
Use of Domain Knowledge and Feature Engineering

in Helping AI to Play Hearthstone

Przemysław Przybyszewski, Szymon Dziewia̧tkowski, Sebastian Jaszczur, Mateusz Śmiech, Marcin Szczuka

Faculty of Mathematics, Informatics and Mechanics, The University of Warsaw

Banacha 2, 02-097 Warsaw, Poland

Email: {pp332493,sd359113,sj359674,ms361208}@students.mimuw.edu.pl, szczuka@mimuw.edu.pl

Abstract—This paper describes two approaches to the AAIA’17
Data Mining Challenge. Both approaches are making extensive
use of domain/background knowledge about the game to build
better representation of classification problem by engineering
new features. With newly constructed attributes both approaches
resort to Artificial Neural Networks (ANN) to construct classifica-
tion model. The resulting solutions are effective and meaningful.

I. INTRODUCTION

The past three years saw an increased interest in online

collectible card games. One of the most popular games of

this type is Hearthstoner created by Blizzard Entertainment

[1]. Because of its popularity and simplicity the game has

gained attention in the streaming and e-sport community.

Although the most popular game modes involve competition

between two human players, it’s possible to play against AI.

Unfortunately, the AI is no match for a skilled player. Hence

the question of improving computer players arose. In order

to achieve the best results, players have to be able to judge

possible outcomes, predict consequences of their actions, take

into account random factors (after all, it’s a card game and

the randomness is embedded into its core), and much more.

The decisions can be reduced to classifying possible plays

or game states as good or bad and these predictions may then

guide the player to choose the best possible play. In connection

with the International Symposium on Advances in Artificial

Intelligence and Applications (AAIA’17) a competition was

organised with use of KnowledgePit platform [2]. The goal of

this competition – called AAIA’17 Data Mining Challenge –

was to estimate the state of the game and decide which player

has a higher chance of winning.

Hearthstone is a turn based card game where the goal is

to reduce opponent hero’s health to zero. Players may play

spells, which have an instant effect or minions that remain

on the battlefield. Cards are played from hand and a new

card is drawn from deck at the beginning of each turn. The

deck consists of 30 cards (see Figure I) and each card may

be present in at most two copies. Hand size is limited to 10

and board size (number of minions present at any point) is

limited to 7 for each player. The enemy hero may be damaged

using minions and some spells. Minions have certain attack

and health. All cards have cost which is paid in mana crystals.

At the beginning of each turn the current player refreshes all

their previous mana crystals (thus regaining mana they spend

in the previous turn) and gets a new one with the upper limit

of 10 mana crystals per player.

The input data represented various states from a large collec-

tion of games played between AI players. Game states consist

of both players’ health, armour, spell damage bonus, remaining

deck size, number of mana crystals, hero class and a brief

description of each card on hand (current player only) and on

the battlefield (both players). This description contained card’s

name, cost, and its attack, health, and some special traits, if

applicable. Because some card effects weren’t described, we

had to resort to card databases and our knowledge of the game

to ensure that all aspects are covered.

The overall goal in the competition was to predict which

of two players has a higher chance of winning in the given

state of the game. The problem was an example of a binary

classification. Solutions were compared by measuring the Area

Under Curve (AUC) for the Receiver Operating Characteristic

(ROC) curve [3]. This metric allows for interpretation of

classification model results in terms of trade-off between true

positive and false positive rates. The metric was chosen so that

false positives would be eliminated as they have a potentially

disastrous effect on the outcome - incorrectly classifying a bad

play as a good one may result in choosing that play and losing

in the final outcome.

This article describes some of the features used by the

authors in their submissions to the competition. Two different

approaches are outlined - one employed by team consisting

of Szymon Dziewia̧tkowski, Sebastian Jaszczur, and Mateusz

Śmiech (team “jaszczur”) and the other created by Przemysław

Przybyszewski (team “pp332493”). Both teams independently

developed interesting features and the end product - the classi-

fier - was somewhat alike in both cases as it was based on an

Artificial Neural Network (ANN). The similarities may be seen

in utilisation of domain knowledge to estimate card value (or

usefulness) to allow for more precise classification. The final

score for team “jaszczur” was AUC of 0.7930 which placed

them 35th place and AUC of 0.7950 for team “pp332493”

which came 18th.

