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Abstract—In this paper the problem of corneal endothelium
image segmentation is considered. Particularly, a fully automatic
approach for delineating contours of corneal endothelial cells
is proposed. The approach produces one pixel width outline of
cells. It bases on a simple feedforward neural network trained
to recognize pixels which belong to the cell borders. The edge
probability (edginess) map output by the network is next analysed
row by row and column by column in order to find local
peaks of the network response. These peaks are considered as
cell border candidates and in the last step of the method via
binary morphological processing are linked to create continuous
outlines of cells. The results of applying the proposed approach
to publicity available data set of corneal endothelium images
as well as the assessment of the method against ground truth
segmentation are presented and discussed. Obtained results show,
that the proposed approach performs very well. The resulting
mean absolute error of cell number determination is around 5%
while the average DICE measure reaches 0.83 which is a good
result, especially when one pixel width objects are compared.

Index Terms—corneal endothelium, cell segmentation, feedfor-
ward neural network, peaks detection

I. INTRODUCTION

T
HE corneal endothelium i.e. the inner layer of the cornea,

is of great interest for ophthalmologists. This layer is

formed by closely packed, predominantly hexagonal cells

whose shape and structure can provide important diagnostic

information about the cornea health status or indicate some

corneal diseases [1], [2]. Particularly, the quantification of

corneal health status is usually performed based on endothelial

image by means of corneal endothelial cell density. Additional

measures like cell size distribution or cells hexagonality are

also useful to evaluate the health status of the corneal tissue.

However, the usage of the latter measures is not common in

everyday clinical routine. It is because performing this kind

of assessment requires segmentation of all cells present in

the endothelial image. Having in mind that in the healthy

cornea there are up to 3000 endothelial cells per square

millimetre, their manual segmentation is very tedious and very

time consuming activity. The reason is that it requires manual

delineation of cell borders. Since no commercial software

is available for corneal endothelial cell segmentation, the

development of the dedicated image processing and analysis

algorithms for computer aided diagnosis of corneal diseases

still remains a vital problem [3].

Segmentation of corneal endothelial cells is a difficult and

sometimes very challenging task. The problems arise mainly

due to inhomogeneous background illumination in specular

microscopy corneal endothelium images. This factor reduces

contrast in some regions of an image and makes cell borders

difficult to recognize even by an expert.

Several semi-automatic or fully automatic solutions for seg-

mentation of endothelial image have already been introduced.

Their aim is to delineate cell borders using such techniques

as: local greyscale thresholding followed by scissoring and

morphological thinning [4], [5], scale-space filtering followed

by binarization and morphological processing [6] or hexagon

detection using shape dependent filters [7], [8], [9]. More

sophisticated methods include application of watersheds [10],

[11], [12], [13], [14], active contours [15], [16], genetic

algorithms [17] or analysis of local pixel levels aimed at

finding intensity valleys corresponding to borders between

cells [18]. Several machine learning approaches have also

been proposed by the team of Ruggeri, including: neural

network [19], [20], Bayesian framework [21], support vector

machines classifier [22] and genetic algorithm [23]. However,

up to this point none of the existing techniques allows to

achieve perfect segmentation of endothelial cells. The results

a) b)

Fig. 1. A sample pair of images from the Alizarine dataset; a) original
corneal endothelium image IRGB ; b) the corresponding ground truth G.
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Fig. 2. The general work-flow of the proposed approach for corneal endothelium image segmentation.

still require manual editing, since undetected or false cell

boundaries often appear in the resulting image.

Having in mind above limitations, this paper proposes an

alternative solution to automatic segmentation of endothelial

cells from microscopic images of corneal endothelium. The

proposed approach is based on a simple feedforward neural

network which is thought to recognize pixels located at the

borders between cells and thus segment their contours. The

edge probability map output by the network is next subjected

to further processing in order to produce one pixel width

boundaries of cells. Particularly, local peaks of edge proba-

bility map are considered as cell border pixels and linked to

create continuous outlines of cells.

The following part of this paper is organised as follows.

Firstly, in Section II the description of the dataset used in this

study is given. The proposed approach is described in details

in Section III and followed by evaluation of the results and

discussion in Section IV. Finally, Section V concludes the

paper.

II. INPUT DATA

In this work corneal endothelium image Alizarine data

set was used [20]. The dataset (which can be downloaded from

[24]) contains 30 images of corneal endothelium, each stored

as JPEG compressed file of the resolution 576×768 pixels.

