Logo PTI
Polish Information Processing Society
Logo FedCSIS

Annals of Computer Science and Information Systems, Volume 12

Position Papers of the 2017 Federated Conference on Computer Science and Information Systems

On local minima in distributed energy scheduling

, ,

DOI: http://dx.doi.org/10.15439/2017F544

Citation: Position Papers of the 2017 Federated Conference on Computer Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki (eds). ACSIS, Vol. 12, pages 6168 ()

Full text

Abstract. Distributed energy scheduling constitutes a tough task for optimization algorithms, as the underlying problem structure is high-dimensional, multimodal and non-linear. For this reason, metaheuristics and especially distributed algorithms have been in the focus of research for several years with promising results. The modeling of the distributed energy units' flexibility is a specific research task as well, with different concepts like comfort-level based approaches, enumeration of possible schedules, and continuous schedule representation using machine learning and decoder techniques. Although a continuous representation of flexibility has shown better results regarding the global optimization goal, there have been hints that the susceptibility to local minima traps enlarges compared to the enumeration of distinct schedules. In this contribution, we present an exemplary system for predictive scheduling of distributed energy units consisting of a continuous flexibility modeling approach and a fully distributed planning heuristic. A prestudy is presented, where we analyze the problem structure regarding local minima and describe planned work to reduce the heuristic's susceptibility to be kept in these


