
Abstract—A heterogeneous computing model with ontology

preserving  functions  are  applied  to  present concept  learning

across domains with structural agent morphisms. A computing

models based on a novel multi-agent competitive learning with

multiplayer game tree plans are applied. Agents are assigned to

transform the models to reach goal plans. Goals are satisfied

based on competitive game tree learning. Agent tree computing

models are example prototypes for modeling ontology algebras.

Specific agents are assigned to transform the models to reach

goal plans where goals are satisfied based on competitive game

tree learning.  Cooperating agents,  that  have opened new av-

enues in modeling and implementing agent teams, are ingredi-

ents to specific  application modeling.  Applications to Formal

Concept Description are developed with new description logic

algebraic models. Novel Description algebras with concept de-

scription ontology algebras and description ontology preserva-

tion morphisms are presented.

Index Terms—Game Learning Ontology Algebras, Descrip-

tion Ontology, Ontology Preservation Morphisms, Competitive

Model Ontology, Agent Ontology Models, Game Tree Learn-

ing.

I. DESIRE MODELS

N OVERVIEW to a practical agent learning based on

new competitive modeling a technique applying what

the first author developed since 2004 is presented with aug-

mentation to standard agent modeling [11]. A specific agent

might have internal state set I, which the agent can distin-

guish its membership. The agent can transit from each inter-

nal  state to another  in a single step. With our multi-board

model agent actions are based on I and board observations.

Transfer learning is carried on with agent morphisms. Predic-

tive and  competitive  model  learning  is  presented  applying

agent game trees. Ontology preservation principles are intro-

duced for learning ontology. The preservation principles are

further applied to the knowledge bases that support the trans-

fer learning. Competitive game tree learning is the basis to

the  authors’  application  to  business  and  economics  game

modeling. Deduction models attain a new perspective with

the techniques here. Context abstraction and met-contextual

reasoning  is  introduced  as  a  new field.  Multi-agent  visual

multi-board planning has been applied in the first  author’s

A

projects to space navigation and spatial computing learning.

In a haptic computing logic [8] the learning process can be

seen as an emotional and personal, game based, and proac-

tive Game-based Learning, emotions and emotional agents,

henceforth abbreviated as the BID model [16].

The section overviews are as follows. Section two devel-

ops the stage for the agent computing models that are ap-

plied to characterize agent computations based on standard

Desire modeling augmented with newer agent module alge-

bras.  Section  3  presents  the  competitive  modeling  tech-

niques with signatured  trees.  Tree  computations to realize

goals for competitive models are the bases for model com-

patibility characterizations on realizing  goals on computa-

tion trees. Generic model diagrams are applied to compare

models.  Section 4 presents signatured tree morphisms and

module preservation techniques based on alternative agent

computing techniques. Agent algebras and morphisms ren-

der  a  basis  for  defining  ontology  preservation  principles.

Section  5  applies  the  techniques  to  model-based  concept

learning with preservation morphism mappings for transfer

learning across  domains.  Secion 6 develops the new basis

for ontology algebras on Concept Descriptions. A categori-

cal characterization encompasses a constructive description

logic with concept description algebra monads on agent sig-

nature trees. Based on that new concept ontology algebras

with description ontology algebra preservation theorem are

presented. Newer application areas that can be explored are

mutual robot learning – a robot introducing a structure to a

new robot. These areas have started being explored at Sin-

gularity  university  affiliate  groups,  for  example.  Robot

learning based on watching the task being performed by a

human or by a second robot are model-based learning but

troublesome due to a mismatch between the model structure

problems e.g. [21].  Newer examples are on learning topo-

logical spaces [20]. Our more functional approach to learn-

ing about the world can be applied to physical robots trans-

formed into an abstract model, and then converting it back

into a functional representation.
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II. DESIRE MODELS        

Let us start with the popular agent computing model the 

Beliefs, Desire, and Intentions, BID is a generic agent 

computing model specified within the declarative 

compositional modeling framework for multi-agent systems, 

DESIRE. The model, a refinement of a generic agent model, 

explicitly specifies motivational attitudes and the static and 

dynamic relations between motivational attitudes. Desires, 

goals, intentions, commitments, plans, and their relations are 

modeled [6]  . Different notions of strong and weak agency are 

presented at [22]. To apply agent computing with intelligent 

multimedia some specific roles and models have to be 

presented for agents. Beliefs, intentions, and commitments play 

a crucial role in determining how rational agents will act. 