The images were acquired from 30 porcine eyes stained with

alizarine red using inverse phase contrast microscope (CK 40,

Olympus) at 200×magnification and analogue camera (SSC-

DC50AP, Sony).

In the dataset for each image the corresponding manually

created ground truth is provided. The ground truth images

delineate borders between single cells within selected regions

of each image. On average the area of 0.54 ± 0.07 mm2 per

cornea was assessed, ranging from 0.31 to 0.64 mm2.

A sample corneal endothelium image from the considered

dataset is shown in Figure 1a, while the corresponding ground

truth is presented in Figure 1b. From the figure it can be seen

that cells manifest themselves as uniformly sized hexagonal

regions separated by visibly darker borders. Due to the ac-

quisition protocol and uneven illumination in some regions

of the image the contrast between cell boundaries and back-

ground is low. Additionally, intensity inhomogeneity within

the background can be observed. These factors significantly

hinder cell segmentation.

III. THE PROPOSED APPROACH

The aim of the proposed approach is to obtain a binary

representation M (x, y) : Ω ⊂ R
2 → {0, 1} of endothelial

cell borders in corneal endothelium image IRGB(x, y). Par-

ticularly, the output of the proposed approach is binary image

M in which 1 (i.e. white pixels) correspond with cell borders

and 0 (i.e. black pixels) correspond with cell bodies. This is

obtained by following the procedure summarised in Figure 2.

The main idea behind the introduced approach is to use

ground truth images provided in Alizarine dataset to train

a simple feedforward neural network to recognize borders

between cells. The trained network is next used to perform

edge based segmentation of endothelial cells in new images.

The details of this procedure are given in the following

subsections.

A. Colour space transformation and colour component selec-

tion

In the input corneal endothelial images IRGB each pixel

(x, y) stores red, green and blue colour component, i.e.

IRGB(x, y) = [r(x, y), g(x, y), b(x, y)]. Prior to the main

processing the transformation F : IRGB → IHSV into

the HSV colour space is applied, where IHSV (x, y) =
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[h(x, y), s(x, y), v(x, y)] and colour components represent

hue, saturation and value respectively. Further processing is

performed with respect to v colour component, since other

colour components do not carry significant information related

to cell borders. This is illustrated in Figure 3 which presents

sample corneal endothelium image and the corresponding

h, s, v colour components.

a) b)

d)c)

Fig. 3. A corneal endothelium image HSV colour components; a) original
image IRGB ; b) hue colour component h; c) saturation colour component s;
d) value colour component v.

B. Background removal

In the next step image v is enhanced in order to compensate

for non-uniform intensity distribution within background and

thus to highlight image information at the cell borders. This

is obtained via background vbkg subtraction performed in

accordance with the following equation:

v̂ = v − vbkg (1)

where image of background is a result of greyscale morpho-

logical opening of image v with a big structural element sel
(see Eqn. 2).

vbkg = (v ⊖ sel)⊕ sel (2)

where ⊖ denotes erosion and ⊕ denotes dilation.

The element sel should be big enough to remove cell

borders. In this study sel was selected to be a disk of a

radius 15 pixels. Shape of the structural element was set

experimentally. Disk shape was used due to similarity to cells

shape.

C. Features determination

In features determination stage the following features are

determined for each pixel (x, y) of an image v:

• average value of intensity v̄ in the neighbourhood of 5×5

pixels;

• standard deviation of intensity σv in the neighbourhood

of 5×5 pixels;

• vesselness V determined from image v using Frangi’s

approach with default settings [25];

• scale Vσ used for vesselness determination [25].

The images representing considered features obtained for

a sample image are presented in Figure 4. It can be seen,

that vesselness (Fig. 4e), scale (Fig. 4f) and partially standard

deviation (Fig. 4d) give visibly distinguished responses at the

edges of cells, while intensity information may be helpful in

distinguishing cells bodies.

The experiments considering selection of some of the above

features were also performed, however using all of these five

features yielded the best results in terms of cell detection

accuracy.

D. Neural network training

Features determined as described above are next composed

into a feature vector F = [v, v̄, σv,V,Vσ] and assigned to

the corresponding pixel (x, y). The feature vectors together

with the corresponding ground truths segmentations are used

to train a neural network T such that T : F(x, y)→ {O(x, y) :
O(x, y) ∈ [0, 1]} and value of 0 corresponds with a cell body

while value of 1 denotes a cell boundary.

