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Abstract—In this paper, we formulate an anchored alignment
distance between rooted labeled unordered trees as the minimum
cost of the anchored alignment whose anchoring is constructed
from the minimum cost isolated-subtree mapping by adding the
pairs of non-mapped leaves, and design the algorithm to compute

it. Since this algorithm runs in exponential time with respect
to the number of leaves in theoretical, we give experimental
results for randomly generated trees and for N-glycan data with
small degree as real data to evaluate the anchored alignment
distance by comparing with the isolated-subtree distance and
the alignment distance.

I. INTRODUCTION

C
OMPARING tree-structured data such as HTML and

XML data for web mining or DNA and glycan data for

bioinformatics is one of the important tasks for data mining.

The most famous distance measure between rooted labeled

unordered trees (trees, for short) is the edit distance [6],

[11], denoted by τTAI . The edit distance is formulated as the

minimum cost of edit operations, consisting of a substitution,

a deletion and an insertion, applied to transform from a tree

to another tree.

It is known that the edit distance is closely related to the

notion of a Tai mapping (mapping, for short) [11], which is

a one-to-one node correspondence between trees preserving

ancestor relations. Then, the minimum cost of possible Tai

mappings coincides with the edit distance [11]. However, it

is known that the problem of computing the edit distance be-

tween trees is MAX SNP-hard [18] even if they are binary [2].

An alignment distance, denoted by τALN , is an alternative

distance measure to compare trees [4]. The alignment distance

is formulated as the minimum cost of an alignment between

two trees obtained by first inserting nodes labeled with spaces

into two trees such that the resulting trees have the same

structure and then overlaying them. The alignment distance is

an edit distance such that every insertion proceeds to deletions

in operational.

Note first that, whereas the edit distance between strings

coincides with the alignment distance between them, the edit

distance between trees is different from the alignment distance
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between them in general (cf., [6]); The edit distance is smaller

than or equal to the alignment distance. The reason is to

exist trees not preserving both cycle-free and ancestor relations

when every deletion proceeds to insertions.

As another characterization of the alignment distance for

trees, Kuboyama [6] has first formulated an alignable mapping

as the variation of a Tai mapping whose minimum cost

coincides with the alignment distance and shown that the

alignable mapping coincides with a less-constrained map-

ping [7]. Furthermore, whereas the problem of computing the

alignment distance is also MAX SNP-hard, it is tractable if the

maximum degree of two trees are bounded by some constant

D, where the detailed time complexity is O(n2D!) time for

the maximum number n of nodes in two trees [4].

In bioinformatics, Schiermer and Giegerich [10] have intro-

duced an anchored alignment with respect to a Tai mapping,

called an anchoring, in the context of forest alignments. The

anchored alignment is an alignment (that is, a tree) which

contains a node labeled by a pair of labels for every pair of

nodes in the anchoring.

However, there arises a problem that an arbitrary anchoring

between two trees does not always provide an anchored

alignment, since an arbitrary Tai mapping is not always an

alignable (that is, a less-constrained) mapping. In order to

avoid this problem, Ishizaka et al. [3] have designed an

efficient algorithm to compute the anchored alignment in

O(H |M |2 + n) time if an anchoring M is less-constrained;

returns “no” otherwise, where H is the maximum height of

two trees.

In order to compute the anchored alignment, it is necessary

to give an anchoring. In this paper, we construct an anchor-

ing from the minimum cost isolated-subtree (or constrained)

mapping [12], [16], [17], because the isolated-subtree mapping

is the nearest mapping to the less-constrained mapping in

a Tai mapping hierarchy [6], [15] and we can compute an

isolated-subtree distance τILST as the minimum cost of possible

isolated-subtree mappings in O(n2d) time, where d is the

minimum of the degrees of two trees [13].

For the minimum cost isolated-subtree mapping M , we

select the set M ′ of pairs of non-mapped leaves by M . Then,

we formulate an anchored alignment distance τACH as the

minimum cost of the anchored alignment through an anchoring
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M ∪M ′ if M ∪M ′ is less-constrained; τILST otherwise. We

design the algorithm to compute τACH in O(n2(d+H2v)) time,

where v is the minimum number of leaves in two trees.

Since this algorithm runs in exponential time with respect to

v in theoretical, we first give experimental results for randomly

generated trees to evaluate the anchored alignment distance

τACH by comparing with the isolated-subtree distance τILST .

Here, in this experiment, we cannot compute the alignment

distance τALN of which time complexity is O(n2D!) within

one day. Next, we give experimental results for N-glycan data

as real data provided from KEGG [5] whose v is small to

compute τACH efficiently. Then, we compare τACH with τALN

and τILST , where it holds that τALN ≤ τACH ≤ τILST in general.

For N-glycan data, it holds that τALN = τACH = τILST in more

than 94% pairs and τACH = τILST in more than 99% pairs.

Furthermore, we investigate the pairs such that τALN < τACH <

τILST and τALN = τACH < τILST .

II. PRELIMINARIES

A tree is a connected graph without cycles. For a tree T =
(V,E), we denote V and E by V (T ) and E(T ), respectively.

The size of T is |V | and denoted by |T |. We sometime denote

v ∈ V (T ) by v ∈ T . We denote an empty tree by ∅.
A rooted tree is a tree with one node r chosen as its root.

We denote the root of a rooted tree T by r(T ). For each node

v in a rooted tree with the root r, let UPr(v) be the unique

path from v to r. If UPr(v) has exactly k edges, then we say

that the height of v is k and denote it by h(v) = k. We define

h(T ) = max{h(v) | v ∈ T } and call it the height of T .