Beliefs, capabilities, choices, and commitments are the 

parameters making component agents specific. DESIRE is the 

framework for design, and the specification of interacting 

reasoning components is a framework for modeling, specifying 

and implementing multi-agent systems, see [6], [22]. The 

interaction between components, and between components and 

the external world is explicitly specified. Components can be 

primitive reasoning components using a knowledge base, but 

may also be subsystems that are capable of performing tasks 

using methods as diverse as decision theory, neural networks, 

and genetic algorithms. 

A. Specifying BID Agents  

The BID design specifications in our papers apply agent 

signature trees.  Information is encoded with a predicate logic 

on a hierarchically ordered sort structure (order-sorted 

predicate logic). Newer techniques with levels of signatures 

[17], [8] can be applied to the encoding.  Units of information 

including sorts and operators of different arities are 

represented on the signature on the first level. On the second 

level, operators are type constructors, so that the set of 

variable-free terms are shifted down to the sort set for the 

signature on level three. In this way, different (meta)levels 

may be distinguished and richer type constructions can be 

obtained and used. Some specifics and a mathematical basis to 

such models with agent signatures might be obtained from [1] 

where the notion had been introduced since 1994. Meta-level 

information contains information about object-level 

information and reasoning processes; for example, for which 

atoms the values are still unknown (epistemic information). 

Similarly, tasks that include reasoning about other tasks are 

modeled as meta-level tasks with respect to object-level tasks.  

III. COMPETITIVE MODELS AND SIGNATURED TREES 

Planning is based on goal satisfaction at models. Multi-agent 

planning, in this paper is modeled as a competitive learning 

problem where the agents compete on game trees as candidates 

to satisfy goals hence realizing specific   models where the plan 

goals are satisfied.  When a specific agent group “wins” to 

satisfy a goal the group has presented a model to the specific 

goal, presumably consistent with an intended world model. For 

example, if there is a goal to put a spacecraft at a specific 

planet’s orbit, there might be competing agents with alternate 

micro-plans to accomplish the goal [4]. While the galaxy 

model is the same, the specific virtual worlds where a plan is 

carried out to accomplish a real goal at the galaxy via agents 

are not.  The plan goal selections and objectives are facilitated 

with competitive agent learning. The intelligent languages [15] 

are ways to encode plans with agents and compare models on 

goal satisfaction to examine and predict via model diagrams 

why one plan or model is better than another or to prevent 

traversing unsuccesful routes. 

B. Intelligent AND/OR Trees and Search 

AND/OR trees Nilsson e.g. [23]  are game trees defined to 

solve a game from a player's stand point.  

Formally a node problem is said to be solved if one of the 

following conditions hold. 

1. The node is the set of terminal nodes (primitive problem – 

the node has no successor). 

2. The node has AND nodes as successors and the successors 

are solved. 

3. The node has OR nodes as successors and any one of the 

successors is solved.  

A solution to the original problem is given by the subgraph of 

AND/OR graph sufficient to show that the node is solved. A 

program which can play a theoretically perfect game would 

have task like searching and AND/OR tree for a solution to a 

one-person problem to a two-person game. An agent AND/OR 

tree [1] is and AND/OR tree where the tree branches are 

intelligent trees. The branches compute a Boolean function via 

agents. The Boolean function is what might satisfy a goal 

formula on the tree. An intelligent AND/OR tree is solved iff 

the corresponding Boolean functions solve the AND/OR trees 

named by agent functions on the trees.  Thus node m might be 

f(a1,a2,a3) & g(b1,b2), where f and g are Boolean functions of 

three and two variables, respectively, and ai's and bi's are 

Boolean valued agents satisfying goal formulas for f and g. An 

intelligent AND/OR tree is solved iff the corresponding 

Boolean functions solve the AND/OR trees named by 

intelligent functions on the trees. Thus node m might be 

f(a1,a2,a3) & g(b1,b2), where f and g are Boolean functions of 

three and two variables, respectively, and ai's and bi's are 

Boolean valued agents satisfying goal formulas for f and g. 