In the study a simple feedforward neural network of ar-

chitecture presented in Figure 5 was used. Particularly, the

network consists of one hidden layer (with tan-sigmoid trans-

fer function) followed by output layer (with linear transfer

function). The hidden layer consists of 10 neurons. Both the

number of hidden layers as well as the number of hidden

neurons within the layer were adjusted in a trial, balancing

between the time required for training and the accuracy of

cell borders detection. For training the Levenberg-Marquardt

backpropagation approach [26] was used since for the consid-

ered problem it provided the best regression between network

outputs and network targets. Initial weights and biases were

set randomly.

E. Peaks Detection

The response of a neural network O(x, y) (i.e. edginess

or edge probability map) contains values between 0 and 1

and visibly highlights image information at the borders of

cells. However, the response is not everywhere uniform and

some weaker boundaries are less highlighted. Additionally,

the highlighted edges are few pixels width, thus borders

detection can not be accurately performed via image thresh-

olding. Therefore, in order to precisely define border location

analysis of local network response maxima is performed via

peaks detection. Particularly, the network response image O is

processed independently row by row and column by column.

Each row rj such that O = [rj ]W×1, j ∈ {1, . . . , H} and each

column ci such that O = [ci]1×H , i ∈ {1, . . . ,W} (where W ,

H denote image width and height respectively) is processed

separately. The values contained in each column ci and each
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Fig. 4. Image features considered during cells segmentation; a) original colour image IRGB ; b) v (value) colour component; c) average v̄; d)standard
deviation σv ; e) vesselness V; f) scale Vσ .
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Fig. 5. The structure of a feedforward neural network used in this research.

row rj are treated as a signal in which local peaks indicate

edges. A local peak is a data sample that is larger than its

nearest neighbouring samples. If a peak is flat, only the point

with the lowest index is considered. In order to diminish the

number of local maxima around the cell boundaries only peaks

higher than some threshold TPeakHeight are considered. The

idea of peaks detection is sketched in Figure 6 which shows

the distribution of neural network response over a sample row.

Peaks of the accepted height are marked with red circles. The

pseudocode of the complete procedure of cell edge candidate

detection is shown in Algorithm 1.

F. Cleaning

Together with real boundary segments, the cell edge can-

didate detection procedure produces also some small isolated

groups of pixels which do not belong to the cell boundaries.

In the in the last step of the proposed approach these regions

are removed.

The cleaning procedure incorporates a sequence of the

following morphological operations performed on a binary

image:

• removal of isolated pixels

• dilation with a small structural element

the aim of this step is to close small gaps in the cell

boundaries and thus make boundaries continuous; in this
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Fig. 6. The idea of local peaks detection. Peaks of the accepted prominence are marked with red circles.

Algorithm 1 The Algorithm for Cell Edge Candidates Detec-

tion

Input: O – output of the neural network, W – image width,

H – image height

Output: E – cell edges (edginess local peaks)

1: E ← [0]W×H

2: k ← {(x, y) : O(x, y) > 0}
3: TPeakHeight ← median(O(k))/2

4: foreach column ci ← O(1 : H, i), i ∈ {1, . . . ,W} do

5: l← findpeaks(ci, TPeakHeight)
6: n← card(l)
7: foreach peak location p← l(a), a ∈ {1, . . . , n} do

8: E(p, i)← 1
9: end foreach

10: end foreach

11: foreach row rj ← O(j, 1 : W ), j ∈ {1, . . . , H} do

12: l← findpeaks(rj , TPeakHeight)
13: n← card(l)
14: foreach peak location p← l(a), a ∈ {1, . . . , n} do

15: E(j, p)← 1
16: end foreach

17: end foreach

study a square structural element of a size 5×5 pixels was

used;

• skeletonization

for this purpose the iterative thinning is used; the aim

of this step is to provide one-pixel-width boundaries of

endothelial cells;

• pruning

aiming at removal of spurious branches of skeleton which

mostly include fragments of discontinuous boundaries.

The results of the consecutive steps of the proposed ap-

proach applied to a sample endothelial image are shown in

Figure 7. In particular Figure 7a shows value colour compo-

nent v of a sample input image. This is followed by image v̂
after background removal shown in Figure 7b. The output O
of a feedforward neural network is presented in Figure 7c and

followed in Figure 7d by the map of network response local

maxima. The map after cleaning M is presented in Figure 7e

and overlaid on the original image in Figure 7f.