This paper describes solutions developed by both teams.

First, the data processing and feature engineering on which

both teams put a particular emphasis in their work is described

(Section II). Then there is a description of models used in final

solutions along with other tested approaches (Section III)and

the most interesting findings and conclusions (Section IV).

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 143–148

DOI: 10.15439/2017F567

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 143



Fig. 1. Three examples of Hearthstoner cards. Left to right: Acidic Swamp Ooze, Flamestrike and Core Hound. The information contained in each card:
Acidic Swamp Ooze - the lower left corner contains Attack (3) and the lower right corner contains Health (2). Presence of these two traits indicate that it’s
a minion. The 2 in the blue hexagon in the upper left corner indicates mana cost of the card. The Battlecry is an effect that takes place immediately before
the minions enters the battlefield after being played from hand.
Flamestrike - lack of Attack and Health indicate that it’s a spell. Its devastating effect takes place immediately after casting it. The blue edge indicates that
it’s a class card, available only to Mages, as opposed to grey-bordered cards which are neutral and available to all classes.
Core Hound – 7 mana, 9 Attack, 5 Health minion that is additionally a Beast – a minion subtype. Cards belonging to the same subtype usually synergise
well with each other.
Hearthstoner card designs are property of Blizzard Entertainment.

II. FEATURE ENGINEERING

The contestants were given two distinct forms of data.

The first and more basic one was raw data in JSON format,

where an entry was a single game state of a particular game.

The organisers processed and aggregated this data in tabular

Comma Separated Value (CSV) format. The CSV set consisted

of 45 attributes, which are shown in the Table I below (their

names are rather self-explanatory).

The training dataset contained 3,150,000 labeled samples.

Organisers also provided 750,000 unlabeled samples, of which

5% was used for validation visible to participants during

the competition and the remaining 95% was used for final

evaluation

Although the CSV dataset contained several useful at-

tributes, the JSON format proved to be much more informative,

a quality that was exploited by both teams in their solutions.

When connected with domain knowledge, that raw data was

especially helpful in gaining an advantage in the competition.

The following subsections show the two approaches to

construction of new, meaningful features as applied by the

respective teams.

A. Approach of the team “jaszczur”

The majority of work was devoted to the feature engineering

based on raw JSON data. The aim was to use those features

later on in an Artificial Neural Network (ANN), therefore only

numeric features were investigated. From the input data 796

input columns were extracted, corresponding to 29 different

features. A single column represents a single value of a feature.

The major limitation of this approach is the number of

columns which had to be constant for every sample. Unfor-

tunately, this doesn’t reflect the structure of game states, as

those can have a variable number of cards on the table or

in hand. To take care of that a maximal possible number of

columns per feature was introduced. For example there were

14 columns created for a feature describing minions’ attack

on the battlefield, as there is an in-game limit of 14 minions

on the table, 7 for each player.

Some values were undefined. This happened mostly in cases

when a feature was applied to multiple cards (e.g. attack of

each minion on the battlefield). In such cases an additional

column was added for every possible undefined column. This

new column took binary values and represented whether the

corresponding value was defined. All undefined values were

then replaced with zeroes.

There are cases with multiple possible options with no

obvious numeric interpretation, like Hero Class. In such cases

an adequate number of binary features was defined, e.g., 18

columns for Hero Classes, one for each player/class pair, with

two corresponding features set as 1.

Tiers and values: One of Hearthstone’s game modes is

Arena. It differs from Constructed mode profoundly, mostly in

terms of strategies and decks that yield best possible outcomes.

