
Predicting Unpredictable:

Building Models Handling Non-IID Data,

A Hearthstone Case Study

Dominik Deja

Polish-Japanese Academy of Information Technology

Warsaw, Poland

dominik.deja@pjwstk.edu.pl

Abstract—The following article is created as a result of the
AAIA’17 Data Mining Challenge: Helping AI to Play Hearthstone.
The Challenge goal was to correctly predict which bot would
win a bot-vs-bot Hearthstone match based on what was known
at the given time. Hearthstone is an online two-players card
game with imperfect information (unlike chess and go, and like
poker), where the goal of one player is to defeat their opponent
by decreasing their ”life points” to zero (while not allowing the
opponent to do the same to oneself). Two main challenges were
present: the transformation of hierarchically structured data
into a two-dimensional matrix, and dealing with Non-IID data
(certain cards were present only in test data). A way of how to
successfully cope with those complications while using state-of-
the-art machine learning algorithms (e.g. Microsoft’s LightGBM)
is presented.

I. INTRODUCTION

A. Hearthstone

DEVELOPED and published by Blizzard Entertainment,

Hearthstone (initially Heartstone: Heroes of Warcraft) is

a free-to-play turn-based online collectible card video game.

It was released on March 11, 2014, and it is available for

Windows, Mac, iPad, Android and Windows 8 tablets, as well

as iOS and Android mobile phones1.

Player’s HP
Hero Power

Hero Power
Opponent’s HPOpponent’s

Minions

Player’s
Minions

Player’s Cards

Opponent’s 
Cards

Fig. 1. Screenshot from an actual game

The game is a turn-based card game between two players

(naming convention: ”player”, ”opponent” will be used in this

article), using constructed decks of thirty cards along with

a selected hero. Each hero posseses a unique power which

allows them to either draw a card, summon a minion, heal or

1http://us.battle.net/hearthstone/en/

deal damage. Furthermore, usable cards differ for each hero.

For example, Mage class offers more spells, while Paladin

has access to stronger minions. Players use their limited mana

crystals (indicated by a hexagon, at the bottom right for the

player in Figure 1, and top right counter for the opponent)

to cast spells or summon minions to attack the opponent,

with the goal to reduce the opponent’s health to zero. Each

spell has a unique effect such as: dealing damage to one or

more minions, dealing damage to champion(s), changing the

statistics of minions or champions, etc. Each minion can deal

a certain amount of damage (indicated at the bottom left of its

card), has a certain amount of hp (indicated at the bottom right

of its card), posseses additional features (such as ”windfury”

enabling it to attack twice per turn, ”charge” enabling it to

attack the same turn it was cast, or ”taunt” which makes a

minion a priority target for the enemy’s attacks), and can cast

additional effects depending on other circumstances.

While the mechanics of the game is rather simple, a high

number of available cards (by 2017, there are over 10002), a

wide range of possible, often unique traits possessed by each

minion, and imperfect information (the player does not see the

opponent’s cards, decks are randomly shuffled, and random

effects are common) increase the complexity of the game3.

This complexity makes it a perfect case study for AI experts

to try out new methods and approaches.

B. Contest

The AAIA’17 Data Mining Challenge: Helping AI to Play

Hearthstone was a data mining competition organized by

Silver Bullet Solutions and the Polish Information Processing

Society (PTI) within the framework of the International Sym-

posium Advances in Artificial Intelligence and Applications4.

The goal was to predict a binary outcome (win/lose) of

bot-versus-bot Heartstone matches. The cost function used for

evaluating the participants predictions was AUC (Area Under

Curve). There was a two-step score evaluation. First, AUC

scores based on a fixed 5% of test data were provided for

each contestant’s set of predictions. Then, after the contestants

2http://hearthstone.gamepedia.com/Card
3https://en.wikipedia.org/wiki/Hearthstone (video game)
4https://fedcsis.org/2017/aaia

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 127–130

DOI: 10.15439/2017F563

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 127



shared their reports, a final leaderboard (based on the whole

test set) was provided.

For data preprocessing, the author used Python 2.7 (IPython

Notebooks). For the rest of this work R version 3.3.3 (RStudio)

was used. The author used Windows 8.1 Pro, Intel i7-4710MQ

2.50 GHz (4 cores), 32GB RAM, NVIDIA GeForce GTX

870M.

