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Abstract—In the paper, we present the topological counterpart
supporting rich formal apparatus describing properties of rough
sets within one of the largest repositories of computerized
mathematical knowledge, the Mizar Mathematical Library. The
paper develops third and final (after lattice theory and the
theory of general binary relations) planned path designed to
be linked (via mechanisms of theory merging) with the theory
of structures described by Pawlak in the early seventies of
the previous century. We propose the revision of the existing
topological apparatus offered by Mizar, and give the outline of
the formalization of uniform spaces, important objects allowing
for further representation of approximation spaces.

I. INTRODUCTION

G
ROWING popularity of computerized mathematical

proof-assistants (Voevodsky who won the Fields medal

in 2002 underlines the future of computer approach building

new foundations of mathematics – univalent foundations)

raises a number of new problems which should be solved in

order to meet expectations of researchers. It is important that

the formal approach should be flexible enough to be easily

translated to writing, easily understood by people, and allow

for further generalization. In recent years, traditional model of

printed contribution fixed for years could be adjusted to take

into account the possibilities given by contemporary media

where such knowledge is stored.

We focus on the area where mathematical structures can

be extensively used and their formal counterpart can be

tuned accordingly. The examples were already formalized

within machine-verified mathematical knowledge repository:

we mean topological spaces certified with the help of the Mizar

system [1].

The problem was translating these objects expressed in

the natural language used by mathematicians into the formal

language of Mizar. These topics are quite well represented

in the Mizar Mathematical Library [15], and look promising

for the mathematics as a whole – topology delivers tools for

representing many other areas of mathematics (with Stone’s

representation theorem at the very beginning).

II. THE MIZAR SYSTEM

The main aim of the Mizar system – the project steered

by Andrzej Trybulec from early seventies of the previous

century – was to develop a formal approach to mathematics

which allows for faithful encoding of the definitions and

theorems written in natural language in order to be verified

for correctness by computers. This formal approach should be

flexible enough to be understood by ordinary people without

much pain, so one of the very basic points was to be as close

as possible to mathematical vernacular. On the other hand one

should have in mind the strictness and the relative simplicity

of the grammar of the artificial language in order to be easily

scanned by the parser of the Mizar system.

The second ingredient of the system is the repository of

formal texts. The Mizar Mathematical Library (MML) [27]

is based on Tarski-Grothendieck set theory, which is very

close to the one used by the majority of mathematicians

[30]. Hence it is not very strange that general topology is

one of the widely represented parts of mathematics within

this repository of knowledge (see Table I for details, general

topology holds fifth position w.r.t. the number of lines of code

implemented, but taking into account the number of Mizar

articles is just third). Among the large formalization projects

of the Mizar community, two were connected with topology.

The first one was the formalization of Jordan curve theorem,

resulting in many articles written in tight cooperation with

Japanese Mizar group (the high position held by algebraic

topology – AMS MSC 2010 category started with 14 is a

result of this development). The second one, the formalization

of the Compendium of Continuous Lattices by Gierz et al.

[7], although originally meant to be placed within lattice

theory, eventually was driven into the direction of category

theory and topology. It was quite a lucky coincidence for us

as we the first author was involved also in the part dealing

with the properties of Scott-continuous functions. It should

be mentioned that a few well-defined topological notions,

as, for example, Aleksandrov topologies, obtained a new life

just with the connection with continuous domains. Another

formalization project, relatively recent one, was to formalize

Engelking’s General Topology [6], but as of now, the project

seems to be not very dynamic.

Original motivation for our paper was to describe some

of the issues raised in the process of formalizing important

mathematical structures – topological spaces, connected with
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the theory of tolerance approximation spaces [10]. We realized

that in order to do this properly (at least to use as much

expressive power of the Mizar language as we can), we should

lift both notions into the common ground – of the descendant

of topological spaces merged with approximation spaces. We

have observed that developing alternative background for al-

ready well-established area of formalized knowledge can cause

many troubles. This paper is a contribution to the third large

area of mathematics with which rough sets are strongly linked,

with another two already formalized: lattice theory [13], and

general theory of binary relations [35]. Unfortunately, modal

logics are not a sufficiently developed area within the Mizar

Mathematical Library, and we do not expect any significant

future progress in this topic.