These two modes share the card set, of which Standard (cards

144 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



TABLE I
ATTRIBUTE NAMES IN THE TABULAR PART OF DATA SETS.

gamestate_id decision turn opponent.armor opponent.attack
opponent.hero_card_id opponent.weapon_durability opponent.special_skill_used opponent.hp opponent.crystals_all
opponent.crystals_current opponent.deck_count opponent.fatigue_damage opponent.hand_count player.crystals_all
player.armor player.attack player.hero_card_id player.hp player.special_skill_used
player.weapon_durability opponent.played_minions_count player.crystals_current player.deck_count player.fatigue_damage
player.hand_count player.played_minions_count opponent.played.nOfCards opponent.played.attack player.hand.nOfPlayable
opponent.played.hp_current opponent.played.hp_max player.played.nOfCards player.played.attack player.played.crystals_cost
player.played.hp_current player.played.hp_max player.hand.nOfMinions player.hand.nOfSpells player.hand.nOfWeapons
player.hand.nOfCards opponent.played.crystals_cost player.hand.attack player.hand.crystals_cost player.hand.hp

used in the competition) is a small (ca. 16%) subset. In Arena

instead of creating the deck from all available cards, players

draft cards, i.e., the system chooses three random cards, of

which the player selects one that will be added to the final

deck. This process is repeated 30 times, resulting in the same

deck size as in Constructed. Because of this deck-making

scheme, Arena is generally considered less synergy-oriented

and more value-oriented than Constructed.

Although this is very situation-specific, some cards are gen-

erally considered superior (see Figure I). There are numerous

tools that help players gauge the value of cards in Arena,

one of which is Lightforge [4]. The fundamental differences

between Arena and Constructed wane in the light of AI’s weak

style of play. Having analysed Lightforge’s tier juxtaposition,

it was decided to utilise it as it is - without adapting it to

Constructed.

Lightforge divides the cards into the following tiers: Great,

Good, Above Average, Average, Below Average, Bad, and

Terrible. They are referred to as tier categories. Furthermore,

it also assigns numerical values to cards so that they can be

compared within tiers. They are referred to as tier values.

Fore example, for the cards presented in Figure I:

• Acidic Swamp Ooze – tier Good. Base stats are standard

for its cost but on entering the battlefield it irrevocably

destroys the opponent’s weapon which costs anywhere

from 1 to 5 mana.

• Flamestrike – tier Great. It is a costly spell available

only for Mages. Serves as an Area of Effect (AoE) card

capable of clearing the board. If used properly it is very

likely to turn the tide for the player who uses it.

• Core Hound – tier Bad. Despite the high Attack, this

minion’s value is considerably low because of its minute

Health.

Description of attributes used by “jaszczur”: The 29 con-

structed attributes were put on the list and ordered with respect

to accuracy achieved by Logistic Regression that learned only

on that attribute on 750,000 samples with test to validation

ratio of 80:20. All features except those annotated with an

asterisk (*) were computed for both players. The annotated

ones were created only for the current player because of

the limited information available (i.e. we don’t know the

opponent’s hand). There is also a brief explanation of choosing

specific features based on authors’ Hearthstone experience.

The final list of constructed attributes is as follows:

1) 0.6569 - Number of cards on the battlefield that with

certain cost. Basic set consists of cards of cost between

0 and 8 and 10 (there aren’t any cards costing 9 or more

than 10). Usually the higher the cost, the better and more

impactful the card is, and the more substantial threat it

poses.

2) 0.6558 - Battlefield state - a single column for every

possible card (133 uncollectible and 17 collectible)

containing number of copies of this minion on the

battlefield. Some cards, like Stormwind Champion or

Healing Totem have an additional effect that was not

included in the short description the input data provided

but have a veritable influence on the game. It was tried to

create features tailored to single cards (e.g., Stormwind

Champion has greater impact if the board consists of

more minions), but initial results were disappointing -

the accuracy of 5 of those features combined together

was negligibly higher than random guessing.

3) 0.6558 - Sum of costs of all minions on the battlefield.

4) 0.6512 - Sum of attack of all minions on the battlefield.

5) 0.6508 - Attack of every single minion on the battlefield,

along with information whether or not it is present.

6) 0.6453 - Tier value of each card on the battlefield.

7) 0.6432 - Tier category of each card on the battlefield.

8) 0.6403 - Number of minions present on the battlefield.

9) 0.6396 - Health of each minion on the battlefield.