A tree game degree is the game state a tree is at with respect to 

a model truth assignment, e.g. to the parameters to the 

Boolean functions above. Let generic diagram or G-diagrams 

be diagrams definable by specific functions. Intelligent 

signatures [1] are signatures with designated multiplayer game 

tree function symbols. A soundness and completeness theorem 

is proved on the intelligent signature language by the first 

author [7]. The techniques allowed us to present a novel 

model-theoretic basis to game trees, and generally to the new 

intelligent game trees.  
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Figure 1: Agent Logic Tree 

C. Trees and Model Compatibility  

Now let us examine the definition of situations from 1985 

times and view it in the present formulation.  

Definition 3.1 A situation consists of a nonempty set D, the 

domain of the situation, and two mappings: g,h. g is a mapping 

of function letters into functions over the domain as in standard 

model theory. h maps each predicate letter, pn, to a function 

from Dn to a subset of {t,f}, to determine the truth value of 

atomic formulas as defined below.  The logic has four truth 

values: the set of subsets of {t,f}.{{t},{f},{t,f},0}. the latter 

two is corresponding to inconsistency, and lack of knowledge 

of whether it is true or false.  

The above truth value assignments indicate that the number of 

situations exceeds the number of possible worlds. The possible 

worlds being those situations with no missing information and 

no contradictions. From the above definitions the mapping of 

terms and predicate models extend as in standard model theory. 

Next, a compatible set of situations is a set of situations with 

the same domain and the same mapping of function letters to 

functions. In other worlds, the situations in a compatible set of 

situations differ only on the truth conditions they assign to 

predicate letters. 

Definition 3.2 Let M be a structure for a language L, call a 

subset X of M a generating set for M if no proper substructure 

of M contains X, i.e. if M is the closure of X U {cM : for c, a 

constant symbol of L}. An assignment of constants to M is a 

pair <A,G>, where A is an infinite set of constant symbols in L 

and G: A  M, such that  {G[a]: a in A} is a set of generators for 

M. Interpreting a by g[a], every element of M is denoted by at 

least one closed term of L[A]. For a fixed assignment  <A,G> 

of constants to M, the diagram of M, D<A,G>[M] is the set of 

basic [atomic and negated atomic] sentences of L[A] true in M. 

[Note that L[A] is L enriched with set A of constant symbols.]  

Generic diagrams, denoted by G-diagrams, were what we 

defined since 1980's to be diagrams for models defined by a 

specific function set, for example Σ1 Skolem functions. 

Remark: The functions above are those by which a standard 

model could be defined by inductive definitions. 

The frist author proved [5] that situations are compatible iff 

their corresponding generalized diagrams are compatible with 

respect to the Boolean structure of the set to which formulas 

are mapped (by the function h above, defining situations). To 

examine compatibility on model diagrams minimal prediction 

was developed around 1994. The artificial intelligence 

technique defined since the author’s model-theoretic planning 

project, is a cumulative nonmontonic approximation attained 

with completing model diagrams on what might be true in a 

model or knowledge base. The predictive diagrams [9] are 

applied to discover models to the intelligent game trees. 

Prediction is applied to plan goal satisfiability and can be 

combined with plausibility [5] probabilities, and fuzzy logic, 

e.g. [13], [17] to obtain, for example, confidence intervals.  

IV. SIGNATURED MORPHISMS AND MODULE PRESERVATION 

From the software agent designer's viewpoint, however, there 

is modularity with artificial structures. Artificial structures [7] 

implemented by agent morphisms. Knowledge acquisition 

requires either interviewing an expert, brainstorming with a 

group of experts, or structuring one's thoughts if the specifier 

is the expert. For multi-agent designs there are active learning 

agents and automatic learning. The author first author had 

presented the notion of Nondeterministic Knowledge 

(Design_Agents) [7]. Design_Agents is formulated to deal 

with the conceptualization stage and is being applied by the 

present project to define active learning by agents.  

Design_Agents requires the user to inform the specifier as to 

the domains that are to be expected, i.e. what objects there are 

and what the intended actions (operations) on the objects are, 

while fully defining such actions and operations. The actions 

could be in form of processes in a system. The relations 

amongst the objects and the operations (actions) can be 

expressed by algebras and clauses, which the specifier has to 

present. The usual view of a multi-agent systems might 

convey to an innocent AI designer that an agent has a local 

view of the environment, interacts with others and has 

generally partial beliefs (perhaps erroneous) about other 

agents. On the surface the Design_Agents specification 

techniques might appear as being rigid as to what the agents 

expect form other agents. The Design_Agents specification 

does not ask the agents be specified up to their learning and 

interaction potential. Design_Agents only defines what objects 

might be involved and what might start off an agent. It might 

further define what agents are functioning together. Thus 

specifications are triples <O,A,R> consisting of objects, 

actions and relations. Actions are operations or processes. 

