& s

Position papers of the Federated Conference on
Computer Science and Information Systems, pp. 97-101 ISSN 2300-5963 ACSIS, Vol. 12

DOI: 10.15439/2017F546

Welltype: Language elements for multiparadigm
programming

Aron Barith
Eotvos Lorand University
H-1117 Budapest, Hungary
Email: baratharon @caesar.elte.hu

Abstract—Modern programming languages try to provide a
balance between flexibility to support rapid development and
implementing as much validation on the program as possible to
avoid expensive runtime errors. This trade-off is reflected in the
language syntax, the type system and even in the method how
the program produces the runtime binary. While the balance
seems to be slightly moved today from safety to effectiveness,
there is still a high demand for thoroughly checked, safe, but
still effective programming languages. In this paper we introduce
our experimental, imperative programming language, Welltype,
which is designed to demonstrate that effective development can
be accommodated with increased safety. Our language design
decisions are based on current real-life problems and their
solutions. We describe key features such as syntax improvement,
fail-safe type system, and binary compatibility via dynamic
linking.

I. INTRODUCTION

ODERN programming languages are not just about

higher abstraction level unlike old languages, but aimed
to be safer by giving numerous validations. Language evolu-
tion is directing toward safer languages. Obviously, a safer
language requires more resources to compile in general, but a
lot of time can be spared during development as the strong and
strict type system saves the programmers from many semantic
issues. Nowadays the compilers are fast enough, and most of
the programmers will not perceive the overhead of the extra
work. However, the user will experience the benefits of a
stricter language, because less runtime checks are necessary.

In this paper we present the important features of our
experimental programming language, Welltype. This language
is aimed to prove that clear syntax, strict semantics and strong
type system can still provide a friendly language interface for
the programmer.

The clear syntax will help the programmers to understand
the code after the development. Benefits during maintenance
is guaranteed this way in contrast of a language with a
more exotic syntax. A tense syntax can easily overwhelm the
understanding of the code.

The strict semantics declares that a construction will mean
the same regardless of the syntax context. In practice, when
a construction indicates multiple but different things, the
intention of the code fragment will be ambiguous. Also, it
costs some time to a third person to solve the ambiguity. The
strict semantics appellation is the bridge between the clear

©2017, PTI

97

Zoltan Porkolab
Eotvos Lorand University
H-1117 Budapest, Hungary
Email: gsd@caesar.elte.hu

syntax and the strong type system: since the types are explicit
in the code, and a construction means only one thing, the
intention behind a specific code fragment is certain.

The strong type system that Welltype uses is much less
permissive that the type system in C or C++. We present the
type system in Section IV. The key feature is deeply validated
types across dynamic linking.

The Welltype language is designed to be as safe as possible
with comfortable language features as described above. We
made our design decisions based on current and relevant issues
in order to fix them with minimal syntactical and semantical
overhead. We present details about the key elements and we
make conclusions on each of them.

The paper is organized as follows: In Section II we present
the Welltype language, and we give a short overview of the
key language features. In each of the following 3 sections we
focus on one significant language element as an example. In
Section III we concentrate on language syntax. Section IV ar-
gues for our design decisions on the type system. In Section V
we give a short introduction to the binary compatibility and
we show how Welltype handles it. In Section VI we show
the related work on language safety. Our paper concludes in
Section VIIL

II. OVERVIEW OF WELLTYPE

The Welltype language is an imperative programming lan-
guage extended with generic and functional programming
elements. It is designed to be safe and feature rich in the same
time. The syntax is similar to the C++ with improvements.
The structure of the source file is redesigned to meet the
safe requirement. A Welltype source consists of blocks and
metadata directives. A block can be declaration, import,
export, or function definition block. The first three contain
declarations, for example functions, operators, records, enums,
algebraic data types, exceptions. Note that the imported/ex-
ported declarations will be deeply validated (the mechanism
behind is discussed in Section V) during the program loading.