IV. RESULTS AND DISCUSSION

For verification purposes the endothelial cell Alizarine

data set was divided into two equal subsets (i.e. containing 15

images each). First, images denoted by even numbers were

used to train the neural network T (a training set). Next,

images denoted by odd numbers were used as a testing set.

Particularly, the proposed cell edges detection procedure was

applied to each image within the testing set. The network

training took about 10 minutes while segmentation of a single

image lasted for about 2 seconds (PC computer, 24 GB RAM,

Intel Core i7, 3.2 GHz).

The accuracy of the proposed approach on testing set was

assessed twofold. First, the alignment between the ground

truths and segmentation results was investigated. Particularly,

the results M of cell segmentation were compared with

the ground truth results G by means of mean square error

(MSE), correlation (COR) and DICE measure (DIC) given

by Equations 3-5. During the assessment, edge pixels were

considered as object. Since in the ground truths G the edges

were few pixels width, they were skeletonized (by thinning)

prior to comparison. The results of the above comparison

are summarized in Table I with image ID given in the first

column and the mean values given in the last row. In the

comparison, only the regions with known ground truth borders

were considered.

MSE =
1

K

∑

x

∑

y

(M(x, y)− G(x, y))2 (3)

where K denotes a number of pixels in a considered image

region.

COR =
∑

x

∑

y(M(x, y)− M̄)(G(x, y)− Ḡ)
√

(
∑

x

∑

y(M(x, y)− M̄)2)(
∑

x

∑

y(G(x, y)− Ḡ)
2)

(4)

DIC =
2|M ∩ G|

|M|+ |G|
(5)
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a) b) c)

d) e) f)

Fig. 7. Consecutive steps of the proposed approach; a) original image IRGB ; b) value colour component v; c) output of the neural network O ; d) results
of local peaks detection; e) final result M - cleaned and pruned map of local peaks; f) final result overlaid on the original image.

Additionally, the comparison was made between the number

N of cells in the segmentation result and in the ground truth

image NGT as well as the corresponding average cell sizes

S̄ and S̄GT . Cell sizes were measured in pixels. Additionally,

the absolute error δN of the determined cell number and the

absolute error δS̄ of the average cell size were calculated

according to Equations 6 and 7 respectively.

The results of this comparison were summarised in the

Table I with image ID given in the first column and the

mean values of errors given in the last row. Again, in the

assessment, only the regions with known ground truth borders

were considered.

δN =
N − nGT

nGT

× 100% (6)

δS̄ =
S̄ − S̄GT

S̄GT

× 100% (7)

The numerical assessment is supplemented by visual results

in Figure 8. In the upper panel original images are presented.

In the middle pannel the cell edges produced by the proposed

approach are overlaid on the original images. Finally, in the

bottom panel results are compared with the corresponding

ground truths. Particularly, white colour indicates regions

where both results overlay. Green colour corresponds to false

TABLE I
THE NUMERICAL ASSESSMENT OF CELL SEGMENTATION ACCURACY WITH

RESPECT TO CELL BORDERS ALIGNMENT LEVEL. MSE - MEAN SQUARED

ERROR, COR - CORRELATION, DIC - DICE.

ID MSE COR DIC

1 0.015 0.802 0.810

3 0.013 0.808 0.814

5 0.015 0.832 0.839

7 0.013 0.824 0.831

9 0.014 0.824 0.831

11 0.020 0.817 0.827

13 0.013 0.819 0.826

15 0.024 0.814 0.826

17 0.018 0.831 0.840

19 0.016 0.844 0.852

21 0.021 0.773 0.784

23 0.021 0.815 0.826

25 0.011 0.842 0.848

27 0.014 0.832 0.840

29 0.029 0.778 0.793

avg 0.017 0.817 0.826
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TABLE II
THE NUMERICAL ASSESSMENT OF CELL SEGMENTATION ACCURACY WITH

RESPECT TO MORPHOMETRIC PARAMETERS. N - THE DETERMINED

NUMBER OF CELLS, NGT - THE GROUND TRUTH NUMBER OF CELLS, δN
- THE ABSOLUTE ERROR OF THE DETERMINED NUMBER OF CELLS, S̄ -

THE DETERMINED AVERAGE CELL SIZE, S̄GT - THE GROUND TRUTH CELL

SIZE, δS̄ - THE ABSOLUTE ERROR OF THE AVERAGE CELL SIZE.