The parent of v(6= r) is its adjacent node on UPr(v) and

the ancestors of v(6= r), are the nodes on UPr(v)−{v}. We

denote that v is an ancestor of u by u < v that u < v or

u = v by u ≤ v. Also we denote neither u ≤ v nor v ≤ u by

u # v. We say that w is the least common ancestor of u and

v, denoted by u ⊔ v, if u ≤ w, v ≤ w and there exists no w′

such that w′ ≤ w, u ≤ w′ and v ≤ w′.

We say that u is a child of v if v is the parent of u. The set

of children of v is denoted by ch(v). A leaf is a node having

no children. We denote the set of all leaves in T by lv (T ).
We define d(v) = |ch(v)| and d(T ) = max{d(v) | v ∈ T }
and call them the degree of v and T , respectively.

We say that a rooted tree is labeled if each node is assigned

a symbol from a fixed finite alphabet Σ. For a node v, we

denote the label of v by l(v), and sometimes identify v with

l(v). Let ε 6∈ Σ denote a special blank symbol and Σε =
Σ ∪ {ε}.

Let v ∈ T and vi, vj ∈ ch(v) such that vi (resp., vj) is the

i-th (resp., j-th) child of v. We say that vi is to the left of vj
if i ≤ j. Also, for every u, v ∈ T , we define a sibling order

u � v if there exist u′, v′ ∈ ch(u⊔v) such that u ≤ u′, v ≤ v′

and u′ is to the left of v′. Hence, we say that a rooted tree is

ordered if the sibling order � is fixed; unordered otherwise.

In this paper, we call a rooted labeled unordered tree a tree.

Definition 1 (Edit operations [11]): The edit operations of

a tree T are defined as follows.

1) Substitution: Change the label of the node v in T .

2) Deletion: Delete a node v in T with parent v′, making

the children of v become the children of v′. The children

are inserted in the place of v as a subset of the children

of v′.

3) Insertion: The complement of deletion. Insert a node v

as a child of v′ in T making v the parent of a subset of

the children of v′.

We represent each edit operation by (l1 7→ l2), where

(l1, l2) ∈ (Σε×Σε−{(ε, ε)}). The operation is a substitution

if l1 6= ε and l2 6= ε, a deletion if l2 = ε, and an insertion if

l1 = ε.

We define a cost function γ : (Σε × Σε − {(ε, ε)}) 7→ R
+

on pairs of labels. We often constrain a cost function γ to

be a metric, that is, γ(l1, l2) ≥ 0, γ(l1, l2) = 0 iff l1 = l2,

γ(l1, l2) = γ(l2, l1) and γ(l1, l3) ≤ γ(l1, l2) + γ(l2, l3). We

call the cost function that γ(l1, l2) = 1 if l1 6= l2 a unit cost

function and denote it by µ.

Definition 2 (Edit distance [11]): For a cost function γ,

the cost of an edit operation e = l1 7→ l2 is given by

γ(e) = γ(l1, l2). The cost of a sequence E = e1, . . . , ek of

edit operations is given by γ(E) =
∑k

i=1 γ(ei). Then, an

edit distance τ
γ
TAI

(T1, T2) between trees T1 and T2 under γ is

defined as follows:

τ
γ
TAI

(T1, T2) = min







γ(E)

∣

∣

∣

∣

∣

∣

E is a sequence

of edit operations

transforming T1 to T2







.

Definition 3 (Tai mapping [11]): Let T1 and T2 be trees

and M ⊆ V (T1)×V (T2). We say that a triple (M,T1, T2) is

a Tai mapping between T1 and T2 if every pair (v1, w1) and

(v2, w2) in M satisfies the following conditions.

1) v1 = v2 iff w1 = w2 (one-to-one condition).

2) v1 ≤ v2 iff w1 ≤ w2 (ancestor condition).

We will use M instead of (M,T1, T2) when there is no

confusion. Also we denote the set of all the Tai mappings

between T1 and T2 by MTAI(T1, T2).
We denote the sets {v ∈ T1 | (v, w) ∈ M} and {w ∈

T2 | (v, w) ∈ M} by M |1 and M |2, respectively. For M ∈
MTAI(T1, T2), the cost γ(M) of M is given as:

γ(M)

=
∑

(v,w)∈M

γ(v, w) +
∑

v∈T1−M|1

γ(v, ε) +
∑

w∈T2−M|2

γ(ε, w).

Theorem 1 (Tai [11]): τ
γ
TAI

(T1, T2) = min{γ(M) | M ∈
MTAI(T1, T2)}.

Definition 4 (Less constrained and isolated-subtree mappings):

Let T1 and T2 be trees and M ∈MTAI(T1, T2).

1) We say that M is a less-constrained mapping [7],

denoted by M ∈ MLESS(T1, T2), if M satisfies that,

for every (v1, w1), (v2, w2), (v3, w3) ∈M :

v1 ⊔ v2 < v1 ⊔ v3 =⇒ w2 ⊔ w3 = w1 ⊔ w3.

Or equivalently [6]:

w1 ⊔ w2 < w1 ⊔ w3 =⇒ v2 ⊔ v3 = v1 ⊔ v3.

2) We say that M is an isolated-subtree mapping [12]

(or a constrained mapping [16], [17]), denoted by
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M ∈ MILST(T1, T2), if M satisfies that, for every

(v1, w1), (v2, w2), (v3, w3) ∈M :

v3 < v1 ⊔ v2 ⇐⇒ w3 < w1 ⊔w2.

