## An example of the satisfiability problem in the continuous structure

### Marek Balcer

DOI: http://dx.doi.org/10.15439/2017F255

Citation: Position Papers of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 12, pages 91–94 (2017)

Abstract. The paper presents and demonstrates the theorem showing the equivalence of the problem of the verifiability test of a logical expression in the discrete model N of the logic with the search for the minimum value of a continuous function generated by this expression in the structure M, which is a simple extension of N. Theoretical considerations are illustrated by the example of a certain semi-heuristic algorithm seeking the minimum value of objecive function with a short statistics of its.

### References

- Jun Gu “The Multi-SAT algorithm, “Discrete Applied Mathematics, vol.96-97 pp. 111-126, 1999 Elsevier Science B.V., http://dx.doi.org/10.1016/S0166-218X(99)00035-9.
- R. Battiti, M. Protasi, “Approximate Algorithms and Heuristics for MAX-SAT, “Handbook of Combinatorial Optimization(vol.1)pp.77-148, 1998 Kluwer Academic Publisher, http://dx.doi.org/10.1007/978-1-4613-0303-9-2.
- J. Gottlieb, E. Marchiori, C. Rossi, “Evolutionary Algorithms for the Satisfiability Problem,” Evolutionary Computation, vol 10(1) MITP 2002, http://dx.doi.org/10.1162/106365602317301763.
- J. Malitz, “Introduction to Mathematical Logic,”Undergraduate Text in Mathematics, Springer Verlag 1979 New York
- K. Grzegorczyk, “Zarys Logiki Matematycznej,” Biblioteka Matematyczna , PWN 1985 Warszawa
- M. Balcer,“Characteristics and decomposition of expressions in the PF-notation,”Silesian Journal of Pure and Applied Mathematics, vol.6 is.1(2016) pp.5-22
- J. Kennedy, R. Eberhart, “Particle Swarm Optimization, “Proceedings of IEEE International Conference on Neural Networks, vol.IV pp. 1942-1948, http://dx.doi.org/10.1109/ICNN.1995.488968.