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Abstract—The present paper aims to propose a new potential
learning method to overcome the problem of collective interpreta-
tion for interpreting multi-layered neural networks. The potential
learning has been introduced to detect important components
of neural networks and to train them, taking into account the
importance of components. Recently, it has been applied to multi-
layered neural networks and then the interpretation of input
neurons or variables can be possible by collectively treating
intermediate layers. However, the collective interpretation for
multi-layered neural networks tends to be instable, because
the potentialities computed in the pre-training become different
from those in the main training. To overcome this problem, we
introduce the potential learning with direct potential assimilation.
The direct potential assimilation means that the potentiality
assimilation is not applied in the phase of pre-training but it
is applied directly to training multi-layered neural networks.
The new method was applied to the student evaluation data set.
Then, it was observed that the selectivity of connection weights
could be increased. Then, the input-output potentiality was quite
similar to the regression coefficients of logistic regression analysis.
Finally, the new method could extract more explicitly input-
output relations than the regression coefficients by the logistic
regression analysis, while improving generalization performance.

I. INTRODUCTION

A. Problem of Collective Interpretation

NEURAL networks have been well known for their in-

ability to interpret final results [1], [2], [3], [4], [5].

Thus, compared with conventional logistic analysis, the neural

networks have not been necessarily used in many practical

problems. This hard interpretation has become much more

serious for multi-layered neural networks. Some results on

interpretation were reported [6], [7], but the majority were

heavily based on the characteristics of input patterns. For

example, when the inputs are images, they can be easily

interpreted intuitively by the conventional visualization meth-

ods. Particularly, in multi-layered neural networks, it has been

difficult to interpret the intermediate layers.

For interpretation, we have so far introduced potential learn-

ing [8], [9], [10] where the importance of neural components

is determined before learning, and they are assimilated in con-

nection weights. Potential learning has been developed to sim-

plify the computational procedures of information-theoretic

methods [11], [12], [13], [14]. The potential learning has been

recently extended to multi-layered neural networks. As above

mentioned, for the multi-layered neural networks, the problem

becomes more serious, particularly, for interpretation. Even in

the case of single-layered neural networks, the interpretation is

not so easy that we need very special types of procedures for

interpretation. In multi-layered neural networks, the compli-

cated behaviors of many intermediate layers cannot be easily

interpreted. To simplify the interpretation of multi-layered

neural network, we focus on relations between inputs and

outputs by treating collectively all intermediate layers. This

is because in many applications, we must examine how input

variables (neurons) are related to the corresponding outputs

[15], [16], [17]. Thus, we try to estimate how input neurons

have influences on outputs by considering all intermediate

layers.

However, the problem of this collective interpretation is

that the interpretation has been unstable because of unstable

potentialities. The instability of final results is due to the fact

that the connection weights, obtained in the pre-training, can

be changed in the fine-turning or main-training. Thus, even if

the potentiality of neural components is rigorously computed,

it can be of no use in main-training. For this problem, we have

introduced direct potentiality assimilation where the potential

learning focuses not on pre-training but on main-training. In

our new method, the roles of pre-training are reduced as much

as possible.

B. Direct Potentiality Assimilation

The instability problem, inherent to the potentiality learning

or assimilation, can be solved by transferring the potentiality

assimilation from the pre-training to the main-training. Since

the method directly apply the potentiality to the main-training,

it is called “direct potentiality assimilation”. In the ordinary

deep learning, the un-supervised or semi-unsupervised learn-

ing such as auto-encoders is used for the pre-training. In the

pre-training using the auto-encoders, the potentiality must be

assimilated by repeating the assimilation processes, because

the effect of potentiality tends to disappear. Then, we have

the fine-tuning or main-training with connection weights by

the pre-training. The problem is that the information on input

patterns tends to disappear in the time of pre-training, because

of the repeated assimilation. This means that the original

information on inputs tends to disappear in the pre-training,

and thus connection weights, transfered to the main-training,

happen to have little information on input patterns, leading

to the instability of learning and interpretation. To overcome

this problem, we transfer the process of assimilation to the

main training. Then, in the pre-training, no regularization

can be implemented and we try to obtain the overall or
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rough information on input patterns. In the main-training,

the important connection weights in terms of potentiality is

extracted and assimilated fully.

C. Paper Organization

In Section 2, we first explain conceptually direct and indirect

potential learning and then how to compute the potential-

ity and how to assimilate the potentiality into connection

weights. For the collective interpretation, we present how

to deal collectively with intermediate layers by considering

only positive weights. In Section 3, the student evaluation

data set was used where we try to show that the selectivity

could be improved, with better generalization performance. In

addition, the collective weights were found to be very similar

to those by the logistic regression analysis. Finally, the method

could successfully extract the clearer roles of input neurons or

variables.

II. THEORY AND COMPUTATIONAL METHODS

A. Direct and Indirect Potential Learning

In the previous models, we applied the potential learning

to multi-layered neural networks indirectly. This means that

the potential learning was applied to the pre-training phase.