As similar as Theorem 1, we formulate a less-constrained

distance τ
γ
LESS

(T1, T2) and an isolated-subtree distance

τ
γ
ILST

(T1, T2) as follows:

τ
γ
LESS

(T1, T2) = min{γ(M) |M ∈MLESS(T1, T2)},
τ
γ
ILST

(T1, T2) = min{γ(M) |M ∈MILST(T1, T2)}.
For A ∈ {TAI, LESS, ILST}, we define the set

M∗
A(T1, T2, γ) of all the minimum cost mappings between

T1 and T2 under a cost function γ as follows.

M∗
A(T1, T2, γ) = argmin{γ(M) |M ∈MA(T1, T2)}.

Jiang et al. [4] have introduced an alignment distance as an

alternative distance measure to compare trees, which is based

on an alignment. Here, for two trees T1 and T2, we say that T1

and T2 are isomorphic without labels if there exists a bijection

φ from V (T1) to V (T2), called an isomorphism, satisfying that

u ≤ v iff φ(u) ≤ φ(v).

Definition 5 (Alignment [4]): Let T1 and T2 be trees. Then,

an alignment between T1 and T2 is a tree T obtained by the

following steps.

1) Insert new nodes labeled by ε into T1 and T2 so that the

resulting trees T ′
1 and T ′

2 are isomorphic without labels

and l(φ(v)) 6= ε whenever l(v) = ε for an isomorphism

φ from T ′
1 to T ′

2 and every node v ∈ T ′
1.

2) Set T to a tree T ′
1 obtained by relabeling a label l(v)

for every node v ∈ T ′
1 with (l(v), l(φ(v))). (Note that

(ε, ε) 6∈ T .)

Let A(T1, T2) denote the set of all possible alignments

between T1 and T2. The cost γ(T ) of an alignment T is the

sum of the costs of all labels in T .

Definition 6 (Alignment distance [4]): Let T1 and T2 be

trees and γ a cost function. Then, an alignment distance

τ
γ
ALN

(T1, T2) between T1 and T2 under γ is defined as follows.

τ
γ
ALN

(T1, T2) = min{γ(T ) | T ∈ A(T1, T2)}.
In operational, the alignment distance is an edit distance

such that every insertion proceeds to deletions [4]. Further-

more, the following theorem is known.

Theorem 2: Let T1 and T2 be trees. Suppose that n =
|T1|, m = |T2|, D = max{d(T1), d(T2)} and d =
min{d(T1), d(T2)}.

1) ([6], [7]) MILST(T1, T2) ⊆ MLESS(T1, T2) ⊆
MTAI(T1, T2), which implies that τ

γ
TAI

(T1, T2) ≤
τ
γ
LESS

(T1, T2) ≤ τ
γ
ILST

(T1, T2). The equation does not

always hold in general.

2) ([3], [6]) τ
γ
ALN

(T1, T2) = τ
γ
LESS

(T1, T2).
3) ([2], [18]) The problem of computing τ

γ
TAI

(T1, T2) is

MAX SNP-hard, even if T1 and T2 are binary trees.

4) ([4]) The problem of computing τ
γ
ALN

(T1, T2) is

MAX SNP-hard. On the other hand, if D is bounded

by some constant, then we can compute τ
γ
ALN

(T1, T2) in

O(nmD!) time.

5) ([13]) We can compute τ
γ
ILST

(T1, T2) in O(nmd) time.

III. ANCHORED ALIGNMENT DISTANCE

Let T1 and T2 be trees and M ∈ MTAI(T1, T2) called an

anchoring. Then, Schiermer and Giegerich [10] have intro-

duced an anchored alignment between T1 and T2 through M ,

which we call in this paper, as an alignment T containing a

node labeled by (l(v), l(w)) for every (v, w) ∈M . We denote

it by ach(T1, T2,M).
Note that an arbitrary anchoring does not always provide an

anchored alignment, since M ∈MTAI(T1, T2) whenever M ∈
MLESS(T1, T2) but the converse direction does not hold in

general (Theorem 2.1). In order to avoid this problem, Ishizaka

et al. [3] have formulated an anchored alignment problem to

output an anchored alignment T between T1 and T2 through

M if T exists; return “no” otherwise. Also they have designed

an efficient algorithm, called ACHALN in this paper, to solve

the problem by using the following cover sequence.

For M ∈ MTAI(T1, T2) and (v, w) ∈ M , let S1(v) =
V (T1[v]) ∩M |1 and S2(w) = V (T2[v]) ∩M |2, where T [v]
denotes the complete subtree of T rooted at v ∈ T . Also, by

denoting UPr1(v) (resp., UPr2(w)) as a sequence [r1, . . . , v]
(resp., [r2, . . . , w]) for r1 = r(T1) (resp., r2 = r(T2)),
the cover sequence of v in T1 (resp., w in T2), denoted

by C1(v) (resp., C2(w)), is a sequence [S1(r1), . . . , S1(v)]
(resp., [S2(r2), . . . , S2(w)]). We say that C1(v) and C2(w)
are incomparable if there exist s1 ∈ C1(T1) and s2 ∈ C2(T2)
such that neither s1 ⊆ s2 nor s2 ⊆ s1.

Then, the outline of the algorithm ACHALN is illustrated

as follows.

1) For every (v, w) ∈M , construct cover sequences C1(v)
and C2(w).