II. DATA PROCESSING

Data for this contest was generated by Peter Shih’s Hearth-

stone simulator5. From each match, random snapshots were

taken, aggregated, and saved as JSON files. The creators

provided two datasets a training dataset and test one(2000000

and 750000 snapshots respectively) formatted as multiple

JSON files.

For each game, short overall statistics, player and opponent

statistics, statistics on cards played (by both player and oppo-

nent) and cards at hand (only for player) were provided. For

the training set, 90 unique cards (78 at hand, and 42 played),

and 12853295 cards in total (8996725 at hand, and 3856570

played) were used. Cards at hand are the ones owned by the

player which they can cast (in case of spells), or summon (in

case of minions). Cards played are minions summoned and

still living. Interestingly, there are 38 new unique cards in the

test set (38 at hand and 22 played). In total, 642985 (417607 at

hand, and 225378 played) out of 5500047 (3264847 at hand,

and 1592215 played) cards in the test sets are new. This mean,

that 11.69% of cards present in test set are new, and they are

present (to various extents) in 415793 out of 750000 games

(55.44%) played using the test set.

The fact that over 55% of observations from the test set

contained new cards dismantled the assumption of identical

distributions of data and played an important role in data

processing and modeling.

A. From Attribute-Value to Matrix Format and Feature Engi-

neering

In order to construct a two-dimensional matrix, where each

row is a snapshot and each column is a different feature,

JSONs were processed one by one.

First, all the statistics on each game and participant were

extracted (final outcome, turn, participant’s hero type, hp left,

armor, crystals left, crystals in total, #cards at hand, #cards

played, etc). This produced 26 columns.

Then, the counts of the players cards at hand were saved

in separate columns (one for each card type). For the cards

played, as they consist of minions only, the sums of their

hp were saved in unique columns (per minion type and

player/opponent). The rationale behind it is that the minion’s

health can be changed by both participants during a match and

it highly impacts how much influence a minion will have on

the outcome of a game. This produced 162 columns.

In order to overcome the fact that new, unseen cards were

present in the test set, features based on aggregates were

5https://github.com/peter1591/hearthstone-ai

added. They included respectively for each participant’s min-

ions overall hp and attack situation: max, min, sum, product,

mean, median, and counts for the minions special characteris-

tics, such as ”charge”, ”taunt”, or ”freeze”, additional features

such as ”max damage doable to an enemy in this turn” amongst

them. Because a player usually has more minions that can

be summoned than they can afford to summon, a knapsack

problem was solved in order to find an optimal configuration

of minions to summon in order to maximize damage done to an

enemy champion (the ”taunt” trait was taken into an account

in its simplified form - instead of solving an optimization

problem of finding the best way on how to attack minions

and then the hero, the ”taunt” minions hp was subtracted from

the maximum damage doable to an enemy in the same turn).

Unsurprisingly, this feature came out to be one of the strongest

predictors (all models agreed on this) of the final outcome.

Yet, it wasn’t sufficient to simply check whether a player can

decrease an opponent hp to values equal to or less than zero

(in the same turn), as the relation between the game status

and the outcome turned out to be more complex (or bots are

not as smart as we would like them to be). This produced 42

columns.

Depending on a run, the cards from the test set which were

non-present in a training set, where either mapped to their

closest neighbour (using Euclidean distance on their crystal

cost, hp, and attack for hand, as well as current hp and current

attack for played card), or were omitted. Additionally, a couple

of diffs were provided (player hp - opponent hp, maximum

potential damage to enemy - enemy hp, and so on).

B. Final preparation

Since constructing this many features results in introduc-

ing collinearity into data, additional measures were taken to

minimize the negative consequences of feature engineering.

Thus, constant features, highly correlated ones (> 0.95),

and those which could be presented as a linear combination

of others were deleted. This resulted in 241+1 final variables

used for training models. Finally, the data was scaled in order

to improve the efficiency of algorithms (especially logistic

regression with regularization).

JSONs
Data 

Processing

Test Set

Training 
Set

A

B

C

Random 
Split

Fig. 2. Final Model

In order to obtain reliable results and avoid overfitting,

training data was split into three parts (as shown on Figure 2):

• A : First layer data (1500000 observations)

128 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



• B : Second layer data (400000 observations)

• C : Internal test data (100000 observations)

Splitting it into three parts (instead of the usual training, and

validation set) helped to train a more complex, two-layered

model.