III. TOPOLOGICAL PRELIMINARIES

A topological space is a pair (U, T ) consisting of a set

U and family T of subsets of U satisfying the following

conditions:

• ∅ ∈ T and U ∈ T ;
• T is closed under finite intersections, i.e., for all A,B ∈

T we have A ∩B ∈ T ;
• T is closed under arbitrary unions.

Let D be a partition of U. The collection of sets that can

be written as union of some members of D together with the

empty set is a topology for U – the partition topology gener-

ated by D. Obviously, every equivalence relation E generates

a partition of U, namely U/E, hence it is connected with

underlying topology on U . Such partition topology is usually

denoted by τE , or just τ for fixed equivalence relation E
(which is exactly the case, if we work in a given approximation

space, and none other indiscernibilities are considered).

The partition topologies are characterized by the fact that

every open set is also closed; every partition topology is an

Alexandrov topology, in which the intersection of the members

of each, not necessarily finite, collection of open sets is also

open.

Let T be a tolerance relation in U and let ET be the

intersection of all equivalence relations in U that include

T (extensions of T ). It can be shown that ET is again

an equivalence relation, and the collection of T -definable

sets is precisely the collection of ET -definable sets. Hence,

for tolerance relations T , the collection of T -definable sets

is a partition topology. Essentially, the linking between an

approximation space (U,E) and corresponding topological

space (U, τE) can be established: X is definable if and only if

X is open (or, respectively, closed) in the partition topology;

the lower approximation of X is just the interior of X and

the upper approximation of X – the closure of X . Hence X
is definable if and only if its interior is equal to its closure.

The characterization of rough approximations can be also

given in terms of maps between powersets of the universe U ,

and this was really the idea of Hammer [20]. For a binary

relation R in U, the function

X 7→ {y ∈ U : (x, y) ∈ R for some x ∈ X}

is a mapping from 2U into itself. Consequently then, similarly

to Zhu [35], we can study the properties of approximations

just by studying the properties of set-valued set-functions. In

fact, the paper by Zhu [35] was fully translated into Mizar

formalism and the details are to be presented at IJCRS 2017

[14].

For equivalence relation E on U a uniformity for U is

defined as the collection ρ of subsets of U2 in a following

way:

ρ = {R : R ⊆ U2, E ⊆ R}.

The topology for U induced by this uniformity coincides

with topology τE . The connections between rough sets and

uniform spaces [32] are as follows: Pawlak’s approximation

spaces are uniform spaces whose uniform topologies coincide

with partition topologies; these topologies can be characterized

by the fact that every open set is also closed, and hence, they

are Aleksandrov topologies.

The relationship between the theory of rough sets and the

theory of topological spaces is as follows: if the underlying

indiscernibility relation is an equivalence relation, then the

collection of definable sets is a uniformity whose topology

is a partition topology (every open set is also closed and vice

versa); if we deal with a tolerance relation, the collection of

definable sets is a quasiuniformity whose topology is also a

partition topology; if the underlying indiscernibility relation

is a preorder, the collection of definable sets is a topology,

but not necessarily a partition topology. In all cases however,

we deal with an Alexandrov topology (arbitrary intersection

of definable sets is a definable set).

