFD Number of line deletions on a file in last commit

DIFC Number of chunks on a file in last commit

DIFER For  60  records  we  cannot  establish  last  commit

size

SDIFI Sum of all line insertions per file per task

SDIFD Sum of all line deletions per file per task

SDIFC Sum of all chunks per file per task

LFRD Duration  of  the  file  change  process  measured  in

the number of revisions throughout the project (*)

LMP How many days have elapsed since last modifica-

tion of file in concrete svn branch

LMRP How many days have elapsed since last modifica-

tion of file across all svn branches

LMU How many days have elapsed since last modifica-

tion  of  file  across  all  svn  branches  by  user  who

committed this change

DAISS Number of requirements assigned to issue (*)

DACR Number of requirements assigned to task (*)

Source code metrics for Java and .Net classes:

WBA Average block depth for file

WBB Agerage complexity for file

WBC Number of lines of code

WBD Number of statements

WBE Number of statements per method

WBF Number of lines number of deepest block

WBG Number of lines of most complex method

WBH Maximum complexity

WBI For 3124 records we were not able to obtain met-

rics from file exported by SourceMonitor
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WBJ For 9 records SourceMonitor throws an exception

WBK For files that were deleted metrics were not calcu-

lated

REFERENCES

[1] The Economic Impact of Inadequate Infrastructure for Software 

Testing. National Institute Of Standards & Technology, 2002.

[2] L. A. Curhan, “Software defect tracking during new product 

development of a computer system,” 

[3] D. Huizinga and A. Kolawa, Automated Defect Prevention: Best 

Practices in Software Management. .

[4] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The Impact 

of Code Review Coverage and Code Review Participation on 

Software Quality: A Case Study of the Qt, VTK, and ITK Projects,”

in Proceedings of the 11th Working Conference on Mining Software

Repositories, New York, NY, USA, 2014, pp. 192–201 

http://dx.doi.org/10.1145/2597073.2597076.

[5] “ISO 13485 Medical devices.” [Online]. Available: 

https://www.iso.org/iso-13485-medical-devices.html. 

[6] E. Alpaydin, Introduction to Machine Learning. The MIT Press, 

2014.

[7] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining, 

Fourth Edition: Practical Machine Learning Tools and Techniques,

4 edition. Amsterdam: Morgan Kaufmann, 2016.

[8] H. Arndt, “The Java Data Mining Package - A Data Processing 

Library for Java,” in 2009 33rd Annual IEEE International 

Computer Software and Applications Conference, 2009, vol. 1, pp. 

620–621 http://dx.doi.org/10.1109/COMPSAC.2009.88.

[9] “Python Data Analysis Library — pandas: Python Data Analysis 

Library.” [Online]. Available: http://pandas.pydata.org/. [Accessed: 

30-May-2017].

[10] “SourceMonitor V3.5.” [Online]. Available: 

http://www.campwoodsw.com/sourcemonitor.html. [Accessed: 29-

May-2017].

[11] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining the Modern 

Code Review Repositories: A Dataset of People, Process and 

Product,” in 2016 IEEE/ACM 13th Working Conference on Mining 

Software Repositories (MSR), 2016, pp. 460–463 

http://dx.doi.org/10.1109/MSR.2016.054.

[12] A. E. Hassan, “Predicting faults using the complexity of code 

changes,” in 2009 IEEE 31st International Conference on Software 

Engineering, 2009, pp. 78–88 

http://dx.doi.org/10.1109/ICSE.2009.5070510.

[13] “CKJM extended - An extended version of Tool for Calculating 

Chidamber and Kemerer Java Metrics (and many other metrics).” 

[Online]. Available: http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/. 

[Accessed: 29-May-2017].

[14] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating defect 

prediction approaches: a benchmark and an extensive comparison,” 

Empir. Softw. Eng., vol. 17, no. 4–5, pp. 531–577, Aug. 2012 

http://dx.doi.org/10.1007/s10664-011-9173-9.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. 

H. Witten, “The WEKA Data Mining Software: An Update,” 

SIGKDD Explor Newsl, vol. 11, no. 1, pp. 10–18, Nov. 2009 

http://dx.doi.org/10.1145/1656274.1656278.

[16] J. I. Khan, A. U. Gias, M. S. Siddik, M. H. Rahman, S. M. Khaled, 

and M. Shoyaib, “An attribute selection process for software defect 

prediction,” in 2014 International Conference on Informatics, 

Electronics Vision (ICIEV), 2014, pp. 1–4 

http://dx.doi.org/10.1109/ICIEV.2014.6850791.

[17] B. Mishra and K. K. Shukla, “Impact of attribute selection on defect

proneness prediction in OO software,” in 2011 2nd International 

Conference on Computer and Communication Technology (ICCCT-

2011), 2011, pp. 367–372 

http://dx.doi.org/10.1109/ICCCT.2011.6075151.

[18] T. M. Khoshgoftaar, K. Gao, and N. Seliya, “Attribute Selection and

Imbalanced Data: Problems in Software Defect Prediction,” in 2010

22nd IEEE International Conference on Tools with Artificial 

Intelligence, 2010, vol. 1, pp. 137–144 

http://dx.doi.org/10.1109/ICTAI.2010.27.
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