ID N NGT δN[%] S̄[px] S̄GT[px] δS̄[%]

1 264 283 -6.714 273,458 260.424 5.005

3 246 264 -6.818 268.984 260.280 3.344

5 311 332 -6.325 292.280 275.873 5.947

7 258 265 -2.642 297.705 289.996 2.658

9 289 303 -4.620 257.114 245.845 4.584

11 394 406 -2.956 300.541 292.680 2.686

13 237 251 -5.578 337.920 319.183 5.870

15 435 467 -6.852 344.414 325.949 5.665

17 358 375 -4.533 343.774 328.483 4.655

19 359 364 -1.374 326.019 324.761 0.387

21 324 356 -8.989 300.213 282.986 6.088

23 391 405 -3.457 331.325 321.736 2.980

25 248 261 -4.981 305.742 291.935 4.729

27 288 300 -4.000 295.892 284.637 3.954

29 440 480 -8.333 347.618 318.096 9.281

avg - - -5.211 - - 4.522

edges introduced by the proposed approach while the missing

edges are shown in magenta. For presentation purposes the

best result (case 19, Fig. 8a), the worst result (case 29, Fig. 8b)

and the "average" result (case 13, Fig. 8c) were selected.

Based on both the numerical and the visual results it can be

concluded, that the proposed approach performs reasonably

well. The visual results in Figure 8 clearly show, that the

borders produced by the proposed approach and the ground

truth are well aligned. This is confirmed by the average

values of correlation and DICE equal to 0.817 and 0.826

respectively (see Tab. I). These measures should be considered

high, especially having in mind that edges considered here

as object are one pixel width and even slight displacement

of the edge may decrease these measures, not necessarily

meaning that the cell segmentation failed. This effect also can

be observed in Figure 8. Additionally, both correlation and

DICE measure would have been higher, if the edge pruning

hadn’t been performed in order to obtain closed borders only.

High accuracy of the results is also confirmed with very low

MSE on average equal to 0.017 (ranging from 0.013 to 0.029).

From Table II it can be seen, that the proposed method

slightly underestimates the number N of the detected cells.

This in turn increases the average cell size and will increase

the determined cell densities. The corresponding, average

error δN of the determined cell number equals to -5.2%

(ranging from -2.6% to -9.0%) while the resulting cell size

determination error is on the average equal to 4.5% (ranging

from 2.6% to 9.3%). In the case of the considered study it

corresponded on average to 18 cells which were joined with

their neighbours (ranging from 7 cells in the case 19 to 40

cells in the case 29). However, this can be fast corrected by

manual editing which in the worst case considered in this study

requires drawing c.a. 20 lines and takes definitely less time,

than manual segmentation.

V. CONCLUSIONS

The proposed approach for endothelial image segmentation

provides promising results without user intervention. Addition-

ally, the results are provided in a reasonable time. Although

the architecture of a neural network incorporated in the ap-

proach was simple, it was capable of delineating accurately

most of endothelial cell borders. The results seem even more

promising, when one notices that the training dataset contained

only several images. It should be also highlighted, that in the

ground truth images used for neural network training, only

well defined borders were marked. Unsharp and blurry borders

were not highlighted and thus it was not possible to train the

neural network to recognize this kind of borders. Therefore,

the future work will be concentrated on extending the training

dataset by corneal endothelium images of low quality in order

to make the proposed method capable of segmenting low

contrast borders.
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ANNA FABIJAŃSKA: CORNEAL ENDOTHELIUM IMAGE SEGMENTATION USING FEEDFORWARD NEURAL NETWORK 635



c)a) b)

Fig. 8. The results of endothelial image segmentation using the proposed approach; a) the best case; b) the worst case; c) the average case; top panel -
original images; middle panel - the results overlaid on the original image; bottom panel - comparison with ground truths (magenta - missing edges, green -
false edges).

[10] L. M. Vincent and B. R. Masters, “Morphological image processing and
network analysis of cornea endothelial cell images,” pp. 212–226, 1992.

[11] B. Selig, F. Malmberg, and C. L. Luengo Hendriks, “Fast evaluation
of the robust stochastic watershed,” in Mathematical Morphology and

its Applications to Signal and Image Processing : Proceedings of the

12th International Syposium on Mathematical Morphology, Reykjavik,

Iceland, ser. Lecture Notes in Computer Science, vol. 9082, no. 9082,
2015, pp. 705–716.