Because minions with 0 health die instantly, there was

no need to create additional columns to indicate their

presence or absence.

10) 0.6307 - Sum and average number of received damage

of all minions on the battlefield.

11) 0.6227 - Health points of heroes with added armour.

12) 0.6193 - Health points of heroes after using hero power.

13) 0.6153* - Tier category of each card on hand.

14) 0.5828 - Number of cards in deck, on hand and on

the battlefield. For prolonged games this number often

represents the advantage a player has. Generally, forcing

the opponent to trade multiple cards for your one card

gives you an advantage later on. This feature quantifies

this advantage in a simple manner but only in the context

of opponent’s total number of cards.

15) 0.5385 - Number of special traits (Windfury, Taunt,

Divine Shield etc.) that minions on the battlefield have.

These traits help guard the hero and valuable minions

PRZEMYSŁAW PRZYBYSZEWSKI ET AL.: USE OF DOMAIN KNOWLEDGE AND FEATURE ENGINEERING IN HELPING AI TO PLAY HEARTHSTONE 145



(Taunt), make favourable trades (Divine Shield) or put

more pressure on the enemy hero (Windfury). Aggre-

gating them yielded better results because of their rarity

- it’s uncommon for multiple Divine Shield minions to

be present on the board at the same time whereas any

two traits are much more likely to occur.

16) 0.5359* - Hand state - a single column for every possible

card containing number of copies of this card on hand.

It is similar to board state but also includes spells.

Some Area of Effect spells (Holy Nova, Flamestrike,

Consecration) or so-called hard removal spells may turn

the tide for the casting player.

17) 0.5252* - Number of cards costing X on hand, for every

possible value of X existing in the data.

18) 0.5251 - Number of cards on hand.

19) 0.5207* - Tier value of each card on hand.

20) 0.5124* - Sum of costs of all cards on hand.

21) 0.5094* - Sum of damage from spells that can affect

the enemy hero (Fireball, Holy Nova, Kill Command

etc.) and bonus spell damage (Dalaran Mage, Kobold

Geomancer etc.).

22) 0.5066 - Fatigue damage.

23) 0.5062 - Number of special traits minions on hand have

- Charge and Battlecry in addition to those considered

by similar feature regarding the battlefield.

24) 0.5062* - The approximate number of possible plays in

the current turn, depending on cost of all cards, available

mana crystals and number of possible targets. Usually

the more choices a player has, the more likely there is

a good (or even an outstanding) one.

25) 0.5049 - Attack and durability of the currently equipped

weapon.

26) 0.5017 - Hero class (Mage, Warlock, Shaman etc.).

The remaining three (out of 29) constructed attributes were

irrelevant and therefore omitted. Logistic regression ran on

the features mentioned above gave a result of 0.7830 AUC.

B. Approach of the team “pp332493”

The majority of work of “pp332493” was also spent on

the feature engineering part. Apart from the data provided

by competition organisers external data from the website

HearthPwn [5] was also used. On this website a ranking of

decks can be found. Each entry in this ranking consists of deck

name, deck type, mana, class, rating, viewcount, comments,

and cost. The higher the evaluation score for a deck the higher

its chance to win. By knowing the deck name, one could

find all the cards it consists of and their respective attributes.

Of the deck-related information gained this way only part of

the card features, such as mana cost and deck rating, were

actually utilised. They were used to generate the ’average

card strength’ attribute. Only records having rating higher or

equal than 60 were taken into account. This value was chosen

because decks with this rating were among the 0.5% best decks

ever evaluated on this site. As there is no full information

about the whole deck of the player and the opponent the

approach was to estimate the value of ’strength’ attribute for

each minion. These estimates were further summed up in order

to get the average strength of the player’s and the opponent’s

played cards as well as the player’s hand. Computing the

’strength’ attribute for a single minion card was conducted

in the following manner:

1) Iterate over all decks and retrieve all minions that were

present in those decks.