A.The Formal Basis 

Starting with what are called hysterectic agents [11]. A 

hysterectic agent has an internal state set I, which the agent can 

distinguish its membership. The agent can transit from each 

internal state to another in a single step. Actions by agents are 
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based on I and board observations. There is an external state set 

S, modulated to a set T of distinguishable subsets from the 

observation viewpoint. An agent cannot distinguish states in 

the same partition defined by a congruence relation. A sensory 

function s :S → T maps each state to the partition it belongs. 

Let A be a set of actions which can be performed by agents. A 

function action can be defined to characterize an agent activity 

action:T →A. There is also a memory update function mem: I 

x T → I. To define agent at arbitrary level of activity 

knowledge level agents are defined. All excess level detail is 

eliminated. In this abstraction an agent’s internal state consists 

entirely of a database of sentences and the agent’s actions are 

viewed as inferences based on its database.  The action 

function for a knowledge level agent maps a database and a 

state partition t into the action to be performed by an agent in a 

state with database and observed state partition t. action: Dx 

T→ A. The update function database maps a state and a state 

partition t into a new internal database. database: D x T → D. 

A knowledge-level agent is an environment is an 8-tuple 

shown below. The set D in the tuple is an arbitrary set of 

predicate calculus databases, S is a set of external states, T is 

the set of partitions of S, A is a set of actions, see is a function 

from S into T, do is a function from A S into S, database is a 

function from D x T into D, and action is a function from D x T 

into A. 

 

Figure 2 Heterogenous  Module Computing Model 

B. Agent Model Morphisms  

Let A be a set of actions which can be performed by agents. A 

function action can be defined to characterize an agent activity 

action:T → A. There is also a memory update function. A 

hysterectic agent HA defined by a sextuple 

<I,S,T,A,s,d,internal,action> where d is a function form A x S 

→ S and internal I x T → I. Let HA be a set of sextuples 

defining a hysterectic agents. Define HA morphims by a family 

of functions defined component-wise on the sextuple above. 

Definition 4.1  A HA morphism is a function F : HA → HA’ 

defined component-wise by F[i]: I→   I’; F[S]: S → S’, F[T]: T 

→T’, F[A]: A →A’; F[s]: S→ T’; F[d]: A’ x S’ → S’ and 

F[internal]: I’ x T’→ I’.  

Definition 4.1 implies F defines a new hysterectic agents from 

HA by a morphism. Component-wise definitions for a 

morphism might be viewed as functions on a multi-sorted 

signature carrying the sextuple. Similar morphisms can be 

defined for knowledge level agents which we can refer to by 

KD-morphisms. 

C. Agents, Modules, and Algebras 

The computing enterprise requires more general techniques of 

model construction and extension, since it has to accommodate 

dynamically changing world descriptions and theories. The 

models to be defined are for complex computing phenomena, 

for which we define generalized diagrams. They were designed 

to build models with prespecified generalized Skolem 

functions. The specific minimal set of function symbols is the 

set with which a model fro a knowledge base can be defined. 

The G-diagram techniques allowed us to formulate AI worlds, 

KB’s in a minimal computable manner to be applied to agent 

computation. The techniques in [5] for model building as 

applied to the problem of AI reasoning allow us to build and 

extend models through diagrams. A technical example of 

algebraic models defined from syntax had appeared in defining 

initial Σ algebras for equational theories of data types [2] and 

our research in [1]. In such direction for computing models of 

equational theories of computing problems are presented by a 

pair (Σ,E), where  is a signature (of many sorts, for a sort set S 

and E a set of -equations.  

Definition 4.2 An s-sorted signature Σ or operator domain  is a 

family  <w,s> of sets, f or s  S and w  S* (where S* is the set of 

all finite strings from S , including the empty string ). call f  

<w,s> and operation symbol of rank w,s; of arity w, and of sort 

s.# 

We apply multi-sorted algebras via Definition 2.3 to multi-

agent systems.  