[12] J. Angulo and S. Matou, “Automatic quantification of in vitro endothelial
cell networks using mathematical morphology,” in 5th IASTED Inter-

national Conference on Visualization, Imaging, and Image Processing

(VIIP’05), 2005, pp. 51–56.

[13] Y. Gavet and J.-C. Pinoli, “Visual perception based automatic recogni-
tion of cell mosaics in human corneal endothelium microscopy images,”
Image Analysis & Stereology, vol. 27, no. 1, pp. 53–61, 2008. doi:
10.5566/ias.v27.p53-61

[14] J. Bullet, T. Gaujoux, V. Borderie, I. Bloch, and L. Laroche, “A
reproducible automated segmentation algorithm for corneal epithelium
cell images from in vivo laser scanning confocal microscopy,” Acta Oph-

thalmol., vol. 92, no. 4, pp. e312–e316, 2014. doi: 10.1111/aos.12304

[15] K. Charlampowicz, D. Reska, and C. Boldak, “Automatic segmentation
of corneal endothelial cells using active contours,” Advances In Com-

puter Science Research, vol. 14, pp. 47–60, 2014.

[16] D. Issam and E. T. Kamal, “Waterballoons: A hybrid watershed balloon
snake segmentation,” Image Vision Comput., vol. 26, no. 7, pp. 905–912,
2008. doi: 10.1016/j.imavis.2007.10.010

[17] F. Scarpa and A. Ruggeri, “Segmentation of corneal endothelial cells
contour by means of a genetic algorithm,” in Ophthalmic Medical Image

Analysis Second International Workshop, 2015, pp. 25–32.

[18] A. Piorkowski, K. Nurzynska, J. Gronkowska-Serafin, B. Selig,
C. Boldak, and D. Reska, “Influence of applied corneal endothelium
image segmentation techniques on the clinical parameters,” Computer-

ized Medical Imaging and Graphics, in press.

[19] M. Foracchia and A. Ruggeri, “Cell contour detection in corneal
endothelium in-vivo microscopy,” in Proceedings of the 22nd An-

nual International Conference of the IEEE Engineering in Medicine

and Biology Society (Cat. No.00CH37143), vol. 2, 2000. doi:
10.1109/IEMBS.2000.897902 pp. 1033–1035.

636 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



[20] A. Ruggeri, F. Scarpa, M. De Luca, C. Meltendorf, and J. Schroeter,
“A system for the automatic estimation of morphometric parame-
ters of corneal endothelium in alizarine red-stained images,” British

Journal of Ophthalmology, vol. 94, no. 5, pp. 643–647, 2010. doi:
10.1136/bjo.2009.166561

[21] M. Foracchia and A. Ruggeri, “Corneal endothelium cell field analysis
by means of interacting bayesian shape models,” in 29th Annual Inter-

national Conference of the IEEE Engineering in Medicine and Biology

Society, 2007. doi: 10.1109/IEMBS.2007.4353724 pp. 6035–6038.
[22] E. Poletti and A. Ruggeri, Segmentation of Corneal Endothelial Cells

Contour through Classification of Individual Component Signatures.
Cham: Springer International Publishing, 2014, pp. 411–414. ISBN 978-
3-319-00846-2

[23] F. Scarpa and A. Ruggeri., “Development of a reliable automated

algorithm for the morphometric analysis of human corneal en-
dothelium,” Cornea, vol. 35, no. 9, pp. 1222–1228, 2016. doi:
10.1097/ICO.0000000000000908

[24] . Laboratory of Biomedical Imaging and BioImLab, “Endothe-
lial cell Alizarine data set,” http://bioimlab.dei.unipd.it/Endo%20Aliza%
20Data%20Set.htm.

[25] A. F. Frangi, W. J. Niessen, K. L. Vincken, and M. A. Viergever, “Mul-
tiscale vessel enhancement filtering,” ser. Lecture Notes in Computer
Science, W. M. Wells, A. Colchester, and S. Delp, Eds., 1998, vol.
1496, pp. 130–137.

[26] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear
parameters,” SIAM Journal on Applied Mathematics, vol. 11, no. 2, pp.
431–441, 1963. doi: 10.1137/0111030
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