The body of a function can contain assignment statements,
assertion statements (which can be turned off in release
build), return statements, raise statements (to raise excep-
tions), conditional statements (1f-elif-else), loops (for,
while, do-while, foreach), and switch on algebraic data
types and enumeration types (switch-case). The complete

98

grammar is available on the Welltype website [21]. Note that
an assignment is not an expression. Furthermore, the semantics
disallows free expressions in the code. This improvement
(which is clearly a restriction as well) can prevent serious
problems on the code snippet that can be seen on Figure 1.
The original code was a correct function call, but somehow,
the some_ function identifier is lost from the source code,
and the remained statement is still a valid C++ code, but
its meaning is totally different. Welltype does not allow the
second construction, so the lost some_function identifier
will cause a compilation error.

// original code: function call
some_function (paraml, param?2);

// errorneous code:
(paraml, param?2?);

sequence operator

Fig. 1. Error caused by lost function name.

Welltype functions can have exception handler clauses. This
syntax decision aimed to keep the source of the function as
tidy as possible. Languages like C++ and Java allows to place
exception handlers almost anywhere. The problem with this is
that the ordinary execution flow will interweave with exception
handler fragments that are usually not executed. It can mislead
the programmer, and increase the complexity.

In the perspective of the execution, the raise statement
—and also other sources of exceptions— will find the first
exception handler clause on the call stack, and rewind it until
the exception handler, and continues. The raise statement
is very similar to throw in C++, but in Welltype programs
cannot throw exception but they can raise them.

For instance, an IndexOutOfRangeException will be
raised when a string or a seq is misindexed.

The essential part of the Welltype language is its strong type
system. The type system does no support implicit casts, thus
the data flow is more followable, and provides faster function
lookup. Other restrictions are also encoded into the type
system, for example the mutable property of a value (variable,
or derived value). The Welltype language takes mutable and
immutable properties seriously, and in contrast of C++ the
mutable types should be explicitly tagged — while in C++ the
immutable (const) types should be tagged. We made analysis
on some software to determine the ratio of the mutable and
immutable function parameters [19]. As an example results on
TinyXML [18] can be seen on Figure 2. We concluded that two
important reasons support the mutable-style instead of the
const-style. First, much less keywords are necessary; second,
if a mutable keyword is missing it will cause compilation
error at the right place.

An interesting phenomenon can be perceived when we
compare the const-style and the mut able-style approaches.
In the const world, if the programmer forgets to qualify
the function parameter, it will be mutable by default, thus
modification may occur. To preserve the parameter (especially

POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

Parameters 236
By value 87
Constant 105
Mutable 44

Fig. 2. Function parameter analysis of TinyXML.

object parameters) from modifications, the programmer must
explicitly indicate the intention. In the mutable, if the
programmer forget to quality the function parameter and the
function wants to modify the parameter, the compiler will emit
an error message due to it is forbidden. To allow modifications
of a parameter, the programmer must explicitly indicate it.
The Welltype follows the immutable-by-default rule when
introducing function parameters. This looks to be a larger
effort to write the code, but as we have seen earlier, the number
of mutable function parameters is the fragment of the number
of constant parameters.

III. SYNTAX

Syntax is always a main matter of safety. Syntax defines the
face of the language, helps the programmer if it is intuitive,
and gives a support to detect general programming errors.

In C [15] and C++ [16], the syntax is quite permissive.
Companies define coding conventions (e.g. Apple!, Google?
) that they know (or they think) as good. Some coding
conventions can be assumed as broken, or in other words
not good enough. For example, a vulnerability called goto
fail [20], raised because of a duplicated goto fail line as
can be seen on Figure 3. This vulnerability could be avoidable
if the coding rules were adequate.

if ((err =
&signedParams))
goto fail;
goto fail; // duplicated line here
if ((err = SSLHashSHAl.final (&hashCtx,
&hashOut)) 0)

SSLHashSHAI .update (&hashCtx,
0)

| =
Fig. 3. The affected lines of the goto fail error.