The problem of this indirect method is that the information

on input patterns tends to disappear in the phase of pre-

training. The multi-layered neural networks themselves tend

to lose the original information when going through many

different layers, as pointed out and well-known in the field

of information theory [18], [19], [20]. In addition, the weight

decay and sparse constraints [21], [22], [23], [24], usually used

in the pre-training, naturally tend to lose the original informa-

tion, because those methods try to simplify the complexity of

networks by decreasing the supposed redundant information.

The present method tries to keep the original information

by reducing the roles of pre-training as much as possible.

All important precedences of potentiality assimilation are

implemented in the main-training. As several reports stated,

deep neural networks could produce better results without pre-

training [25]. Our method to focus on the main learning is

quite well suited for this situation.

B. Direct Potentiality Assimilation

In Figure 1, a neural network architecture with four hidden

layers is shown in which the connection weights from the input

to the first hidden layer for the pre-training are represented by

w
(0)
j1j0

with J1 and J0 neurons in the pre-training. Then, the

positive weights are computed by

u
(0)
j1j0

= max

(

w
(0)
j1j0

, 0
)

. (1)

By normalizing these weights, we have the potentiality

rφ
(0)
j1j0
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(

u
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Fig. 1. Network architecture with four hidden layers by the direct potentiality
assimilation.

where u
(0)
max denotes the maximum positive weight and r

denotes the potential parameter. Using this potentiality, the

selective potentiality can be defined by

φr
10 =

J1J0 −
∑J1

j1=1

∑J0

j0=1
rφ

(0)
j1j0

J1J0 − 1
. (3)

When all connection weighs become zero, the selective poten-

tiality is also zero. This selective potentiality increases when

the number of strong connection weights decreases. In the end,

potentiality reaches its maximum of one when only one weight

is the strongest, while all the others are forced to be zero.

This potentiality is assimilated in the main training as

w
(1)
j1j0

=
rφj1j0w

(0)
j1j0

. (4)

In the same way, for the second step, we have

w
(2)
j1j0

=
rφ

(1)
j1j0

w
(1)
j1j0

, (5)
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where rφ
(1)
j1j0

denotes the potentiality at the first step of

learning.

The Average potentiality is the average of all potentialities,

in this case, five different potentialities for five layers,

φr
avg =

1

5

5
∑

k=1

φr
jk,jk−1

. (6)

C. Collective Interpretation

We focus on the interpretation of input neurons or variables.

Since it is impossible to interpret all the connection weights

of all intermediate layers, we try to treat them collectively.

Thus, the potentiality of the input-output connection weights

is computed by summing all weights in the intermediate layers.

The collective weights from the input to the output layer are

computed by

uj5j0 =

J4
∑

j4=1

J3
∑

j3=1

J2
∑

j2=1

J1
∑

j1=1

wj5j4wj4j3wj3j2wj2j1wj1j0 . (7)

We use here raw connection weights to see detailed charac-

teristics. However, since connection weights are forced to be

positive, the final collective weights are not so different from

those by the positive weights.

III. RESULTS AND DISCUSSION

A. Student Evaluation Data Set

1) Experimental Outline: The data set was composed of

5,820 class evaluation scores by the students from the machine

learning database [26]. Of total 33 variables, 28 variables

were extracted on the evaluation questions. Then, the variable

No.9, related to the class satisfaction1 was used for the targets

representing the class satisfaction. The 70 percent of the data

set was for training and the remaining one for evaluation.

We used the Matlab neural network package with all default

parameter values, because we focused on the easy reproduction

of the present results.

2) Selectivity and Generalization: Figure 2 shows the av-

erage selectivity (a) and generalization errors (b). As can be

seen in the figures, the selectivity increased gradually in Figure

2(a), and correspondingly, the generalization errors decreased

to the minimum point when the parameter r was increased

from 0 to 1.1. Then, the generalization errors did not decrease

but fluctuated. These results show that the selectivity can

be used to increase generalization performance by choosing

appropriately the parameter r.

3) Comparison of Connection Weights: Figure 3 shows

connection weights when the parameter r was zero. Con-

nection weights were almost random and it was impossible

to detect any regularity over connection weights. Figure 4

shows connection weights when the parameter r was 1.1,

producing the best generalization performance. Though some

minor negative connection weights were seen in the weights to

1Actually, the variable No.9 means that the students enjoyed the class very
much.
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Fig. 2. Selectivity (a) and generalization errors (b) for the student evaluation
data set.

the first hidden layer in Figure 4(a). The majority of weights

were positive and they remained to be strong for all layers.

Let us examine why connection weights with r=1.1 in

Figure 4 produced better generalization performance. In Figure

4, the vertical lines and horizontal lines were added. The hor-

izontal lines represent that connection weights are connected

with the subsequent connection weights. On the other hand,

the vertical lines show that the corresponding weights are

connected with ones located in the former layer. Connection

weights to the fifth hidden neuron are strong in Figure 4(a)

and they are connected with the third hidden neurons in the

second hidden layer in Figure 4(b). Then, these neurons were

connected with the fourth hidden neurons in Figure 4(c).