III. MODELING

Amid various methods of improving the overall efficiency

of modeling, such as obtaining good understanding of data

(via solid explanatory analysis done before applying actual

models), feature engineering, or adjusting models to directly

optimize cost function, one of the most common and important

is stacking. It is based on the observation that combining

predictions of several good, uncorrelated models will result

in an even stronger prediction [1].

A. Initial Two-Layered Model

Therefore, the first model used consisted of a number of

machine learning algorithms stacked in two layers. All models

are shortly described in Table I. The pipeline was as follows:

first, each of the algorithms from the first layer was trained on

part A of the training data and provided predictions for part

B and part C. Then, using first layer predictions for part B

as an input, the LightGBM model from the second layer was

trained and provided predictions for part C. Predictive power

was compared between each single algorithm, and the overall

model using part C.

Data

Random Forest

XGBoost

Extra Trees

LightGBM

Logistic Regression with 
variables selected via L1

LightGBM Predictions

First Layer Second Layer

Fig. 3. Typical Two Layered Stack Model

Since most of the algorithms used have a number of

parameters that need to be optimized, a Bayesian approach

was used to estimate them as proposed by Snoek, Larochelle,

and Adams [2]. In short, parameter tuning can be seen as

a Bayesian optimization problem, in which a model’s perfor-

mance is modelled as a sample from a Gaussian process. Since

the posterior distribution induced by the Gaussian process is

traceable, we can efficiently use information from past runs to

optimally choose new parameters worth trying.

As training a number of models tends to take a lot of time,

the author first checked for optimal ranges of parameters using

a small subset of part A of training data (from 10000 to

100000 observations), and then ran it on bigger chunks (up

to 1000000 observations). A Bayesian optimization package

in R as proposed by [2], usually takes less than 30 iterations

(in case of 5 or less parameters).

TABLE I
MODELS USED FOR STACKING

Algorithm Specification

Random
Forest

One of the best tree-based algorithms(using bagging)as
invented and implemented by Breiman [3]. Run two
times. The first time, it was trained on whole data, the
second time it was trained only on 100 top features
(their importance was asserted by the first model). This
allows to reduce noise and increase prediction power.
ntree = 1000. The number of features used in the second
forest can also be optimized.

XGBoost A still fairly new, tree-based algorithm (using boosting)
created by Tianqi Chen [4]. Basic parameters to be op-
timized: eta, colsample bytree, subsample, max depth,

min child weight.

Extra
Trees

Extremely Randomized Trees, as proposed by Geurts,
Ernst, and Wehenkel [5].

LightGBM One of the newest and strongest algorithms accessible
via R. Microsofts LightGBM as a part of their Dis-
tributed Machine Learning Toolkit6. Alike XGBoost it’s
a tree-based boosting algorithm with multiple parame-
ters to be optimized. Using bins instead of vectors, and
optimizing the code, LightGBM is one of the fastest
and strongest algorithms available.

Logistic
Regression
with
variables
selected
via L1

Logistic regression trained on variables selected by
logistic regression with L1 penalization.

B. Dealing with Non-IID Data

Since test data is Non-IDD, and over 55% of observations

contain new cards, the more optimized the parameters are, the

worse the score obtained on the test set is.

From a statistical learning theory point of view, it can be

shown as a bias-variance trade-off dilemma [1]. The more we

try to optimize our models, the more their complexity and

variance will increase, and thus, their sensitivity to any shifts

in data distribution. By finding the right set of parameters, one

may decrease the bias and improve the models effectiveness,

but it is always done at the price of the models stability.

Tables II, and III show this phenomenon using Light-

GBM algorithm trained on 1000000 observations from part

A (learning rate = 1). As the number of leaves increases, the

model becomes more complicated. As the number of minimal

observations required in each leaf increases, the model is

pushed to be simpler. Here, as it is shown only for illustrative

purposes, data used for obtaining scores comes from part B,

and C (for iid data), and from the test set (for non-iid data).