2) Iterate over all minions. For each minion create tem-

porary variables ’power_sum’ and ’power_count’ and

iterate over all decks. If this minion is in the given deck,

then compute its share in a given deck. This share can

be represented by the ratio of crystal cost of the minion

to the sum of crystals costs of all cards multiplied by the

number of appearances of this minion in the deck. Then

add the number of occurrences of this minion in the

deck to ’power_count’ variable and its percentage share

multiplied by the deck evaluation to the ’power_sum’

variable.

3) The power of a single minion is computed by dividing

’power_sum’ by ’power_count’.

4) In cases of minions in the training data set, that were

not found on the ranking page [5], the median of all

computed strengths was taken instead.

Other features that were used in the classification were

derived from the data provided for the competition (both

tabular and JSON).

Description of attributes used by “pp332493”: Both pro-

vided datasets were used to generate the training data for

chosen models. In the feature selection phase attributes first

the identifiers that carry no specific information were re-

moved. Those are: ’gamestate_id’, ’opponent.hero_card_id’,

’player.hero_card_id’. The rest of the variables, apart from the

decision, is used to create the training data set, as all of them

seem to have an influence on the decision value. In the end 41

variables are chosen from this the original 45 in tabular part

of data (see Table I).

After checking the part of the data in the JSON format

it was noticed, that there are some influential variables that

are not present in the tabular data. Those are the special

features of a single minion card, such as: Taunt, Charge,

Stealth, Freezing, Shield, Poisonous, and Windfury. Sum of

each special ability for player’s hand and cards played by both

player and the opponent are also added to the training data.

Additionally, a dedicated variable called ’special’ was created.

’special’ is derived as a sum of all aggregated special traits.

Value of this attribute can be understood as an expression of

interaction between the features. Moreover, pair of attributes

called ’able_to_perform’ are generated for both the player and

the opponent. Those are binary variables indicating whether a

player (or opponent) is able to perform at least one move using

the cards that are already on the table. The aforementioned

’average strength’ attribute is added to training sample for

player’s hand and cards played by both adversaries. Features

taken both directly from the original data and engineered make

the final data set that contains 70 attributes.

146 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



III. CLASSIFICATION MODELS

Both teams experimented with various classification models

and at the end selected the one giving the best results on their

engineered attributes. Chosen models are described below,

followed by a brief description of alternative approaches that

were investigated for the purpose.

A. Final model of the team “jaszczur”

The best model for constructed attributes turned out to be

an Artificial Neural Network [6]. It had 796 inputs nodes, all

of which were corresponding to numeric variables that were

normalised to have mean of zero and standard deviation of 1.

The network consisted of four fully-connected, hidden layers

- with 100 neurons in the first and 50 neurons in each of the

subsequent hidden layers. The output layer had a single neuron

with sigmoid activation.

Neurons in hidden layers used Rectified Linear Unit(ReLU)

[7] as the activation function. There was also batch normal-

isation (see [8]) between each pair of adjacent layers. The

overall network error (loss) was calculated as cross-entropy,

with batch size of 100 and Adam optimiser [9].

Contestants were provided with 3,150,000 labelled samples,

but some of those were from the same games (but different

turns). Unfortunately, there was no information about which

samples were coming from which game. Because of this, after

splitting labelled data randomly into training and validation

set, the samples from the same game could go into both sets,

what caused the model to recognise specific games instead

of general patterns. Because test data was extracted from

a completely different set of games, model’s result on the

validation data turned out to be a really bad predictor of

result on test data. The authors were unable to mitigate this

problem with training/validation split, so it was decided to

use each labelled sample in training only once (that is, there

was a single training epoch) to prevent overfitting (recognising

specific games). This approach also yielded the best result on

5% of test data available during competition.

Neither L1 nor L2 regularisation yielded better results. That

is probably because each sample was shown only once and

because batch normalisation already regularises the network.

The model was implemented in Python/Keras [10] with

TensorFlow backend [11]. First prototypes and some of data

processing were done using scikit-learn module [12].

Training this model took about 20-30 min. to train, out of

which at least 15 were devoted to loading the data. It was

run on GPUs and total RAM used was about 40GB. The final

score for neural network based on constructed attributes (see

Subsection II-A) on the test set was AUC of 0.7930 which

placed this solution on 35th position.