2) If there exists (v, w) ∈ M such that C1(v) and C2(w)
are incomparable, then set ach(T1, T2,M) to ∅.

3) Otherwise:

a) For every (v, w) ∈ M , align C1(v) and C2(w) as

C′
1(v) and C′

2(w) and construct a path P (v, w) by

pairing each element of C′
1(v) and C′

2(w).
b) Set ach(T1, T2,M) to a tree constructed from

merging every path P (v, w).

Theorem 3 (Ishizaka et al. [3]): We can solve the an-

chored alignment problem in O(H |M |2+n+m) time, where

n = |T1|, m = |T2| and H = max{h(T1), h(T2)}.
Then, we can formulate an anchored alignment distance

through M as follows.

Definition 7 (Anchored alignment distance through mapping):

Let T1 and T2 be trees, M ∈ MTAI(T1, T2) and γ a cost

function. Then, we define an anchored alignment distance

τ
γ
ACH

(T1, T2,M) between T1 and T2 through M under γ as

follows.
τ
γ
ACH

(T1, T2,M)

=

{

γ(ach(T1, T2,M)), if ach(T1, T2,M) 6= ∅,
|T1|+ |T2|, otherwise.

By Theorem 2.2, M ∈MLESS(T1, T2) iff ach(T1, T2,M) 6=
∅. The statements 1 and 2 in ACHALN can determine whether

or not M ∈MLESS(T1, T2) in O(H |M |) time. Also, by Theo-

rem 2.1, M ∈ MLESS(T1, T2) whenever M ∈MILST(T1, T2).
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Theorem 4: For trees T1 and T2 and a cost function

γ, suppose that M1 ∈ M∗
ILST(T1, T2, γ) and M2 ∈

M∗
LESS(T1, T2, γ). If M1 ⊂ M2, then, for every (v, w) ∈

M2 \M1, there exist (v1, w1), (v2, w2) ∈ M1 satisfying each

of the following statements.

1) v < v1 ⊔ v2 and w # w1 ⊔ w2.

2) v # v1 ⊔ v2 and w < w1 ⊔ w2.

Proof: Suppose that neither the statements 1 nor 2 holds.

Then, for every (v1, w1), (v2, w2) ∈M1, it holds that (1) v <

v1⊔v2 and one of w ≤ w1⊔w2, w = w1⊔w2 or w1⊔w2 ≤ w

and (2) w < w1 ⊔ w2 and one of v ≤ v1 ⊔ v2, v = v1 ⊔ v2
or v1 ⊔ v2 ≤ v. By the ancestor condition, it holds that v <

v1 ⊔ v2 ⇐⇒ w < w1 ⊔ w2, which implies that M2 ∈
MILST(T1, T2). Since M1 ⊂M2 and M1 ∈ M

∗
ILST(T1, T2, γ),

it is a contradiction.

Theorem 5: There exist trees T1 and T2 and a cost func-

tion γ such that neither M1 ⊂ M2 nor M2 ⊂ M1 for

M1 ∈ M
∗
ILST(T1, T2, γ) and M2 ∈ M

∗
LESS(T1, T2, γ). This

statement also holds even if trees T1 and T2 are unlabeled (or

equivalently unique-labeled).

Proof: Let µ be the unit cost function. First consider the

trees T1 and T2 in Figure 1 (left). Figure 1 (right) illustrates

M1 ∈M
∗
ILST(T1, T2, µ) and M2 ∈M

∗
LESS(T1, T2, µ). Then, it

holds that µ(M1) = 3 and µ(M2) = 2, but neither M1 ⊂M2

nor M2 ⊂M1.

Also consider the unique-labeled trees T3 and T4 in Figure 2

(left). Figure 2 (right) illustrates M3 ∈ M
∗
ILST(T3, T4, µ) and

M4 ∈ M
∗
LESS(T3, T4, µ). Then, it holds that µ(M3) = 4 and

µ(M4) = 2, but neither M3 ⊂M4 nor M4 ⊂M3.




a

b

a

a




b

a a

T1 T2



a

b

a

a

a

b

a a




a

b

a

a

a

b

a a

M1 M2

Fig. 1. Trees T1 and T2 (upper), M1 ∈ M∗

ILST
(T1, T2, µ) and M2 ∈

M∗

LESS
(T1, T2, µ) (lower) in the proof of Theorem 5.

Theorem 5 claims that the minimum cost less-constrained

mapping is not always comparable with the minimum cost

isolated-subtree mapping (as set inclusion). On the other hand,

MILST is the nearest mapping class toMLESS in a Tai mapping

hierarchy [6], [15] and τILST is the most general tractable

variation of τTAI [13]. Hence, in this paper, we construct

candidates of an anchoring by adding pairs of non-mapped

leaves to M ∈M∗
ILST(T1, T2, γ) by Theorem 4.

For M ∈M∗
ILST(T1, T2, γ), let M be a complement of M ,

that is, {(v, w) ∈ T1×T2 | (v, w) 6∈M}. A total leaf mapping

of M , denoted by lm(M), is defined as M ∩(lv(T1)× lv(T2))
and we call M ′ ⊆ lm(M) (possibly M ′ = ∅) a leaf

mapping of M . Whereas every leaf mapping is always a Tai

a

a

a a

a

a

a

a

a a a

a

T3 T4
a

a

a a

a

a

a

a

a a a

a

a

a

a a

a

a

a

a

a a a

a

M3 M4

Fig. 2. Unique-labeled trees T3 and T4 (upper), M3 ∈ M∗

ILST
(T3, T4, µ)

and M4 ∈ M∗

LESS
(T3, T4, µ) (lower) in the proof of Theorem 5.

mapping, M ∪ M ′ is not always a Tai mapping. Then, for

M ∈ M∗
ILST(T1, T2, γ) and M ′ ⊆ lm(M), by applying the

algorithm ACHALN for an anchoring M ∪M ′ as input, we

can obtain the anchored alignment ach(T1, T2,M ∪M ′).