Making the braces mandatory in control flow statements
(i.e. 1f) in the language itself is a good alternative. It will
guarantee much safer constructions (goto fail error cannot hap-
pen), and makes the code more readable. The Go language [9]
always requires braces in all constructions. The Welltype
language follows that design decision, but the position of the
braces are different. The detailed specification how to place
braces is in the Go language specification [10].

mttps://developer.apple.com/library-
/ios/documentation/General/Conceptual-
/DevPedia-CocoaCore/CodingConventions.html

2https ://google.github.io/styleguide/cppguide.html

ARON BARATH, ZOLTAN PORKOLAB: WELLTYPE: LANGUAGE ELEMENTS FOR MULTIPARADIGM PROGRAMMING

The WordPress® team changed their PHP coding standard*
to always require braces in 2013°, because they saw its
benefit. Furthermore, their JavaScript coding standard® also
requires braces. Many other relevant discussion can be found
about the braces, and where to place them. One thread
called Should curly braces appear on their own line?’ from
stackexchange.com has numerous of interesting comments.
Nowadays, it is not difficult to find coding standard that
enforce the usage of braces; even larger communities using
them for obvious reasons. Our motivation was the fact it is in
coding standards indeed, but the compiler will not complain
when it is omited: better build into the syntax. Requiring
something in the coding standard is one thing, but enforcing
them to happen is an other. Programmers will invest less effort
if the code started to work.

Another perspective is to remove all braces (and other
symbols and keywords that can introduce blocks) from the
language, like the popular Python [12] language. Python is
whitespace sensitive, and the blocks will be automatically
recognized from the indentation. On the other hand, relying
only on whitespaces is not necessarily the safest way. We
could seperate the elements helping the programmer and the
elements helping the compiler. In C, C++, Java, PHP, etc
and in Welltype, the indentation is for the programmer to be
able to read the code — but the braces are for the compiler,
because those will clearly define the block. In a whitespace-
only language a misindented statement can cause serious bugs,
furthermore, the usually invisible spaces and tabs can also
break the “good” indentation, if they are used mixed. And
then, no one will know the original intention.

if (some_condition); {
do_something () ;

Fig. 4. Erroneous if statement (extra semicolon breaks the code).

Still, requiring the braces on the language level can prevent
other errors as well, not only the goto fail-like errors. The code
snippet on Figure 4 is an errorneous code (in C, C++, Java,
C#). The extra semicolon after the if’s closing parenthesis
will close the statement, and the block in the next line is just
a regular block. That block has no relation to the i f statement,
but it looks like it has. Since in Welltype a block statement
is required as the body of the if, the for, the while, the
do-while and the foreach statement, this kind of error
is not possible — that code will not compile. We experienced

3https://wordpress.org/
“https://make.wordpress.org/core/handbook/best—-
practices/coding-standards/php/
Shttps://make.wordpress.org/core/2013/11/13-
/proposed-coding-standards-change-always-require-—
braces/
Shttps://make.wordpress.org/core/handbook/best—-
practices/coding-standards/javascript/
7http://programmers.stackexchange.com/questions—
/2715/should-curly-braces-appear-on-their-own-1line

this and similar errors as a recurrent problem commited by
beginner programmers. In many cases the compiler error
message was not helping neither.

We presented some aspects of why is a good idea to force
block statement as the body of the control flow statements:
a little syntactical overhead against the clarity and safety. We
conclude that this effort has more benefits than disadvantages.

IV. SEMANTICS AND TYPE SYSTEM

Semantics and the type system is the next bastion of a
programming language. Many validations will guarantee that
the source fit to the language semantics. Most of these are
performed by the type system by checking the types. We
consider that the type system is an essentional part of a
programming language.

One manifestation is to guarantee const correctness. The
information that a value is mutable or not can improve the code
quality, and helps to avoid illegal modifications (e.g. on a read-
only memory area). For instance, C++ supports this, but the
Java language has really limited support for this. Furthermore,
it is hard to force the programmer to write const-correct
code [4]. Furthermore, the lambda expressions (that were
introduced in C++11) are immutable by default [5] — but that
can be modified using the mutable lamba declarator [16].

The mutable attribute is inherited by the member recur-
sively as it is expected — as well as the immutable attribute.
Like all attributes mutable is part of the type system, therefore
it will be stored in the binary. It implies that the mutable
attribute will be validated during the dynamic linking process,
and this guarantees const-correctness across binaries.