B. Final model of the team “pp332493”

The chosen model belongs to the class of ensemble-based

classifiers, which is a soft voting classifier consisting of three

other classifiers. First of them is logistic regression with the

default value for the inverse of the regularisation strength.

Second one is an ANN with ReLU activation function and

three hidden layers with 25,15, and 5 neurons, respectively.

Last but not least is an ANN with logistic activation func-

tion and three hidden layers arranged as previously (25,15,5

neurons). Both ANN models used the Adam optimiser, the

L2 regularisation term 0.0001, and the initial learning rate

of 0.001. The attempt to run an exhaustive search over a

range of possible values for the regularisation terms for those

three models was made but finally abandoned due to excessive

computational cost. Additionally, to better suit ANN training,

the data was normalised by removing the mean and scaling to

unit variance which is recommended as a measure to better fit

the network model.

The model selection was based on the principle of getting

the AUC score as high as possible at the same time minimising

its standard deviation. The estimation of the score were derived

using the 10-fold cross-validation on the training data set.

The score for the finally chosen model was AUC of 0.79652

with deviation of 0.01283. The final model was trained on

the training data set, which consisted of two million obser-

vations. Predictions made on the test set, which consisted of

750,000 observations, allowed to achieve the AUC score of

0.79508952, which is a bit below the validation result. The

discrepancy between validation and actual testing result may

suggest that the chosen model was also a bit overfitted.

Model construction and data processing were done in

Python using the scikit-learn module [12]. Training of this

model took up to 30 min., two-thirds of which was spent on

loading the data. It was run on the quad-core CPU and total

RAM used was about 16GB. The final score for this classifier

based on constructed attributes (see Subsection II-B) on the

test set was AUC of 0.7950 which placed this solution on 18th

position.

C. Other classification models tested

Both teams have tested several classification algorithms

before arriving at the final solution presented above. The

alternative classifiers checked were mostly drawn from the tool

box of the scikit-learn [12] library for Python and associated

tools.

Team “jaszczur” has tried to use scikit-learn methods such

as: K Nearest Neighbours (k-NN), Support Vector Machines

(SVM), Decision Trees, Random Forest, and Extra Trees.

Unfortunately, k-NN and SVM models could not compare with

ANN and tree-based classifiers in this case.

The majority of testing was related to scikit-learn’s meth-

ods RandomForestClassifier and ExtraTreesClassifier. Both of

them resulted in overfitting in addition to excessive memory

(RAM) consumption. The best Random Forest solution trained

on 1,500,000 examples with maximal tree depth of 23 con-

sisted of 20 trees and achieved AUC = 0.7589. Higher depths

show an increase in accuracy and AUC on our validation data,

but with a simultaneous decrease in AUC on organisers’ test

data. Members of the “jaszczur” team were unable to tweak

parameters of scikit-learn’s DecisionTreeRegressor to yield

result above 0.71 AUC.

PRZEMYSŁAW PRZYBYSZEWSKI ET AL.: USE OF DOMAIN KNOWLEDGE AND FEATURE ENGINEERING IN HELPING AI TO PLAY HEARTHSTONE 147



Alternative models that were investigated and tested by

“pp332493” team included Logistic Regression, AdaBoost,

Extra Trees, and Artificial Neural Networks with higher

number of hidden neurons in each layer than the finally

chosen one. Additionally, a Voting Classifier – which consisted

of a mixture of previously mentioned ones – was trained

and validated. Most of these alternative models were not

classifying the data well enough compared to the finally

chosen solution, often not reaching 0.79 for AUC in the cross-

validation phase. Only the ANN with more hidden neurons

yielded the value of AUC metrics nearing 0.8 on 10-fold cross-

validation. Unfortunately, checking this model on the provided

test set clearly demonstrated that it was significantly overfitted.

IV. INTERESTING FINDINGS AND CONCLUSIONS

Some results from the previous section (Section III) are non-

trivial and may indicate interesting aspects of the game. Below

are the most probable consequences and authors’ explanations

of the aforementioned results.

