
Hybrid Multievolutionary System to Solve Function

Optimization Problems

Krzysztof Pytel

Faculty of Physics and Applied Informatics

University of Lodz, Poland

Email: kpytel@uni.lodz.pl

Abstract—Evolutionary algorithms are optimization methods
inspired by natural evolution. They usually search for the optimal
solution in large space areas. In Evolutionary Algorithms it is
very important to select an appropriate balance between the
ability of the algorithm to explore and exploit the search space.
The paper presents a hybrid system consisting of a Genetic
Algorithm and an Evolutionary Strategy designed to optimize
the function of many variables. In this system, we combined the
ability of the Genetic Algorithm to explore the search space and
the ability of the Evolutionary Strategy to exploit the search
space. Optimization performed by the Genetic Algorithm and
the Evolutionary Strategy runs at the same time, so it is possible
to perform parallel computations. The results of the experiments
suggest that the proposed system can be an effective tool in
solving complex optimization problems.

I. INTRODUCTION

E
VOLUTIONARY Algorithms (EA) are widely used in

solving complex problems of optimization. This is a

group of methods inspired by observation of nature. These

methods are based on the principles of natural selection of

living organisms developed by Charles Darwin. According to

this principle, well-adapted individuals have more chances of

survival - and transfer of their genetic material to the next gen-

eration. A list of terms which are used to describe Evolutionary

Algorithms is closely related to genetics and evolution. The

Evolutionary Algorithm processes the population of individu-

als (each individual in the form of a chromosome represents a

potential solution to the problem). The Evolutionary Algorithm

works in certain environments, which can be defined on the

basis of the problem solved by the algorithm. Depending on

how much a given individual (ie. chromosome) is adapted to

the environment in which it is located, a numeric value that

determines the quality represented by its solution is assigned

to it. This number is called fitness of the individual and is a

major factor that describes the ability of an individual to act

as a parent for the next generation of population. Evolutionary

Algorithms do not guarantee finding the global optimum, but

generally provide a good enough solution in an acceptable

period of time. Hence, the main use of these algorithms is

in very sophisticated problems in a large search space for

which there are no specialized techniques. A characteristic

feature of Evolutionary Algorithms is that in the process

of evolution they do not use the knowledge specific for a

given problem, except for the fitness function assigned to

all individuals. The Evolutionary Algorithm must keep the

right balance between exploration and exploitation of the

search space. Exploration is the process of searching for a

new region of a search space where an optimum can exist.

Exploitation is the process of searching for regions within

the neighborhood of previously visited points. Examples of

Evolutionary Algorithms are Genetic Algorithms (GA) and

Evolutionary Strategies (ES).

The Genetic Algorithm is an optimization method that

simulates the process of natural evolution. The GA uses the

mechanism of natural evolution (selection, mutation, cross-

over of individuals and reproduction). The individuals of the

GA could be coded by binary strings (binary representation),

real numbers (a real number representation) or composite

structures of genes. The main parameters of the GA, affecting

the ability to explore and exploit of the search space, are

probability of selection and probability of mutation. The type

of cross-over and mutation operators are very important.

Reproduction in GAs is closely related to maintaining the

diversity of the population, the selection pressure and avoiding

premature convergence to the local optima. In Genetic Algo-

rithms the exploitation is done through the selection process.

Cross-over and mutation are both methods of exploring the

search space. Very important problem is always finding the

right balance between exploration and exploitation. If the

exploration ability is too large, the algorithm can get stuck

in the local optima. If the exploration ability is too large, the

algorithm will waste time on poor solutions and cannot focus

on solutions found till now.

More information on Genetic Algorithms can be found in

publications [3][5][7].