IV. TOWARDS ALGEBRAIC HIERARCHY

All algebraic structures in Mizar are defined in similar

manner: first we have to give a structure, where names of

fields (called selectors) with their specification (the type and

the arity) are given. In our concrete case there were

definition

struct (1-sorted) addMagma

(# carrier -> set,

addF -> BinOp of the carrier #);

end;

and

definition

struct (ZeroStr,addMagma) addLoopStr

(# carrier -> set,

addF -> BinOp of the carrier,

ZeroF -> Element of the carrier #);

end;

Structures in Mizar can be used to model mathematical no-

tions like groups, topological spaces, categories, etc. which are

usually represented as tuples. A structure definition contains,

therefore, a list of selectors to denote its fields, characterized

by their name and type, e.g.:

definition

struct multMagma

(# carrier -> set,
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TABLE I
TOP 10 DEVELOPED THEORIES IN MML BY AMS MSC 2010

No. MSC Topic Number of articles Lines of code

1. 03 Mathematical logic and foundations 146 311,083
2. 14 Algebraic geometry 84 251,809
3. 06 Order, lattices, ordered algebraic structures 110 234,413
4. 26 Real functions 91 225,634
5. 54 General topology 99 196,486
6. 68 Computer science 83 193,782
7. 11 Number theory 72 154,307
8. 15 Linear and multilinear algebra; matrix theory 61 149,941
9. 46 Functional analysis 69 132,741

10. 57 Manifolds and cell complexes 42 122,738

Fig. 1. The net of topological structures in MML

multF -> BinOp of the carrier #);

end;

where multMagma is the name of a structure with two

selectors: an arbitrary set called its carrier and a binary

operation on it, called multF. This structure can be used to

define a group, but also upper and lower semilattices, so in

fact any notion that is based on a set and a binary operation on

it. It should be noted that the above structure does not define

a group yet (nor any other more concrete object), because

there is no information on the properties of multF. The

structure is just a basis for developing a theory. In practice,

after introducing a required structure, a series of attributes is

also defined to describe the properties of certain fields.

As mentioned before, the above multMagma structure can

be used to define notions which are not only groups. Still,

the operation in such structures inherit the name multF,

because the current Mizar implementation does not provide

a mechanism to introduce synonyms for selectors (or whole

structures). Therefore, in cases when a different name is

frequently used in standard mathematical practice, it may be

better to introduce a different structure. For example, lattice

operations are commonly called meet and join, so a lower

semilattice may be better encoded as:

definition

struct /\-SemiLattStr

(# carrier -> set,

L_meet -> BinOp of the carrier #);

end;

Mizar supports multiple inheritance of structures that makes

a whole hierarchy of interrelated structures available in the

Mizar library, with the 1-sorted structure being the com-

mon ancestor of almost all other structures. For example,

formalizing topological groups in Mizar can be done by

independently defining and developing group theory and the

theory of topological spaces, and then merging these two

theories together based on a new structure, e.g.:

definition

struct (1-sorted) TopStruct

(# carrier -> set,

topology -> Subset-Family of the carrier

#);

end;

definition

struct (multMagma, TopStruct) TopGrStr

(# carrier -> set,

multF -> BinOp of the carrier,

topology -> Subset-Family

of the carrier #);

end;

The advantage of this approach is that all notions and facts

concerning groups and topological spaces are naturally appli-

cable to topological groups. Let us note that when introducing

a new structure, the inherited selectors can be listed in any

3
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order, as far as relations between them are preserved. The list

of names of ancestor structures is put in brackets before the

name of the structure being defined. Figure 1 shows only the

part of the net of all over 150 structures defined in MML

which are used for formalizing topology: we can find there

topological groups, topological relational structures, or real

linear spaces equipped with a topology, just to mention a few

important ones. Structures RelStr and TopStruct are in

the middle as the most important ones, and crucial in the

formalization of CCL. The right hand side of the diagram

was recently fully developed by the authors; it is useful both

for alternative formal approach to topological spaces which

which will be shown in Section VII and the theory of uniform

spaces given by the second author.

Concrete mathematical objects, e.g. the additive group of

integers are introduced with so called aggregates – special

term constructors defined automatically by the definition of a

structure, e.g.: multMagma(#INT,addint#), where INT

is the set of integers, and addint represents the addition

function. It is necessary that all terms used in the aggregate

have the respective types declared in the structure’s definition.