Definition 4.3 Let  Σ be an S-sorted signatures. A Σ-algebra A 

consists of a set As for each s S (called the carrier if A of sort 

s) and a function <A>: As1 x As2 x....xAsn   As for each   

<w,s>, with w=s1s2...sn (called the operation named by ). For   

<,s>, A  As, i,e the (set of names) of constants of sort s.   #  

Definition 4.4 If A and B are Σ algebras, a -homomorphism 

h:A → B is a family of functions <hs:As  Bs> s in S  that 

preserve the operations, i.e. that satisfy (h0) For   <,s>, the 

hs(A) =   B; (h1) If ,  For   <w,s>, with w=s1s2...sn and 

<a1,...,an>  As1 x As2 x....xAsn, then hs[A(a1,...,an)] = 

B(hs(a1),...,hs(an)).   

From [1], [7] we have the following notions: 

Definition 4.5 A signature is intelligent iff it has intelligent 

function symbols. We say that a language has intelligent syntax 

if the syntax is defined on an intelligent signature.  

Definition 4.6 A language L is said to be an intelligent 

language iff L is defined from an intelligent syntax.  

A practical example of intelligent languages was presented 

composed from <O,A,R> triples as control structures, e.g. 

SERF [15]. The functions in AF are the agent functions 
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capable of message passing. The O refers to the set of objects 

and R the relations defining the effect of A's on objects. 

Amongst the functions in AF only some interact by message 

passing. The functions could affect objects in ways that affect 

the information content of a tree. There you are: the tree 

congruence definition thus is more complex for intelligent 

languages than those of ordinary syntax trees. Let us define tree 

information content for the present formulation. Hence there is 

a new frontier for a theoretical development of the <O,A,R> 

algebras and that of the AII theory. <O,A,R> is a pair of 

algebras, <Alg[A],Alg[F]>, connected by message passing and 

AII defines techniques for implementing such systems. To 

define AII we define homorphisms on intelligent signature 

algebras. For an intelligent signature IΣ, let TIΣ be the free tree 

word algebra of signature IΣ. The quotient of TIΣ the word 

algebra of signature , with respect to the I-congruence relation 

generated by a set of equations E, will be denoted by T<IΣ,E>, 

or T<P> for presentation Component-wise definitions for a 

morphism might be viewed as functions on a multi-sorted 

signature carrying the sextuple. Similar morphisms can be 

defined for knowledge level agents which we can refer to by 

KD-morphisms. The techniques in [5] for model building as 

applied to the problem of AI reasoning allows us to build and 

extend models through diagrams. The notion of an intelligent 

signature [1] is simply a designation that there is a subsignature 

with specific properties, for example all the functions are 1-1. 

Definition 4.7 A IΣ-homomorphism is a I-homomorphism 

defined on algebras with intelligent signature IΣ. To define 

agent specific designs we apply HA-morphisms via the 

following definition. 

Definition 4.8 Let A and B be IΣ-algebras with signatures 

containing an agent signature HA.  

A HA-homomorphism from A to B is an IΣ-homorphism with 

defined HA-morphism properties. 

V. LEARNING , CONCEPTS, AND ONTOLOGY PRESERVATION 

Our transfer learning model applies the BID model to specify 

learning areans M1 and M2. Each arean’s BID is presented 

with intelligent signatures IΣ1 and IΣ2. Predictive model 

compatibility techniques are presented with agent signature 

game trees where the above fomalizm can is applied to realize 

competitive learning models. The following process is applied 

to transfer game tree and competive model learning across 

domains since modeling and realizability are based on 

morphism preserved formulas.  

     The term ATL here refers to the process of abstract transfer 

leraning from an abstract characterization of a world, or 

leraning domain to a second arena or world. Thus ATL express 

the relationship between two forms of representations. The 

notion of abstract transfer learning are either algebraic or 

model-theoretic (algebraic logic) definitions. We refer to 

specifications of the form <O,A,R> as presentations that 

present an IM_BID system. We also expect a presentation of 

the form <I[O],I[A],I[R]> [15] for the implementing abstract or 

concrete machine. The former could be the designer's 

conceptualization, and the latter the specification of the syntax 

and semantics of a programming language. Informally the A 

TL process is that of encoding the algebraic structure of the 

conceptualization of a problem onto the algebra that specified 

an learning machine, or a secondary BID specifed world. The 

ATL process becomes that of defining specific agent and 

structural morphisms on the above BID algebras. Each of the 

functions defined by <O,A,R> are implemented by agents, that 

characterize the implementation function  

I:<O,A,R> → <I[O],I[A],I[R]> is to be defining a mapping I: 

<Alg[A],Alg[F]> → <Alg[I(A)],Alg[I(F)]>. We refer to 

Alg[A] and Alg [F] are what we call ontology algberas. The 

implementation mapping I defines wrappers to resources in a 

manner preserving the ontology algebra. Ontology algerbas are 

multi-sorted algerbas defining multi-agent systems defined by 

formal agents, e.g., hysterectic or knowledge level agents and 

agent morphisms [14], [15]. 