Evolution Strategies uses primarily mutation and selection

as search operators. These operators are applied in a loop

until the termination criterion is met. ES are based on the

principle that small changes have small effects. The mutation

is usually performed by adding a normally distributed random

value to each individual’s genes. After a certain number of

fitness function calls or a number of generations, it is essential

to adjust the parameters of mutation. At first, the ratio of

successful mutations over all mutations is evaluated. If the

ratio is less than the specified threshold, the mutation parame-

ters are increased to obtain greater diversity of individuals. If

the ratio is greater than the specified threshold, the mutation

parameters are decreased to increase the accuracy of the search

and accelarate the convergence of the algorithm. The simplest

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 87–90

DOI: 10.15439/2017F85

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 87



Evolution Strategy (1 + 1) − ES operates on a population

of two individuals: the current point (a parent) and the result

of its mutation (a child). If the child’s fitness is equal to or

better than the parent’s fitness, the child becomes the parent

in the next generation. Otherwise, the new child is created in

the next loop. In strategy (1 + λ) − ES, λ children can be

generated and compete with the parent. In (1, λ) − ES the

best child becomes the parent in the next generation while

the current parent is always disregarded. Evolution Strategies

(µ/ρ+, λ)−ES can use the population of ρ parents and also

recombination as an additional operator. This makes them less

prone to get stuck in the local optima.

More information on Evolution Strategies can be found in

publications [1][2].

Hybrid intelligent system is a system which employs, in

parallel, a combination of methods and techniques from arti-

ficial intelligence subfields, for example Genetic Algorithms,

the Fuzzy Logic, Artificial Neural Networks etc. Such systems

are able to take advantage of the methods and techniques of

artificial intelligence while avoiding their disadvantages. They

can be used to improve effectiveness of the methods or where

simple methods do not produce the expected results.

Hybrid intelligent systems using artificial intelligence meth-

ods can be used in different optimization problems, for ex-

ample in multiobjective optimization [10] [11], Connected

Facility Location Problem [12] or Clustering Problem [13].

II. PROBLEM FORMULATION

Optimization is the process of finding the greatest or the

smallest value. The Function Optimization Problem (FOP) is

a problem in which certain parameters (variables) need to

be determined to achieve the best measurable performance

(objective function) under given constraints. For function

f(x), called the objective function, that has a domain of real

numbers of set S, the maximum optimal solution occurs where

f(x0) > f(x) over set S and the minimum optimal solution

occurs where f(x0) < f(x) over set S.

Formally, optimization is the minimization or maximization

of a function subject to constraints on its variables. Let’s

denote:

- x is the vector of variables (parameters);

- f(x) is the objective function that we want to maximize

or minimize;

- c is the vector of constraints that the variables must

satisfy. It may consist of several restrictions that we place

on the variables.

The function optimization problem (e.g a function maximiz-

ing problem) can be stated as follows:







max f(x)
subject to: ci ≤ 0 for i = 1, 2, ..., k
x ∈ S

(1)

where:

- x = [x1, x2, x3, ..., xn] ∈ ℜ;n ∈ N - is an n-dimensional

vector of decision variables,

- f(x) - is the objective function of variables x,

- ci(x) - are constrains,

- S - the search area.

The FOP problem can be used as a benchmark for testing

optimization methods. Various methods of solving the FOP

are discussed in literature, for example [4][6].

III. THE PROPOSED MULTIEVOLUTIONARY SYSTEM

Genetic Algorithms use cross-over and mutation opera-

tors to search the space for possible solutions. One of the

drawbacks of Genetic Algorithms is low efficiency in the

final search stage. The Evolutionary Strategy uses primarily

mutation and selection operators. Evolutionary Strategies are

at risk of getting stuck in sub-optimal solutions. The proposed

system (GA-ES) consists of a Genetic Algorithm and an

Evolutionary Strategy. It combines the ability of a GA to find

the areas of possible optima and the ability of ESs to quickly

converge to the optima. Both of them are types of Evolutionary

Algorithms and can use the same individuals’ representation,

operators of selection and mutation.

In the system, both algorithms start with the same initial

population and work in parallel. After a predeterminated num-

ber of generations, the best individuals from both algorithms

will be compared. Depending on the result of this comparison,

transposition of individuals between the algorithms may be

performed:

- if the best individual in the GA is better than the best

individual in the ES, then the new area of the optima is

found. The best individual in the GA replaces the parent

in the ES.

- if the best individual in the ES is better than the best

individual in the GA, then it means that a new optimal

solution is found as a result of the ES. The best indi-

vidual in the ES replaces the worst individual in the GA

population.

The system block diagram is shown in Figure 1.