Definition 8 (Anchored alignment distance): Let T1 and T2

be trees and and γ a cost function. Then, an anchored

alignment distance τ
γ
ACH

(T1, T2) between T1 and T2 under γ

is defined as follows.
τ
γ
ACH

(T1, T2)

= min















γ(ach(T1, T2, N))

∣

∣

∣

∣

∣

∣

∣

∣

M ∈M∗
ILST(T1, T2, γ),

M ′ ⊆ lm(M),
N = M ∪M ′,

N ∈MLESS(T1, T2)















.

If no M ′ such that M ′ ⊆ lm(M) and M ∪ M ′ ∈
MLESS(T1, T2) exists, then it holds that τ

γ
ACH

(T1, T2) =
τ
γ
ILST

(T1, T2) = γ(ach(T1, T2,M)), by regarding M ′ as ∅
and since M ∈ M∗

ILST(T1, T2, γ). Hence, we can avoid to

the case that |T1| + |T2| in Definition 7 and it holds that

τ
γ
ALN

(T1, T2) ≤ τ
γ
ACH

(T1, T2) ≤ τ
γ
ILST

(T1, T2).

For every alignment T , we can construct a mapping which

consists of a pair (v, w) for every node (l(v), l(w)) ∈ T . We

call it an alignable mapping constructed from T [6]. Then,

we denote the set of all the alignable mappings constructed

from ach(T1, T2, N) such that M ∈ M∗
ILST(T1, T2, γ), M

′ ⊆
lm(M), N = M ∪M ′, N ∈ MLESS(T1, T2) and the cost is

minimum under γ by M∗
ACH(T1, T2, γ).

Theorem 6: We can compute τ
γ
ACH

(T1, T2) in O(nm(d +
H2v)) time, where n = |T1|, m = |T2|, d =
min{d(T1), d(T2)}, H = max{h(T1), h(T2)} and v =
min{|lv(T1)|, |lv (T2)|}.

Proof: Consider the algorithm ACHALNDIST in Algo-

rithm 1. Here, the algorithm ILST(T1, T2, γ) in line 1 returns

a pair of the isolated-subtree distance τ
γ
ILST

(T1, T2) and its min-

imum cost isolated-subtree mapping inM∗
ILST(T1, T2, γ) [13],

which runs in O(nmd) time. By line 4, we ignore the case

that M ∪M ′ is not less-constrained. By Definition 8, if no

M ′(6= ∅) such that M ∪ M ′ ∈ MLESS(T1, T2) exists, then

it holds that τ
γ
ACH

(T1, T2) = τ
γ
ILST

(T1, T2) as the case that

M ′ = ∅, realized by the selection of the minimum value of

d and γ(T ) in lines 1 and 5. Since the running time of line

3 is O(H |M |2 + n+m) = O(mnH) by Theorem 3 and the
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number of M ′ in line 2 is at most 2v, the time complexity

also holds.

procedure ACHALNDIST(T1, T2, γ)

/* T1, T2 : tree, γ: cost function */

(d,M)← ILST(T1, T2, γ);1

/* d = τ
γ
ILST

(T1, T2), M ∈M
∗
ILST(T1, T2, γ) */

foreach M ′ ⊆ lm(M) s.t. M ∪M ′ ∈MTAI(T1, T2)2

do

T ← ACHALN(T1, T2,M ∪M ′);3

/* T = ∅ if M ∪M ′ is not less-constrained */

if γ(T ) > 0 then4

/* γ(T ) = 0 ⇐⇒ T = ∅ */

d← min{d, γ(T )};5

output d;6

Algorithm 1: ACHALNDIST.

IV. EXPERIMENTAL RESULTS

In this section, we assume a cost function is always the

unit cost function µ, so the subscript of a cost function is

omitted. Also the computer environment is that CPU is Intel

Xeon E51650 v3 (3.50GHz), RAM is 1GB and OS is Ubuntsu

Linux (64bit).

A. Randomly generated trees

The running time of the algorithm ACHALNDIST is expo-

nential with respect to the number of leaves in Theorem 6,

that is, O(nm(d + H2v)) time. Here, v depends on the

number of M ′ in line 2 of the algorithm ACHALNDIST,

which is the minimum value of |lv(T1)| − |(M |1) ∩ lv (T1)|
and |lv(T2)| − |(M |2) ∩ lv(T2)|. Then, τACH is possible to be

computed efficiently between trees if such a value is small.

First, we evaluate the above situation by using randomly

generated trees. In this experiment, by using the algorithm

PTC [8], we generate 10 rooted labeled trees with from 100

to 200 nodes when varying the maximum degree for 2, 3, 4,

5 and 10 and then compute τACH and τILST for all of the pairs

of 10 trees, that is, 45 pairs. Table I illustrates the running

time to compute τACH and τILST , the average value of τACH and

τILST and the number of different pairs of τILST and τACH . Note

that, under this setting, we cannot compute τALN even if the

maximum degree is 2 within one day.