Example 1: Data and Knowledge Bases: The ATL Ontology 

Preservation Principle, following is the first author’s 1997 

ontology preservation principles: The ATL is a valid transfer 

only if it preserves the ontology algebras. Since the knowledge-

base is essential to learning designs, let us carry on the 

ontology preservations to Widerhold’s domain knowledge base 

algebra DKB [16] consists of matching rules linking domain 

ontologies. There are three operations defined for DKB.  

Example 2: Mutual Robot Learning  

Based on that new concept ontology algebras with description 

ontology algebra preservation theorem are presented. Newer 

application areas that can be explored are mutual robot 

learning – a robot introducing a structure to a new robot. 

These areas have started being explored at Singularity 

university affiliate groups, for example. Newer examples are 

on learning topological spaces [20]. Our more functional 

approach to learning about the world can be applied to 

physical robots transformed into an abstract model, and then 

converting it back into a functional representation. 

The operations are: Intersection – creating subset ontology and 

keeping sharable entries; Union – creating a joint ontology 

merging entries; Difference – creating a distinct ontology and 

removing shared entries. Mapping functions must be shown to 

preserve ontologys. Structural morphism allow ontology 

structures to be mapped from one robot ontology Knowledge 

base to a new robot with alternate ontology descripptions and 

structures, thereby transfer learning to a new robot with 

alternate ontology with structure preserving morphisms. 

Based on that new concept ontology algebras with description 

ontology algebra preservation theorem are presented. Newer 

application areas that can be explored are mutual robot 

learning – a robot introducing a structure to a new robot. 

These areas have started being explored at Singularity 

university affiliate groups, for example. Robot learning based 

on watching the task being performed by a human or by a 

second robot are model-based learning but troublesome due to 
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a mismatch between the model structure problems e.g. [21]. 

Newer examples are on learning topological spaces [20]. Our 

more functional approach to learning about the world can be 

applied to physical robots transformed into an abstract model, 

and then converting it back into a functional representation. 

Let us apply the definition for HA agents and HA morphisms 

to state a preservation theorem. Let A and B be IΣ-algebras 

with the signature IΣ containing HA agents. Let Alg[B] be an 

IΣ-algebra defined from B implementing, e.g. [15] a specified 

functionality defined by A. An ATL is an implementation for 

Alg[A] by Alg[B]. Theorems 5.1 and 5.2 are from the first 

author’s 2001 times, c.f. [15]. 

Definition 5.1 Let A and B be IΣ-algebras with intelligent 

signature IΣ containing agents. An I-ontology is an IΣ-algebra 

with axioms for the agents and functions on the signature. 

Theorem 5.1 Let A and B be IΣ -algebras with the signature IΣ 

containing HA agents. The AII with HA morphisms defined 

from A to B preserve IΣ-ontology algebras iff defined by HA-

homorphisms. 

Proof definition for the ontologies, HA morphism, definition 

4.7 and 4.8, IΣ-algebras and IΣ-homorphisms entail the IΣ-

ontology axioms are preserved iff agents are carried by HA-

homorphisms from A to B.  

Theorem 5.2  Let A and B be IΣ-algebras with the signature I 

containing KD agents. The AII with KD morphisms preserve 

IΣ -ontology algebras iff defined by KD-homorphisms. 

Proof Similar to 5.1. DKB mappings are specific ATL's were 

the ontology algebra operations are the same at source and 

target. We can prove based on the above that DKB mappings 

are DKB preservation consistent. 

VI. FORMAL CONCEPT DESCRIPTION ONTOLOGY ALGEBRA 

FCA is abstracted on so called “context”, or “formal context”, 

but is in the end just a relation on sets, I ⊆ G × M, often written 

as and said to be a triple (G,M,I). G is called these to 

f“objects”and M these to f“attributes”. However, neither 

objects nor attributes are given any specific syntactic structure. 