IV. COMPUTATIONAL EXPERIMENT

The goal of our experiments is verification of the idea of

the hybrid multievolutionary algorithm in solving the function

optimization problem. We used functions of a wide range of

complexity in a diverse environment. For tests we used a set

of 3 functions:

- f1(x1, x2) - an easy function of two variables (similar

to cosinemixture [14] function). The function has many

local optima and was used for testing the algorithm’s

ability to find the global optimum. The function is given

by formula:

f1(x1, x2) = (sin(x1)+0.6∗sin(20∗x1))∗sin(x2) (2)

where:

x1, x2 ∈ (0, π) (3)

The value of maximum 1.6 at point (π/2, π/2).

88 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017



Fig. 1. The system block diagram

- f2(x1, x2, ..., x10) - the function of multiple variables

(similar to alpine2 [14] function). A low inclined func-

tion, used for testing the ability of the algorithm to

determine the exact solution. The function is given by

formula:

f2(x1, x2, ..., x10) =

10
∏

i=1

sin(xi) (4)

where:

x1, x2, ..., x10 ∈ (0, π) (5)

The value of maximum 1 at point

(π/2, π/2, π/2, π/2, π/2, π/2, π/2, π/2, π/2, π/2).
- f3 - the function proposed in [9]. It is a sophisticated

function with many local optima with different values,

which permits to estimate the ability of the algorithm to

solve difficult optimization problems. The first generation

of individuals was placed in the local optimum (point [5,

5]). The algorithm should find the total optimum (point

[50, 50]), avoiding the local optima. The function is given

by formula:

f3(x1, x2) =
7

∑

1

hi ∗ e
−µi∗((x1−xi1)

2+(x2−xi2)
2

(6)

where: h1 = 1.5, h2 = 1, h3 = 1, h4 = 1, h5 = 2, h6 =
2, h7 = 2.5
µ1 = µ2 = µ3 = µ4 = µ5 = µ6 = µ7 = 0.01
(x11, x12) = (5, 5), (x21, x22) = (5, 30), (x31, x32) =
(25, 25), (x41, x42) = (30, 5), (x51, x52) =
(50, 20), (x61, x62) = (20, 50), (x71, x72) = (50, 50)

Fig. 2. Function f3

TABLE I
THE AVERAGE TIME AND NUMBER OF FITNESS FUNCTION CALLS NEEDED

TO REACH THE PREDETERMINED VALUE OF THE OPTIMIZED FUNCTION

The predeter- SGA GA-ES
Func- mined value Time The number Time The number
tion of algorithm [s] of fitness [s] of fitness

termination function function
calls calls

f1 1.596 0.210 37960 0.092 3978

f2 0.999 1.378 80158 0.480 8450

f3 2.499 0.307 56940 0.072 7124

The value of maximum 2.5 at point (50,50).

The function f3 is shown in Figure 2.

The values of parameters of the Genetic Algorithm and the

Evolution Strategy was fixed during the initial experiments. In

the experiments we accepted the following values of parame-

ters of the Genetic Algorithm:

- the genes of individuals are represented by real numbers,

- the probability of cross-over = 0.8,

- the probability of mutation = 0.15,

- the number of individuals in the population = 25.

For the Evolutionary Strategy, model (1+1)−ES was chosen

and the mutation performed by adding a number generated

randomly according to normal distribution.

The best individuals from both algorithms were compared

after every 50 generations and, depending on the result of

this comparison, transposition of individuals was performed

between the algorithms. The system was stopped when the best

individual reached the predetermined value of the optimized

function.

In the experiment, we compared the results of the proposed

GA-ES and the standard genetic algorithm (SGA) described

in [8], and adapted it to optimize the test functions. Each

algorithm was executed 10 times on a standard PC computer

(CPU: Intel i3, RAM: 8GB, Windows 10 operating system).

Table 1 shows the average time and number of fitness function

calls needed to reach the predetermined value of the optimized

function.

The graph in Figure 3 shows the average running time of the

Genetic Algorithm (SGA) and the proposed system (GA-ES).

The graph in Figure 4 shows the average number of fit-

ness function calls in the Genetic Algorithm (SGA) and the

KRZYSZTOF PYTEL: HYBRID MULTIEVOLUTIONARY SYSTEM TO SOLVE FUNCTION OPTIMIZATION PROBLEMS 89



Fig. 3. The average running time of the Genetic Algorithm (SGA) and the
proposed system (GA-ES)

Fig. 4. The average number of fitness function calls in the Genetic Algorithm
(SGA) and the proposed system (GA-ES)

proposed system (GA-ES).