TABLE I
THE RUNNING TIME TO COMPUTE τACH AND τILST , THE AVERAGE VALUE

OF τACH AND τILST AND THE NUMBER OF THE DIFFERENT PAIRS OF τILST

AND τACH .

max. degree 2 3 4 5 10

τACH time (ms) 926 1,720 14,221 14,892 71,399
τILST time (ms) 719 635 609 545 552
τACH average 121.93 130.87 133.30 126.51 133.89
τILST average 121.93 131.22 133.20 127.60 136.00
τACH < τILST 0 10 21 25 34

0% 22.22% 46.67% 55.56% 75.56%

Table I shows that, when the maximum degree is increasing,

whereas the average value is independent from the maximum

degree, the running time is increasing exponentially and the

pairs such that τACH < τILST is increasing.

B. N-glycan data

Next, as real data for trees with small v, we adopt N-glycan

data provided from KEGG [5] and evaluate τACH by comparing

with τILST and τALN and their mappings in more detail.

Here, the number of N-glycan data is 2, 142 and then the

number of pairs is 2, 293, 011. Furthermore, Table II illustrates

the minimum, the maximum and the average values of the

number of nodes, the number of leaves, the degree and the

height of N-glycan data.

TABLE II
THE MINIMUM, THE MAXIMUM AND THE AVERAGE VALUES OF THE

NUMBER OF NODES, THE NUMBER OF LEAVES, THE DEGREE AND THE

HEIGHT OF N-GLYCAN DATA.

min. max. ave.

nodes 2 38 11.0696
leaves 1 12 3.2876
degree 1 3 2.0724
height 1 5 5.3838

Table III illustrates the running time to compute τALN , τACH

and τILST for all the pairs of N-glycan data.

TABLE III
THE RUNNING TIME TO COMPUTE τALN , τACH AND τILST .

distance time(ms)

τALN 50,503,659
τACH 595,188
τILST 274,425

Table III shows that, for N-glycan data, the total running

time of computing τACH is not so large and nearer the running

time of computing τILST whose complexity is O(mnd) time

than the running time of computing τALN whose complexity is

O(nmD!) time. The total running time of computing τACH is

less than thrice of the total running time of computing τILST .

Table IV illustrates the number of pairs for every inequality

between τALN , τACH and τILST . Note that τALN ≤ τACH ≤ τILST .

In contrast to Table I, Table IV shows that the number

of pairs that τALN = τACH = τILST is 2, 116, 005, which is

94.4612% for all the pairs, and the number of pairs that

τACH = τILST is 2, 275, 260, which is 99.2259% for all the

pairs. Also, the number of pairs that τALN = τACH < τILST ,

which improve τILST as τACH is 17, 144, which is 0.7477%
for all the pairs. On the other hand, the number of pairs

that τALN < τACH , which is corresponding to Theorem 5, is

109, 862, which is 4.7912% pairs for all the pairs.

Concerned with Table III and IV, Table V illustrates the

number of M ′ satisfying the condition of line 2 in the

algorithm ACHALNDIST for all the pairs.

Table V claims that no M ′ in line 2 in the algorithm

ACHALNDIST is selected in 2, 275, 201 pairs, which is
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TABLE IV
THE NUMBER OF PAIRS FOR EVERY INEQUALITY BETWEEN τALN , τACH

AND τILST .

inequality #pairs %

τALN = τACH = τILST 2,166,005 94.4612
τALN < τACH = τILST 109,255 4.7647
τALN = τACH < τILST 17,144 0.7477
τALN < τACH < τILST 607 0.0265

inequality #pairs %

τALN < τILST 127,006 5.5388
τALN < τACH 109,862 4.7912
τACH < τILST 17,751 0.7741

TABLE V
THE NUMBER OF M ′ SATISFYING THE CONDITION OF LINE 2 IN

ACHALNDIST.

#M ′ #pairs

0 2,275,201
1 11,107
2 3,699
3 2,408
4 372

#M ′ #pairs

5 110
6 88
7 2
8 2

#M ′ #pairs

11 1
12 15
20 3
42 3

99.2233% for all the pair. Then, the number of M ′ is too

smaller than the theoretical worst case O(2v), which implies

the experimental efficiency of the algorithm ACHALNDIST

illustrated in Table III. This is also the reason why the number

of pairs that τACH = τILST is very close to the number of all

the pairs illustrated in Table IV. Furthermore, for the 24 pairs

such that #M ′ ≥ 8, it holds that τALN = τACH < τISLT .

For the three cases in Table IV that (1) τALN < τACH < τISLT ,

(2) τALN < τACH = τISLT and (3) τALN = τACH < τISLT , Table VI

summarizes the average and the maximum values of difference

in the inequalities and the pairs whose difference is maximum.

Here, the subscript of the glycan number denotes its number

of nodes. Table VI claims that the number of nodes in the

pairs in the above inequalities is not always large, that is, near

to 38 and at most one tree in the pairs is large.