The call for intuitive meaning, but as such there is no syntactic 

structure [24,25] whatsoever based on which objects and 

attributes move beyond being just points in sets. This obviously 

makes real-world applications difficult to develop, and 

application content is all in that intuitive structure, and none of 

it is embrace by the syntactic notion itself. Basically, in FCA, 

G and M are indeed just plain sets, but in this starting point 

they can be seen as objects in the category Set of sets and 

functions. Further, even if in traditional FCA, the elements of 

those sets have no structure whatsoever, these sets can be 

provided with generalized structure [17], which formalizes 

FCA categorically, thereby opening up possibilities to give 

“object” and “attribute” more precise meanings given their 

syntactic structure, also going beyond just using Set as the 

underlying category for FCA, and, adopting a much more 

generalized view on relations. 

In traditional FCA (Wille 1982), a so called “formal concept”, 

or just a “concept”, is a pair (A, B), with A ⊆ G and B ⊆ M, 

such that A = {g ∈ G | gIm for all m ∈ B} and B = {m ∈ M | 

gIm for all g ∈ A}. A lattice, the so called “formal concept 

lattice”, is given for the set of all concepts by (A1,B1) ≤ 

(A2,B2) if and only if A1 ⊆ A2 (or, equivalently, B1 ⊇ B2). 

Since there is no convention about how to use given names for 

objects and attributes in “informally constructed” names for 

formal concepts, combining names into names for concepts, or 

simply inventing the names otherwise, has become tradition 

within FCA. This, however, means that there is no 

terminological or ontology basis for FCA, but concepts 

themselves are seen as ontology objects. The ontology 

preservation areas will be further developed to present concept 

ontology mappings and preservations. 

In the following subsection we show how constructive and 

type-theoretic methodology can provide enriched structures for 

FCA. The constructive approach Paive (2002) adapts classical 

ALC to a constructive system using the two routes outlined 

above. The syntax of such constructive system is the same in 

both cases. Concept descriptions in this constructive 

description logic CDL language obey the following syntax rule 

C, D → A | T | ⊥ | C ⊓ D | C ⊔ D | C → D | ∀R.C |∃R.C 

where C, D range over concepts, A is an atomic concept and R 

ranges over names of roles, as before. As usual in constructive 

logics, since ¬C is simply an abbreviation for C → ⊥ we do 

not need to consider it. In compensation we must add in the 

constructive implication of concepts, which in classical 

description logic is a derived concept. Also it is just a 

convenience to have the true concept T, as it could be defined 

as ¬⊥. We are then within the realm of first order logic IFOL. 

The type-theoretic approach shows how concepts as singleton 

concepts  correspond to "individual concept'',  whereas 

syntactic powers of concepts correspond to "concept''.  

A. Categorical Characterizations 

In this subsection we point out that ∃ in ∃R.C as a modality is 

actually an informal symbol. Further, as typing comes into 

play, we show how C is syntactically ambiguous in this context 

as the underlying signature is not precisely described. 

In the following we use notations from (Schmidt-

SchaussSmolka 1991). Note that D for the universe should not 

be confused with D as used for concept descriptions, e.g., in 

expressions like C⊔D, D is not to be understood as D in D
I
, 

where I is the interpretation. With C as a "concept'', we have C
I
 

as a subset of D
I
, which in turn is an element PD

I
, where P is 

the powerset functor. The "existential quantifier'' in ∃R.C is an 

"R-modality'' applied to the powerconcept C. 
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The definition for the semantic expression (∃R.C)
 I
 uses the 

existential quantifier that appears in the assumed underlying set 

theory. Concerning the underlying signature and related 

variables, in (Schmidt-SchaussSmolka1991) the situation is 

unclear, given the assumption about the existence of two 

further disjoint alphabets of symbols, which are called 

individual and concept variables. Logically, variables are not 

part of any alphabet. Variables are terms, and as such they are 

terms of a certain type. We should therefore speak of 

"individual concept'' rather than "individual variable''. Now 

typing of "concept'' and "individual concept'' comes into play, 

and we will need type constructors on level two of the so called 

three-level arrangement of signatures [17]. As opposed to 

(Schmidt-SchaussSmolka1991), we say "concept'' instead of 

"individual concept'', and "powerconcept'' instead of  

"concept''. The underlying signature must be formalized, where 

concept is a sort in the given underlying signature on level one. 