The type system can be permissive itself that can lead to
serious problems — we highlight here only one of them. A
synthetic version of the problem can be seen on Figure 5. The
snippet is a valid code in several languages (Java, C++, and
C#) and it is broken in all of them.

// Valid code in Java, C++, and C#
for (char ch=’'\0’;ch<70000;++ch)
{ /% x/ }

Fig. 5. Infinite loop caused by implicit cast.

This construction is a really nasty one, and the programmer
may get a warning message for that. Problem is with the loop
condition: it compares a char and an int. Many languages
will promote (or cast) the char to int, because if they do,
the comparison makes sense. But the domain of the two types
are different, and the left-hand side will never has a value
of 70000. Therefore, the loop is an infinite loop. In many
languages we just cannot avoid this kind of error. However, in
C++ we developed a working solution for this problem [11]. It
is a subsequent milestone of our endeavor to make languages
safer [19]. Welltype solves this problem only with its strong
type system: the comparison ch<70000 is illegal, due to
char and int cannot be compared.

The Welltype language guarantees that all literals have one,
and exactly one type. For instance, the type of the the literal

99

100

1u will be uint. In C and C++ the literals can have different
type depending on the length of the literal. As can be seen
in Figure 6 the type of the literal can be different regardless
of the suffix. Thus, sizeof (3000000000) is not equal
to sizeof (3000000000u). In Welltype, the literals that
overflow from the domain of its type will cause compile error.

Signed Type Unsigned Type
1 int lu unsigned int
2000000000 int 2000000000u unsigned int
3000000000 long 3000000000u unsigned int
30000000000 long | 30000000000u unsigned long

Fig. 6. Type of literals in C++ (compiled with g++ LP64 on 64-bit system).

As mentioned earlier, literals in Welltype have exactly one
type. The type can be determined in a deteministic way using
only the source code itself without its context. That is, if we
look at only a single literal, we know its type certainly. For
instance, the literal 1234 has the type int; the literal 250ub
has the type ubyte. A quick overview can be seen in Figure 7.
Note that in Welltype a number literal may have underscore
(L) in it, and it will not change the value of the literal.
Underscores will be removed automatically from the literals
before further processing. However, the literal 270ub — in
contrast of C/C++ — is illegal, and causes a compilation error.
Take the 5000000000u literal in C; this suggests that it is an
unsigned int after the suffix, but the literal overflows the
unsigned int types, and became an unsigned long
long.

Literal Type
10 int
20_1 long
30_u uint
40_ul ulong
50_1b byte
60_ub ubyte
70_h short
80_uh ushort

Fig. 7. Quick overview of integer literal suffixes.

Since Welltype forbids implicit conversion, problems like
on Figure 5 are not possible. We conclude that handling
type correctly will decrease the errorneousness of the code.
Additionally, we earlier presented a technique for C++ to avoid
implicit conversions [11].

V. LINKING (BINARY COMPATIBILITY)

We talk about binary compatibility when we have mul-
tiple releases of a software module. Suppose that we can
successfully compile all versions. The question is whether
the client binary that uses one of the compiled versions is
able to use the other binary versions without modification?
When the answer is yes, we can say the versions are binary
compatible. When we compile and link multiple modules to —
for example — an executable we can fix the problem easily: just

POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017

recompile the affected modules. However, when we have no
control on compilation and linking, like in case of C and C++
dynamic libraries, it is not trivial to decide which versions
of the library are compatible. This is a common situation
when library maintainers should modify a library and produce
a shared object which will be used on-demand by unknown
users. Breaking binary compatibility in this case causes the
client program to crash. However, the problem is not limited
to C or C++, this is a real-life issue, for example, in Java as
well [2], [6].

Binary incompatibility can happen in more mystical reasons
to. In one of our projects (it was the Welltype compiler itself)
there was multiple C++ sources that used the FlexLexer.h,
which is a system-wide header belongs to the flex tool. The
source files have been already compiled, when a system
upgrade was performed. The flex package was upgraded as
well, and the FlexLexer.h was changed (two fields lost
the reference qualifier). After that, one of the source files that
use the FlexLexer.h changed, and a build was performed.
Since the system-wide headers are not a real dependencies in
the build system, only the changed C++ files were recompiled
— then the executable was linked. Thus the executable crashed,
because the changes of the FlexLexer .h was not applied in
all source, and the old object files became incompatible with
the new ones. The problem originated to the linker, because
it cannot recognized such inconsistencies.