TABLE II
AUC FOR IID DATA

#
L

ea
v
es

10000 0.9073 0.8594 0.9395
1000 0.8624 0.8119 0.8883 0.9414

100 0.8231 0.8100 0.8434 0.9181† 0.8915†

10 0.8044 0.8001 0.8146 0.8483† 0.8331†

1 10 100 1000 10000
Min #Observations in Leaf

†Algorithm didn’t converge in 3000 iterations and could be further trained.

Two main things are interesting here. The first one is that

DOMINIK DEJA: PREDICTING UNPREDICTABLE BUILDING MODELS HANDLING NON-IID DATA HEARTHSTONE CASE STUDY 129



parameter optimization is a non-convex problem. While a

model with 10000 leaves is over 0.9 AUC for both, 1 and

100 minimal observations in a leaf, for 10 it drops to 0.86

AUC.

The second one is that the more optimized the model is,

the more sensitive it becomes, and that different parameters

indicate a different ”threat” to the stability of the model. While

a minimal number of observations in leaf seems not to be

strongly linked a to model’s sensitivity, the number of leaves

plays a major role in making a model fine-tuned.

TABLE III
AUC FOR NON-IID DATA

#
L

ea
v
es

10000 0.7261 0.709 0.7537
1000 0.7016 0.7293 0.7262 0.7439

100 0.7347 0.7471 0.7361 0.7354† 0.7401†

10 0.7754 0.7807 0.7667 0.7482† 0.7631†

1 10 100 1000 10000
Min #Observations in Leaf

†Algorithm didn’t converge in 3000 iterations and could be further trained.

C. Final Conditional Model

This knowledge was used to build a final model. In fact,

two models were built, and depending on whether new cards

were present in any given snapshot, the adequate model was

used. For snapshots where IID seemed to hold (no new cards

present), a fine-tuned stacked model was used for predicting.

For observations where data was non-IID, a conservative

model was run to provide predictions.

Data

Random Forest

XGBoost

Extra Trees

LightGBM

Logistic Regression with 
variables selected via L1

LightGBM Predictions

Random Forest

XGBoost

Extra Trees

LightGBM

Logistic Regression with 
variables selected via L1

LightGBM Predictions

Are 
there 
new 

cards?

Merged 
Predictions

No

Yes

Conservative model

Fine-tuned model

Fig. 4. Final Model

The internal test set obtained 0.967 AUC. The test set

managed to obtain a stable 0.795 AUC score (the best solution

obtained was 0.802 AUC).

D. Additional Possibilities

Thankfully, each data science contest has a deadline. With-

out one, there would be always a new hypothesis to test. Here

as well, a number of things can be tried:

• Instead of using minion hp only, doubling (or tripling)

the number of columns to add information on attack and

count

• Using deep neural networks

• Adding information on what cards an opponent probably

has at hand

• Adding more features based on player/opponent possible

decisions

• Checking the lot’s logic - why some games where a player

can win in one turn are not won

• Further optimization of the models’ parameters

• Defining and constructing a card space where each card

has its representation so that one does not have to rely

on actual cards

IV. CONCLUSION

Even five years ago, many scientists predicted that we are

still a decade from constructing an AI capable of winning a

Go game with an average professional. Yet, in March 2016

AlphaGo, an AI developed by Google DeepMind beat Lee

Sedol, one of the best players worldwide, 4:1 [6].

Since then, and due to the renaissance of deep neural

networks, AI research got a second breath. Currently, the

effort is to create a bot capable of playing more human-like

games (usually in real time) with imperfect information (at

the time of this article being published, games like Doom [7]

are probably already conquered, therefore Starcraft would be

a good example of AI researchers’ next target).

As part of this ongoing effort, this article helps to sort

out what the most practical approach is to structuring non-

relational data into a form usable for machine learning, and

how to cope with non-IID data (or when a shift in feature

distributions is expected to happen).

REFERENCES

[1] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical

learning. Springer series in statistics Springer, Berlin, 2001, vol. 1.
[2] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-

tion of machine learning algorithms,” in Advances in neural information

processing systems, 2012, pp. 2951–2959.
[3] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,

2001.
[4] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”

in Proceedings of the 22Nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2016, pp. 785–794.
[5] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”

Machine learning, vol. 63, no. 1, pp. 3–42, 2006.
[6] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van

Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[7] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforce-
ment learning,” arXiv preprint arXiv:1609.05521, 2016.

130 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