  1. H.-J. Appelrath, H. Kagermann, and C. Mayer, Eds., Future Energy Grid. (acatech STUDY). acatech, Munich, 2012.
  2. S. McArthur, E. Davidson, V. Catterson, A. Dimeas, N. Hatziargyriou, F. Ponci, and T. Funabashi, “Multi-agent systems for power engineering applications – Part I: Concepts, approaches, and technical challenges,” IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1743–1752, 2007. http://dx.doi.org/10.1109/TPWRS.2007.908471
  3. N. Padhy, “Unit Commitment - A Bibliographical Survey,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1196–1205, May 2004. http://dx.doi.org/10.1109/TPWRS.2003.821611
  4. D. Pisinger, “A minimal algorithm for the multiple-choice knapsack problem,” European Journal of Operational Research, vol. 83, pp. 394–410, 1994.
  5. C. Hinrichs, S. Lehnhoff, and M. Sonnenschein, “A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems,” in Operations Research Proceedings 2012. Springer, 2014. doi: 10.1007/978-3-319-00795-3_43. ISBN 978-3-319-00795-3 pp. 297–302.
  6. A. Feliachi and R. Belkacemi, “Intelligent Multi-agent system for Smart Grid Power Management,” in Smart Power Grids 2011, A. Keyhani and M. Marwali, Eds. Springer, 2012, pp. 515–542.
  7. P. Vrba, V. Mařík, P. Siano, P. Leitão, G. Zhabelova, V. Vyatkin, and T. Strasser, “A Review of Agent and Service-Oriented Concepts Applied to Intelligent Energy Systems,” IEEE Transactions of Industrial Informatics, vol. 10, no. 3, pp. 1890–1903, 2014.
  8. G. Anders, F. Siefert, and W. Reif, “A System of Systems Approach to the Evolutionary Transformation of Power Management Systems,” in 43. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Informatik angepasst an Mensch, Organisation und Umwelt. Koblenz: Gesellschaft für Informatik, Köllen Druck+Verlag, 2013.
  9. J. Bremer and M. Sonnenschein, “Constraint-handling for optimization with support vector surrogate models – a novel decoder approach,” in Proceedings of the 5th International Conference on Agents and Artificial Intelligence (ICAART), J. Filipe and A. Fred, Eds., vol. 2. Barcelona, Spain: SciTePress, 2013. http://dx.doi.org/10.5220/0004241100910100 pp. 91–105.
  10. C. Hinrichs, J. Bremer, and M. Sonnenschein, “Distributed Hybrid Constraint Handling in Large Scale Virtual Power Plants,” in IEEE PES Conference on Innovative Smart Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society, 2013.
  11. A. Smith and D. Coit, Handbook of Evolutionary Computation. Department of Industrial Engineering, University of Pittsburgh, USA: Oxford University Press and IOP Publishing, 1997, ch. Penalty Functions, p. Section C5.2.
  12. J. Brownlee, Clever Algorithms, 1st ed. LuLu, 2011. ISBN 9781446785065
  13. O. Kramer, “A review of constraint-handling techniques for evolution strategies,” Appl. Comp. Intell. Soft Comput., vol. 2010, pp. 1–19, January 2010. http://dx.doi.org/10.1155/2010/185063
  14. F. Gieseke and O. Kramer, “Towards non-linear constraint estimation for expensive optimization,” in Applications of Evolutionary Computation, ser. Lecture Notes in Computer Science, A. Esparcia-Alcázar, Ed. Springer Berlin Heidelberg, 2013, vol. 7835, pp. 459–468.
  15. J. Bremer and M. Sonnenschein, “Model-based integration of constrained search spaces into distributed planning of active power provision.” Comput. Sci. Inf. Syst., vol. 10, no. 4, pp. 1823–1854, 2013.
  16. C. A. Coello Coello, “Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art,” Computer Methods in Applied Mechanics and Engineering, vol. 191, no. 11-12, pp. 1245–1287, Jan. 2002. http://dx.doi.org/10.1016/S0045-7825(01)00323-1
  17. J. Bremer and M. Sonnenschein, “Sampling the search space of energy resources for self-organized, agent-based planning of active power provision,” in 27th International Conference on Environmental Informatics, EnviroInfo 2013, B. Page, A. G. Fleischer, J. Göbel, and V. Wohlgemuth, Eds. Hamburg, Germany: Shaker, 2013, pp. 214–222.
  18. D. M. J. Tax and R. P. W. Duin, “Support vector data description,” Mach. Learn., vol. 54, no. 1, pp. 45–66, 2004. http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
  19. A. Nieße, J. Bremer, C. Hinrichs, and M. Sonnenschein, “Local Soft Constraints in Distributed Energy Scheduling,” in Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FEDCSIS). IEEE, 2016. http://dx.doi.org/10.15439/2016F76 pp. 1517–1525.
  20. G. Anders, A. Schiendorfer, F. Siefert, J.-P. Steghöfer, and W. Reif, “Cooperative Resource Allocation in Open Systems of Systems,” ACM Transactions on Autonomous and Adaptive Systems, vol. 10, no. 2, pp. 1–44, 2015. http://dx.doi.org/10.1145/2700323 ACM
  21. M. Tröschel, Aktive Einsatzplanung in holonischen Virtuellen Kraftwerken. Oldenburg: OlWIR, Oldenburger Verl. für Wirtschaft, Informatik und Recht, 2010. ISBN 978-3-939704-55-3
  22. P. Papadopoulos, N. Jenkins, L. M. Cipcigan, I. Grau, and E. Zabala, “Coordination of the Charging of Electric Vehicles Using a Multi-Agent System,” IEEE Transactions on Smart Grid, vol. 4, no. 4, pp. 1802–1809, dec 2013. http://dx.doi.org/10.1109/TSG.2013.2274391
  23. S. Lehnhoff, Dezentrales vernetztes Energiemanagement - Ein Ansatz auf Basis eines verteilten Realzeit-Multiagentensystems. Vieweg + Teubner, 2010.
  24. E. Pournaras, “Multi-level Reconfigurable Self-organization in Overlay Services,” Ph.D. dissertation, TU Delft. ISBN 9789461860989 2013.
  25. B. Schäfer, M. Matthiae, M. Timme, and D. Witthaut, “Decentral Smart Grid Control,” New Journal of Physics, no. JANUARY, 2015. http://dx.doi.org/10.1088/1367-2630/17/1/015002
  26. A. Nieße, S. Beer, J. Bremer, C. Hinrichs, O. Lünsdorf, and M. Sonnenschein, “Conjoint Dynamic Aggregation and Scheduling Methods for Dynamic Virtual Power Plants,” in Proceedings of the 2014 Federated Conference on Computer Science and Information Systems, ser. Annals of Computer Science and Information Systems, M. Ganzha, L. A. Maciaszek, and M. Paprzycki, Eds., vol. 2. IEEE, 2014. http://dx.doi.org/10.15439/2014F76. ISBN 978-83-60810-58-3 pp. 1505–1514.
  27. A. Nieße and M. Sonnenschein, “A Fully Distributed Continuous Planning Approach for Decentralized Energy Units,” in 45. Jahrestagung der Gesellschaft für Informatik e.V. (GI), Informatik, Energie und Umwelt. Cottbus: Gesellschaft für Informatik, Köllen Druck+Verlag, 2015.
  28. A. Nieße, “Verteilte kontinuierliche Einsatzplanung in dynamischen virtuellen Kraftwerken,” Ph.D. dissertation, Carl von Ossietzky Universität Oldenburg, Oldenburg, 2015.
  29. V. K. Vassilev, T. C. Fogarty, and J. F. Miller, “Information character istics and the structure of landscapes,” Evol. Comput., vol. 8, no. 1, pp. 31–60, Mar. 2000. http://dx.doi.org/10.1162/106365600568095
  30. E. Weinberger, “Correlated and uncorrelated fitness landscapes and how to tell the difference,” Biological Cybernetics, vol. 63, no. 5, pp. 325–336, 1990. http://dx.doi.org/10.1007/BF00202749
  31. G. Merkuryeva and V. Bolshakovs, “Benchmark fitness landscape analysis,” International Journal of Simulation Systems, Science & Technology (IJSSST), vol. 12, no. 2, pp. 38–45, 2011.
  32. G. J. Chaitin, Algorithmic information theory, ser. Cambridge tracts in theoretical computer science. Cambridge, Cambridgeshire, New York: Cambridge University Press, 1987. ISBN 0-521-34306-2
  33. C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.
  34. J. Bremer, B. Rapp, and M. Sonnenschein, “Encoding distributed Search Spaces for Virtual Power Plants,” in IEEE Symposium Series in Computational Intelligence 2011 (SSCI 2011), Paris, France, 4 2011. http://dx.doi.org/10.1109/CIASG.2011.5953329
  35. J. Neugebauer, O. Kramer, and M. Sonnenschein, “Classification cascades of overlapping feature ensembles for energy time series data,” in Proceedings of the 3rd International Workshop on Data Analytics for Renewable Energy Integration (DARE’15), ECML/ PKDD 2015. Springer, 2015.
  36. A. Nieße and M. Sonnenschein, “Using grid related cluster schedule resemblance for energy rescheduling - goals and concepts for rescheduling of clusters in decentralized energy systems.” in SMARTGREENS, B. Donnellan, J. F. Martins, M. Helfert, and K.-H. Krempels, Eds. SciTePress, 2013. ISBN 978-989-8565-55-6 pp. 22–31.