The Welltype language aimed to avoid binary incompatibil-
ities: since the Welltype dynamic loader deeply validates all
imported elements, it is able to detect incompatibilities. The
signature of the functions are validated, including the name
of the functions, number and type of the arguments and the
returned types, and the pure property. Records are also deeply
validated, which consists of name of the record, and number,
type and name of the fields. The reason why the Welltype
validates so deep, is to detect the changes. For instance, if
two fields in a record are swapped, the client program will
still contain code for the original record, but the other side
assumes the modified version of the record — thus, the program
will not work. Therefore, it is reasonable to detect this kind of
changes at load time, and the runtime environment can refuse
to load the incompatible program.

This mechanism ensures that binary incompatibilities
caused by a side effect of the language will not occur, since
the binary interface is well-defined. For example, in C++ if the
programmer uses only the public API of a class, the compiler
may generate inline code that will percolate code from the
library into the client program. This is an easy way to make
the client program binary incompatible to the next version of
the library. However, Welltype prevents this situation, and the
binary interface cannot be bridged like in C++.

VI. RELATED WORK

Our research included improving and extending existing
mainstream languages. We extended the type system in
C++ [11], to forbid implicit casts.

ARON BARATH, ZOLTAN PORKOLAB: WELLTYPE: LANGUAGE ELEMENTS FOR MULTIPARADIGM PROGRAMMING

We researched how to check the correct usage of the move
semantics in C++11 [1]: the move operation is introduced to
improve efficiency, but unwanted copy operations may hidden
inside. This area related to the detect heavy runtime overheads
at compilation time. We developed a prototype tool (based on
Clang Tooling [17], [8]), that can identify when the copy-
semantics is used instead of move-semantics, and it is not
reasonable. Therefore, the unnecessary copy operations can
be eliminated from the code.

We developed an other C++ extension to do compile-time
unit testing [7]. This work was inspired by the motto do as
many work at compile-time as possible. Furthermore, when
the unit tests are performed at compilation time, the code is
guaranteed as tested, so it is not ”’too bad”; also, after changed
the code will compile again, if it passes the tests, and it cannot
be omitted.

The idea to introduce a much restricted type system is
not rare. The Scala language also uses a more complex type
system with immutable types to increase security [14]. The
Rust language represent an other approach to increase security
by being resource-safe [13]. Also, this attitude evolving in
C++ by the C++ Core Guidelines [3]. When a language
supports more safety feature, the costs of static analysis will
be lower. For example, the C++ langauge is permissive enough
to grow static analysis into a very complex task (CppCheck,
Lint, Clang Static Analyzer) — static analysing tools aimed to
improve code quality. It would be great if the compiler could
perform such task during the compilation.

VII. CONCLUSION

In this paper we presented our experimental programming
language, Welltype. As are earlier researches discovered many
critical issues in modern programming languages supposed to
be safe, we decided to create a prototype language to show
that there is a feasible trade-off between safety and the ease of
use. We presented revealing examples on three major parts of
Welltype: rigorous syntax, strict type system, advanced linking
features.

Welltype provides strict syntactical rules to minimize errors
caused by typos. Missing or duplicated semicolons, braces or
identifiers cause syntax error. The strict syntax also helps code
comprehension.

Welltype semantics supposes all function parameters im-
mutable. Measurements on projects implemented in main-
stream languages prove that function parameters are mostly
supposed not to modify, but mainstream languages do not
support this. They threat parameters mutable by default, and
may can be changed to immutable only by additional effort.
Implicit conversions are other source of runtime errors. Such
situations are hard to avoid and even harder to investigate.
Welltype’s strict type system avoids this kind of problems. By
this approach increases safety it has also a positive effect on
compilation time as implicit conversions are significant source
increased compile time.