On level two, Pconcept becomes a constant operator, and a 

type constructor P is then used to produce a new type Pconcept, 

which in their `algebra' will be understood, respectively, as D
I
 

and PD
I
. Simply typed description logic can now be formally 

defined in lambda-calculus [17]. A concept on level one 

becomes a "singleton powerconcept'' on level three, and the 

syntactic expression ∃R.C appP(Pconcept), Pconcept (m, appPconcept, 

P(Pconcept) (R,C)) where m is the multiplication of the underlying 

monad, and app is the function type constructor. 

For transforming description logic into our categorical 

framework, we use notations in [6]. Interpretations I = (D
I
, I), 

where I maps every coFncept description to a subset of DI, use 

D for that universe, which should not be confused with D as 

used for concept descriptions, e.g., in expressions like C D, 

where D is not to be understood as the “D in D
I
”. With C as a 

“concept”, we have C
I
 ⊆ D

I
 ∈ P D

I
. This means that P D

I
 is the 

actual ‘algebra’. Roles R are semantically described as 

relations RI ⊆  D
I
 → D

I
 , i.e., we can equivalently write it as a 

substitution R
I
 : D

I
 → D

I
 .  The observation that relations R ⊆ 

X  →  X correspond precisely to functions (in form of 

substitutions) R : X → PX, where P is the powerset functor 

over the category of sets and functions, is the basis for viewing 

generalized relations as morphisms (substitutions) in the Kleisli 

category over generalized powerset monads. With C as a 

“concept”, we have C
I
 ⊆  D

I
 →PD

I
. This means that PD

I
 is the 

actual ‘algebra’. 

Definition 6.1 A Description algebra morphism h: PD
I
 →PD

I’
 

where I and I’ are alternate interpretation functions such that h 

preserves roles R on D. 

Following definitions on HA morphims and the state space 

agent model above, we have description algebras defined on an 

agent signature Σ.  Considering a sequence description 

competitive model [10] a concept interpretation I corresponds 

to a competitive model on an agent learning tree.  Signatured 

agent trees satisfy goals to complete a model diagram realizing 

a role R. Concept descriptions are presented with an agent 

signature tree TIΣ with a role R defined on the signature agents. 

Proposition 6.1 A description algebra morphism on free 

signature tree ℘(TIΣ)such that roles are preserved on TIΣ 

algebra is definable by algebraic extension on an agent 

signature algebra TIΣ. 

Let us present the agent competitive instance for an algebraic 

description model platform.   

Definition 6.2 Let A and B be description algebras with 

intelligent signature IΣ containing agents. An IΣ-ontology 

description is an IΣ description algebra with a prescribed role 

R: X → ℘(IΣ) for the agents and functions on the IΣ signature.  

Remark: X ⊆ IΣ , so for a set monad, there is an assignment for 

all IΣ well-formed trees. Example well-formed agent trees were 

presented in the first auhtors publications around 2007 on ISL 

algebras with 1-1 signature trees. 

Theorem 6.1 Let A and B be IΣ description algebras with the 

signature IΣ . Then the agent homomorphisms defined from A 

to B preserve IΣ -ontology iff defined by a description algebra 

homorphisms by algebraic extension on free signature tree 

℘TIΣ such that roles are preserved on TIΣ. 

Proof Theorems 5.1, 5.2, and Proposition 6.1. 

Theorem 6.2 Let A and B be IΣ -description algebras with the 

signature IΣ containing KD agents. The AII with KD 

morphisms preserve IΣ-description ontoltogy algerbas iff 

defined by KD-Description ontology homorphisms. 

Proof Similar to 6.1. DKB mappings are specific ATL's were 

the ontology algebra operations are the same at source and 

target. We can prove based on the above that DKB mappings 

are DKB preservation consistent.  

VII. CONCLUDINGCOMMENTS 

A sound computing basis for ontology structures descriptions, 

and preservation theorems are accomplished with ontology 

preserving functions and morphisms that are applied to 

transform learning across domains. Competitive learing 

models based on a novel multi-agent have increasing 

important applications ranging from structural learning to 

predictive data analytics based on goal plans. Roles and 

description are developed with new algebraic models with 

newer applications to concept description ontology algebras 

and description ontology preservation. The areas are a basis to 

future reseach on ontology structures with a comprehensive 

mathematical basis.  Newer areas to explore are ATL principle 

for mutual robot learning based on ontology preservation 

morphisms. 
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