• Features derived from hand state have on average 0.12

less accuracy than their equivalents derived from battle-

field state. This is due to the fact that the cards that have

been played and are unaffected by summoning sickness

(inability to attack in turn they are played) have more

measurable impact on the game than cards that are yet to

be played because of mana limitations.

• It’s widely recognised that some classes have favourable,

neutral, and unfavourable matchups. For example Hunters

are more likely to lose to Priests and Warriors (due to

their healing ability) – unfavourable matchup, but more

likely to win with Warlocks (due to their utilising life as a

resource) – favourable matchup. Using just class options

for both heroes yielded 0.5017 accuracy – negligibly

more than random guessing. This shows that either Basic

set is well-balanced or that the AI didn’t utilise the class

they played to its full potential.

• Features revolving around card tier or value yielded

scored on average 0.01 worse than those based solely

on mana cost. Given that a lot of experienced players

agree that the tiers and values we employed are a good

estimate of card usefulness, this indicates that cost of

cards is well-balanced and reflects their strength.

• Minions’ attack is slightly more significant than their

health. Experienced Hearthstone players disagree with

this result. Health is a little bit more important as it

potentially allows for multiple trades and card advantage.

This result shows that the AI played too aggressively

and could probably be improved by making more trades

instead of prioritising damaging the enemy hero.

• Spells have considerably lower impact on game than

minions. There are two possible explanations for this

result. Although the total number of spells is similar to the

total number of minions, all spells are class-dependent.

Because there are nine classes, the number of spells to

choose from after a class has been selected is an order of

magnitude lower than the number of available minions.

Additionally the variance in usefulness of spells is higher,

resulting in very few good spells for each class. This, in

turn, affects their participation in deck (spell to minion

ratio) meaning high number of samples with features

corresponding to those spells set to zero (no such spell

drawn). Another explanation is that the provided AI didn’t

learn how to utilise these spells to their full potential.

Given the final assessment of models on test dataset it

can be said that they generalise quite well. The difference

between the cross-validated AUC score and that computed

on the test dataset was almost negligible. It is apparent that

feature engineering and domain knowledge played a major

role in the final outcome and that they greatly improved the

solutions. Although the differences were profound, the non-

obvious affinity led to similar conclusions and results. Leaving

implementation details aside, resorting to the opinion of the

game community which was shared between the teams led

to significantly better outcome and some interesting findings.

Thus, it appears mandatory for designers of AI in games,

Hearthstoner being just a good example, to factor-in the

knowledge accumulated by gamers’ communities.

REFERENCES

[1] “Hearthstone official game site,” http://us.battle.net/hearthstone/en/.
[2] A. Janusz, D. Ślȩzak, S. Stawicki, and M. Rosiak, “Knowledge Pit -

a data challenge platform,” in Proceedings of the 24th International

Workshop on Concurrency, Specification and Programming, Rzeszów,

Poland, September 28-30, 2015., ser. CEUR Workshop Proceedings,
vol. 1492. CEUR-WS.org, 2015, pp. 191–195. [Online]. Available:
https://knowledgepit.fedcsis.org/

[3] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Let-

ters, vol. 27, no. 8, pp. 861–874, 2006. doi: 10.1016/j.patrec.2005.10.010
[4] “LightForge – Hearthstone Arena tier list,” http://thelightforge.com/

TierList.
[5] “HearthPWN – Hearthstone database, deck builder, news, and more!”

http://www.hearthpwn.com/.
[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT

Press, 2016. [Online]. Available: http://www.deeplearningbook.org
[7] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature, vol.

521, no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539
[8] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

network training by reducing internal covariate shift,” in Proceedings

of the 32nd International Conference on Machine Learning, ICML

2015, Lille, France, 6-11 July 2015, ser. JMLR Workshop and
Conference Proceedings, vol. 37. JMLR.org, 2015, pp. 448–456.
[Online]. Available: http://jmlr.org/proceedings/papers/v37/ioffe15.html

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[10] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [Online].
Available: http://dl.acm.org/citation.cfm?id=2078195

148 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