Binary compatibility is an issue poorly recognized by lan-
guage designers, but can cause serious headache for maintain-
ers of large software projects. When already compiled clients
are linked against different versions of libraries, incompatible
library versions can cause the client code to crash or even
worse, to running in undefined way. This problem frequenty
occurs with C/C++ programs using dynamic libraries, but
the issue is not limited to C++, also happens in Java and
other languages. Welltype deeply validates modules to link
and forbids incompatible usage.

The Welltype compiler is freely available and testable [21].
The language serves as a working prototype to show how
safety in various dimensions can extend modern programming
languages.

REFERENCES

[1] Barath, A., Porkoldb, Z.: Automatic Checking of the Usage of the C++ 11
Move Semantics. ACTA CYBERNETICA-SZEGED 22: pp. 5-20. (2015)

[2] Dietrich, J., Jezek, K., Brada, P.: Broken promises: An empirical study
into evolution problems in java programs caused by library upgrades.
Software Maintenance, Reengineering and Reverse Engineering (CSMR-
WCRE), 2014 Software Evolution Week-IEEE Conference on. IEEE,
(2014), https://doi.org/10.1109/CSMR-WCRE.2014.6747226

[3] Stroustrup, B.: C++ Core Guidelines
https://github.com/isocpp/CppCoreGuidelines

[4] Cline, M. P., Lomow, G. and Girou, M.: C++ FAQs. Pearson Education

(1998)
[5] Jarvi, J., Freeman, J.. C++ lambda expressions and closures.
Science of Computer Programming 759 (2010): 762-772.

https://doi.org/10.1016/j.scico.2009.04.003

[6] Savga, I, Rudolf M., Goetz, S.: Comeback!: a refactoring-based
tool for binary-compatible framework upgrade. Companion of the
30th international conference on Software engineering. ACM, (2008),
https://doi.org/10.1145/1370175.1370198

[7] Barath, A., Porkoldb, Z.: Compile-time Unit Testing. 4th Workshop on
Software Quality Analysis, Monitoring, Improvement, and Applications
pp. 1-7. ISBN 978-961-248-485-9 (2015)

[8] Duffy, Edward B., Brian A. Malloy, and Stephen Schaub. Exploiting the
Clang AST for analysis of C++ applications. Proceedings of the 52nd
Annual ACM Southeast Conference. 2014.

[9] Alan A. A. Donovan, Brian W. Kernighan. The Go Programming Lan-
guage. Addison-Wesley Professional, ISBN: 978-0134190440 (2015)

[10] Go Programming Language Specification.
https://golang.org/ref/spec

[11] Barath, A., Porkoldb, Z.: Life without implicit casts: safe type system
in C++. Proceedings of the 7th Balkan Conference on Informatics, ISBN
978-1-4503-3335-1 (2015), https://doi.org/10.1145/2801081.2801114

[12] Summerfield, M.: Programming in Python 3: a complete introduc-
tion to the Python language. Addison-Wesley Professional, ISBN 978-
0321680563 (2010)

[13] Matsakis, Nicholas D., and Felix S. Klock IL.: The rust lan-
guage. ACM SIGAda Ada Letters. Vol. 34. No. 3. ACM, (2014)
http://doi.org/10.1145/2692956.2663188

[14] Layka, V., and Pollak, D.: Scala Type System. In Beginning Scala (pp.
133-151). Apress. (2015)

[15] Kernighan, B. W., and Ritche, D. M.: The C programming language.
Vol. 2. Englewood Cliffs: prentice-Hall (1988)

[16] Stroustrup, B. The C++ Programming Language, 4th Edition. Addison-
Wesley (2013)

[17] Klimek, M.: The Clang AST — a Tutorial. http://1lvm.org—
/devmtg/2013-04/klimek-slides.pdf (2013)

[18] TinyXML. http://www.grinninglizard.com/tinyxml2

[19] Barith, A., Porkoldb, Z.: Towards Safer Programming Language Con-
structs. Studia Univ. Babes-Bolyai Ser. Inf. LX:(1) 19-34 (2015)

[20] Vulnerability Summary for CVE-2014-1266. http://web.nvd.nist.gov-
/view/vuln/detail ?vulnld=CVE-2014-1266.

[21] Welltype web page. http://baratharon.web.elte.hu/-
welltype/

101