TABLE VI
THE AVERAGE AND THE MAXIMUM VALUES OF DIFFERENCE IN THE

INEQUALITIES AND THE PAIRS WHOSE DIFFERENCE IS MAXIMUM.

case inequality ave. max. #pairs pairs

(1) τALN < τACH 1.0644 7 2 (G0686728 ,G1133519),
(G0686728 ,G1133920)

(2) τACH < τILST 1.0319 4 4 (G0366917 ,G0457011),
(G0418620 ,G0457011),
(G0457011 ,G0497219),
(G0457011 ,G0699718)

(3) τALN < τACH 1.0115 3 1 (G0404536 ,G0589619)
τACH < τILST 1.0537 3 4 (G0419118 ,G0457011),

(G0420637 ,G0457011),
(G0457011 ,G1184638),
(G0457011 ,G1184737)

τALN < τILST 2.0659 5 3 (G0420637 ,G0457011),
(G0457011 ,G1184638),
(G0457011 ,G1184737)

Consider the glycan G0457011, which occurs most fre-

quently in Table VI. Then, the glycans of G0419118,

G0420637, G1184638 and G1184737 consist of all the pairs

with G0457011 satisfying that τALN < τACH < τILST . All the 4

pairs coincide with the pairs that τACH < τILST in case (3) in

Table VI.

Figure 3 illustrates the glycans T1 = G0419118 and

T2 = G0457011, and the minimum cost mappings M1 ∈
M∗

LESS(T1, T2, µ), M2 ∈ M∗
ACH(T1, T2, µ) and M3 ∈

M∗
ILST(T1, T2, µ). Here, nodes with the different shapes or col-

ors represent different stereochemistry in glycan structures, so

we treat them as different labels. Note that τALN(T1, T2) = 9,

τACH(T1, T2) = 10 and τILST(T1, T2) = 13.

T1 = G041914 T2 = G04570 M1 ∈ M
∗
LESS(T1, T2, µ)

M2 ∈M
∗
ACH(T1, T2, µ) M3 ∈ M

∗
ILST(T1, T2, µ)

Fig. 3. The glycans T1 = G04191 and T2 = G04570, and the minimum
cost mappings M1 ∈ M∗

LESS
(T1, T2, µ), M2 ∈ M∗

ACH
(T1, T2, µ) and

M3 ∈ M∗

ILST
(T1, T2, µ).

In Figure 3, we depict the difference between M1, M2 and

M3 by thick lines. Then, for M3 ∈M
∗
ILST(T1, T2, µ) as input,

the algorithm ACHALNDIST returns M2 by adding not only

the pair of leaves whose labels are different as an anchoring,

depicted as the lower thick line, but also the pair of their

ancestors, depicted as the upper thick line, to M3.

On the other hand, since the node in T1 in the pair in

M1 depicted by the lower thick line is not a leaf in T1, the

algorithm ACHALNDIST cannot find M1 ∈M
∗
LESS(T1, T2, µ).

The algorithm ACHALNDIST cannot replace a leaf in pairs

given as an anchoring with its ancestor.

Finally, consider the successful cases such that τALN =
τACH < τILST , that is, the case (2) in Table VI. Figure 4

illustrates the mappings Mi ∈ M
∗
ACH(Ti, T, µ) (1 ≤ i ≤ 4)

for T1 = G03669, T2 = G04186, T3 = G04972, T4 =
G06997 and T = G04570. Then, every Mi is obtained by

adding the pairs depicted by thick lines to the mapping in

M∗
ILST(Ti, T, µ).
In contrast to Figure 3, the algorithm ACHALNDIST suc-

ceeds to find the minimum cost less-constrained mappings

in Figure 4. The reason is that the pair of leaves given as

an anchoring is also contained in the minimum cost less-
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M1 ∈M
∗
ACH(T1, T, µ)

M2 ∈M
∗
ACH(T2, T, µ)

M3 ∈M
∗
ACH(T3, T, µ)

M4 ∈M
∗
ACH(T4, T, µ)

Fig. 4. The mappings Mi ∈ M∗

ACH
(Ti, T, µ) (1 ≤ i ≤ 4) for T1 =

G03669, T2 = G04186, T3 = G04972, T4 = G06997 and T = G04570.

constrained mapping, which is not necessary to replace a leaf

in pairs given as an anchoring with its ancestor.

V. CONCLUSION AND FUTURE WORKS

In this paper, we have formulated the anchored alignment

distance τACH based on the minimum cost isolated-subtree

mapping and designed the algorithm to compute τACH . Then,

we have given experimental results for randomly generated

trees and for N-glycan data to evaluate τACH by comparing

with τILST and τALN .

In particular, for N-glycan data, the running time of com-

puting τACH have been much smaller than the theoretical worst

case and it has been nearer to the running time of computing

τILST than one of computing τALN . The reason is that the

number of leaves in N-glycan data is not large. On the other

hand, the number of pairs that τALN < τACH is larger than one

that τALN = τACH < τILST , but even the former is less than

5%. It holds that τALN = τACH = τILST in more than 94%
pairs. Furthermore, concerned with Figure 3 and 4, we have

just observed the improvement that τACH < τILST by adding at

most two pairs of nodes along a path to the minimum cost

isolated-subtree mapping.

Hence, it is a future work to analyze whether or not there

are cases that at least three pairs are added by containing some

branches for other data.

Concerned with Section IV-B, Mori et al. [9] and Yoshino et

al. [14] have designed the algorithms to compute unordered

tree edit distance τTAI exactly for a part of N-glycan data.

Section IV-B claims that the number of pairs that τALN < τACH

and τALN < τACH is much smaller than the number of pairs that

τALN = τACH and τALN = τILST . Then, the number of pairs that

τTAI < τALN is possible be much smaller than the number of

pairs that τTAI = τALN . In fact, all of the less-constrained map-

pings in Figure 3 and 4 are the minimum cost Tai mappings,

and then it holds that τALN = τTAI in all the cases. On the other

hand, as similar as Figure 2, we provide an example of the

unique-labeled trees T1 and T2, M1 ∈ M
∗
TAI(T1, T2, µ) and

M2 ∈ M
∗
LESS(T1, T2, µ) in Figure 5 such that, for a unit cost

function µ, τ
µ
TAI

(T1, T2) = 2 < 4 = τ
µ
ALN

(T1, T2).
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a

a

a

a

a

a

a

a
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Fig. 5. Trees T1 and T2, M1 ∈ M∗

TAI
(T1, T2, µ) and M2 ∈

M∗

LESS
(T1, T2, µ).