Finally, the connection weights are connected with connection

weights into the first output neuron in Figure 4(d). Thus, those

connection weights make it possible to transmit information

on original input patterns to the output layer.

4) Interpreting Input Selective Potentiality: Figure 5(a)

shows the collective weights when the parameter was 1.1,

giving the best generalization performance. As can be seen

in the figures, the ninth input neuron took the highest weight

value. When the class expectation is met by students, they

tend to be satisfied with the class. On the other hand, Figure

5(b) show the regression coefficients by the logistic regression

analysis. We can see the same tendency that the ninth variable

had the largest value. However, some other variables had

relatively larger values, for example, the variable No.16. These

result show that the direct potentiality assimilation can extract

clearer characteristics than logistic regression analysis. This is
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Fig. 3. Connection weights from the first (a) to output (d) layer when the
parameter r was 0 for the student evaluation data set.
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Fig. 4. Connection weights from the first (a) to output (d) layer with r=1.1
for the student evaluation data set.

5 10 15 20 25

5 10 15 20 25

0

0.5

1

(a) DPA

Input neuron(variable)

(b) Logistic regression coefficients

Variables

Expecation met

0

0. 5

1

C
o

e
ff

ic
ie

n
t

C
o

ll
e
c
ti

v
e
 w

e
ig

h
t

Fig. 5. Collective weights (a) and regression coefficients (b) by the logistic
regression analysis.

due to the selective effect of potentiality assimilation.

5) Generalization Comparison: Table I shows the general-

ization performance by the logistic analysis, deep learning and

direct potentiality assimilation method. The lowest errors were

0.0805, 0.0710 and 0.0899 in terms of average, minimum and

maximum values when the parameter r was 1.1. The second

best average error of 0.0868 was obtained by the logistic

regression analysis. Then, the worst error of 0.0940 was by

the deep learning with three hidden layers. This means that it

became impossible to learn input patterns by the ordinary deep

learning with auto-encoders. The unsupervised learning such

as auto-encoders tends to lose information content gradually

when the layer becomes higher.

IV. CONCLUSION

In the present paper, we proposed a new potential leaning

method in which the potentiality assimilation is transferred

from the pre-training to the main-training. The potential learn-

ing has been originally developed to simplify complicated

information-theoretic methods [11], [14]. Because of the com-

plexity in computing entropy or mutual information, the meth-

ods have not been fully explored in the neural networks. In this

context, the potential learning has been introduced to simplify

the computational procedures of information maximization [8],

[27], [9], [10]. First, the potentiality of some components is

determined and then this potentiality is assimilated. Usually,

a smaller number of components with higher potentiality is

extracted. The potential learning has been applied to single-

layered neural networks as well as multi-layered neural net-

works. To train the deep neural networks, the pre-training

has been believed to have much importance. In multi-layered

neural networks, the un-supervised pre-training is usually used

to solve the vanishing information problem, inherent to the

gradient descent. In addition, several regularization terms such

as weight decay and sparsity constraints are implemented.

These methods such as un-supervised pre-training with the

regularization terms tend naturally to reduce information con-

tent on original input patterns. Actually, it is difficult to control

information in the pre-training for the benefit of the subsequent

main training. To solve this problem, though the pre-training

is necessary in training multi-layered neural networks, the

roles of the pre-training should be minimized. We think that

the main role of pre-training is to give the overall or rough

information content to be used in the main-training.

The method was applied to the student evaluation data set.

Then, it could be observed that generalization performance

could be improved. The final collective weights were very

similar to those by the regression coefficients by the logis-

tic regression analysis. This means that the present method

extracted the same characteristics by the logistic regression

analysis, taking into account some additional features which

the conventional logistic analysis could not deal with.

The problem is that the potentiality was applied indepen-

dently in all layers. This means that when the parameter was

increased, and the effect of potentiality is more apparent, the

potentiality tends to be assimilated independently in each layer.

Finally, the layers tend to be dis-connected with each other.
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TABLE I
SUMMARY OF EXPERIMENTAL RESULTS ON GENERALIZATION PERFORMANCE FOR THE STUDENT DATA SET.

Method Layers r Avg Std Min Max

Logistic 0.0868 0.0065 0.0733 0.0956

Deep 3 0.0940 0.0088 0.0762 0.1031

DPA 1.1 0.0805 0.0065 0.0710 0.0899

Then, it can be considered that the original information content

in input patterns cannot be transmitted through layer. Thus, the

information on input patterns tends to be lost gradually in the

course of learning. To solve this problem, the present method

should be formulated, taking into account the connectivity

between neurons and layers. Though some problems should

be solved for the practical data sets, the method is simple

enough to be implemented in large-scale networks.
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