V. CONCLUSIONS

The proposed Genetic Algorithm-Evolution Strategy sys-

tem was able to find a solution near the optimum for all

tested functions. Optimization of function F2 (a low inclined

function) has shown that the system has greater convergence

and accuracy in comparison to the SGA. Optimization of

function F3 (a sophisticated function with many local optima)

has shown that the system is more resistant to premature

convergence to the local optimum compared to the ES.

The GA-ES running time on a PC was very short (less than

2 seconds). The time was 56, 65 and 76 percent shorter than

the running time of SGA for function f1, f2 and f3 respectively.

The number of fitness function calls in GA-ES system was

decreased by nearly 90 percent in relation to the number of

fitness function calls in the SGA.

In the proposed system it is possible to perform parallel

calculations by the Genetic Algorithm and the Evolutionary

Strategy, eg. by using multiple processors or processor cores.

The proposed system is an efficient tool for solving function

optimization problems. It could be used for solving very wide

range of optimization problems.

REFERENCES

[1] Bäck T., Hoffmeister F., Schwefel H.-P., A survey of evolution strate-

gies, Proceedings of the Fourth International Conference on Genetic
Algorithms, Morgan Kaufmann, s. 2-9, 1991.

[2] Beyer H.-G. Schwefel H.-P., Evolution Strategies: A Comprehensive

Introduction. Journal Natural Computing, 1(1):3-52, 2002.
[3] Goldberg, David E. Genetic Algorithms in Search, Optimization, and

Machine Learning Reading, MA: Addison-Wesley, 1989.
[4] Jensi R., Wiselin Jiji G., An improved krill herd algorithm with global

exploration capability for solving numerical function optimization prob-

lems and its application to data clustering, Appl. Soft Comput. 46:
230-245, 2016.

[5] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution

Programs, Springer Verlag, Berlin (1992).
[6] Karaboga, D., Basturk B., A powerful and efficient algorithm for

numerical function optimization: artificial bee colony (ABC) algorithm,
JOURNAL OF GLOBAL OPTIMIZATION Volume: 39 Issue: 3, Pages:
459-471, 2007.

[7] Kwasnicka H., Obliczenia ewolucyjne w sztucznej inteligencji. Oficyna
Wydawnicza Politechniki Wroclawskiej, Wroclaw, 1999, (in Polish).

[8] Potter M.A., De Jong K.A., A cooperative coevolutionary approach to

function optimization. In: Davidor Y., Schwefel HP., Männer R. (eds)
Parallel Problem Solving from Nature - PPSN III. PPSN 1994. Lecture
Notes in Computer Science, vol 866. Springer, Berlin, Heidelberg 1994.

[9] Pytel K., Nawarycz T., Analysis of the Distribution of Individu-

als in Modified Genetic Algorithms [in] Rutkowski L., Scherer R.,
Tadeusiewicz R., Zadeh L., Zurada J., Artificial Intelligence and Soft
Computing, Springer-Verlag Berlin Heidelberg, 2010.

[10] Pytel K., The Fuzzy Genetic Strategy for Multiobjective Optimization,
Proceedings of the Federated Conference on Computer Science and
Information Systems, Szczecin, (2011).

[11] Pytel K., Nawarycz T., The Fuzzy-Genetic System for Multiobjec-

tive Optimization, [in] Rutkowski L., Korytkowski M, Scherer R.,
Tadeusiewicz R., Zadeh L., Zurada J., Swarm and Evolutionary Com-
putation, Springer-Verlag Berlin Heidelberg, 2012.

[12] Pytel K., Nawarycz T., A Fuzzy-Genetic System for ConFLP Problem,
Advances in Decision Sciences and Future Studies, Vol. 2, Progress &
Business Publishers, Krakow 2013.

[13] Pytel K., Hybrid Fuzzy-Genetic Algorithm Applied to Clustering Prob-

lem. Proceedings of the 2016 Federated Conference on Computer Sci-
ence and Information Systems, Gdańsk, 2016, doi: 10.15439/2016F232.

[14] http://infinity77.net/global_optimization/test_functions.html.

90 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017