Hence, it is a future work to investigate whether or not the

difference between τTAI and τALN exists for N-glycan data and

other experimental data.

Concerned with Theorem 4 and 5, it is a future work to

investigate the properties of less-constrained mappings to con-

struct an anchoring. In particular, in order to find the minimum

cost less-constrained mapping, it is necessary to replace a leaf

in pairs given as an anchoring with its ancestor as illustrated

in Figure 3. This replacement is possible to be essential

for the intractability of the problem of computing τALN [4].

Furthermore, concerned with Theorem 6 and Section IV-A, to

apply the algorithm ACHALNDIST to trees with many leaves,

it is necessary to decrease the number of leaf mappings, by

using the number of connected components in the mapping [1],

for example.

Hence, it is a future work to improve leaf mappings, to

introduce other mappings instead of leaf mappings or to im-

prove the definition of τACH and the algorithm ACHALNDIST

independent from leaf mappings.

KOUICHI HIRATA, ET AL.: ANCHORED ALIGNMENT DISTANCE BETWEEN ROOTED LABELED UNORDERED TREES 439



REFERENCES

[1] P. Ferraro, C. Godin: Optimal mappings with minimum number of

connected components in tree-to-tree comparison problems, J. Algo. 48,
385–406, 2003. DOI: 10.1016/S0196-6774(03)00079-8.

[2] K. Hirata, Y. Yamamoto, T. Kuboyama: Improved MAX SNP-hard

results for finding an edit distance between unordered trees, Proc.
CPM 2011, LNCS 6661, 402–415, 2011. DOI: 10.1007/978-3-642-
21458-5 34.

[3] Y. Ishizaka, T. Yoshino, K. Hirata: Anchored alignment problem

for rooted labeled trees, New Frontiers in Artificial Intelligence,
LNAI 9067, 296–309, 2015. DOI 10.1007/978-3-662-48119-6 22.

[4] T. Jiang, L. Wang, K. Zhang: Alignment of trees – an alternative to tree

edit, Theoret. Comput. Sci. 143, 137–148, 1995. DOI: 10.1016/0304-
3975(95)80029-9.

[5] KEGG: Kyoto Encyclopedia of Genes and Genomes,
http://www.kegg.jp/.

[6] T. Kuboyama: Matching and learning in trees, Ph.D thesis, University
of Tokyo, 2007.

[7] C. L. Lu, Z.-Y. Su, C. Y. Yang: A new measure of edit distance between

labeled trees, Proc. COCOON’01, LNCS 2108, 338–348, 2001. DOI:
10.1007/3-540-44679-6 37.

[8] S. Luke, L. Panait: A survey and comparison of tree generation

algorithms, Proc. GECCO’01, 81–88, 2001.
[9] T. Mori, T. Tamura, D. Fukagawa, A. Takasu, E. Tomita, T. Akutsu:

A clique-based method using dynamic programming for computing edit

distance between unordered trees, J. Comput. Bio. 19, 1089–1104, 2012.
DOI: 10.1089/cmb.2012.0133.

[10] S. Schiermer, R. Giegerich: Forest alignment with affine gaps and

anchors, applied in RNA structure comparison, Theoret. Comput.
Sci. 483, 51–67, 2013. DOI: 10.1016/j.tcs.2012.07.040.

[11] K.-C. Tai: The tree-to-tree correction problem, J. ACM 26, 422–433,
1979. DOI: 10.1145/322139.322143.

[12] J. T. L. Wang, K. Zhang: Finding similar consensus between trees: An
algorithm and a distance hierarchy, Pattern Recog. 34, 127–137, 2001.
DOI: 10.1016/S0031-3203(99)00199-5.

[13] Y. Yamamoto, K, Hirata, T. Kuboyama: Tractable and intractable

variations of unordered tree edit distance, Internat. J. Found. Comput.
Sci. 25, 307–329, 2014. DOI: 10.1142/S0129054114500154.

[14] T. Yoshino, S. Higuchi, K. Hirata: A dynamic programming A∗ algo-

rithm for computing unordered tree edit distance, Proc. IIAI AAI ’13,
135–140, 2013. DOI: 10.1109/IIAI-AAI.2013.71.

[15] T. Yoshino, K. Hirata: Tai mapping hierarchy for rooted labeled trees

through common subforest, Theory of Comput. Sys. 60, 759–783, 2017.
DOI: 10.1007/s00224-016-9705-1.

[16] K. Zhang: Algorithms for the constrained editing distance between

ordered labeled trees and related problems, Pattern Recog. 28, 463–
474, 1995. DOI: 10.1016/0031-3203(94)00109-Y.

[17] K. Zhang: A constrained edit distance between unordered labeled trees,
Algorithmica 15, 205-222, 1996. DOI: 10.1007/BF01975866.

[18] K. Zhang, T. Jiang: Some MAX SNP-hard results concerning un-

ordered labeled trees, Inform. Process. Lett. 49, 249–254, 1994. DOI:
10.1016/0020-0190(94)90062-0.

440 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