In our example INT is obviously a set, and addint must be

of type BinOp of INT.

Every structure defines implicitly a special attribute, strict.

The corresponding adjective’s meaning is that an object of a

structure type contains nothing more, but the fields defined

for that structure. For example, a term with structural type

based on TopGrStr may be strict TopGrStr, but it is

neither strict multMagma, nor strict TopStruct. Clearly,

every term constructed using a structure’s aggregate is strict.

Finally, the Mizar language has means to restrict a given

term with a complex structure type to its well-defined subtype.

This special term constructor, the forgetful functor also utilizes

the structure’s name, e.g. the multMagma of G, where G

has a potentially wider type which inherits the multMagma

structure. Again, such terms are strict, with respect to the given

structure type. The (part of) hierarchy of algebraic structures

deliver only a signature for corresponding algebras; the real

semantics is given by axioms. In Mizar formalism, axioms are

defined as adjectives (called also attributes). The details of the

algebraic hierarchy in the Mizar Mathematical Library were

presented at FedCSIS conference last year [17].

V. TOPOLOGY FORMALIZED

In this section we will describe the existing current defini-

tion of topological spaces within MML. Following Engelking

[6], we can choose open sets as the basic notion and so it was

decided to be the base in the MML: we have a structure of

a topological space together with the only adjective of which

name suggests its technical character. We can originally choose

between point-free topology and that with points; in MML

we deal with the earlier approach. Obviously, the backbone

corresponding structure is TopStruct given in Section IV.

Similarly, as in the algebraic case, structures can be understood

as partial functions on the selectors (in the abovementioned

example, the carrier which is a set on which a topology can

be defined, and the topology, i.e. the family of open sets).

But the real properties of the topology (both ∅ and the whole

universe should be open; the family should be closed for

finite intersections and arbitrary unions) is given by the Mizar

attribute which is in fact an adjective (TopSpace-like).

definition let IT be TopStruct;

attr IT is TopSpace-like means

:: PRE_TOPC:def 1

the carrier of IT in the topology of IT &

(for a being Subset-Family of IT st

a c= the topology of IT holds

union a in the topology of IT) &

for a,b being Subset of IT st

a in the topology of IT &

b in the topology of IT holds

a /\ b in the topology of IT;

end;

Making appropriate hierarchy for well-established notions

is really crucial for the repository of formal texts; if we

are interested only in pure predicates and computer-generated

proofs, readability is something which does not really matters

(and this is the case of the part of Isabelle’s Archive of Formal

Proofs [3] devoted to software verification), however from a

viewpoint of reusability of adjectives, when large databases are

involved, this is a question of efficiency. As a simple nontrivial

example, we can mention the net of cross-linked properties

of rough approximation operators under various conditions

as reflexivity, symmetry, transitivity – as canonical examples,

but also with seriality, positive and negative alliance as less

straightforward ones.

We can see that essentially the whole series of Mizar articles

dealing with topology uses more or less the type defined as the

structure with the single adjective as described in this section

– the Mizar mode TopSpace is not very convenient starting

point for further generalizations. One can notice that we do

not need in the abovementioned definition the assumption that

the empty set is an element of the topology: the union of ∅ is

just ∅, and the thesis is trivial as any topology is closed under

arbitrary unions. Bourbakists define topological spaces just by

means of finite intersections and arbitrary unions, but one the

other hand the set
⋂
∅ is not well-defined in Zermelo-Fraenkel

set theory.

We can see a topological operator either from the view of

Mizar functors, as it can be recognized now as a base; as

they are typed, we can read that the closure of an arbitrary

subset of given topological space T is again the subset of T .

But alternatively, we can use another way around: first we

can define a function which returns the closure for arbitrary

argument. Of course, one should define for such a map the

domain and the range properly; in our specific case this could

be a (total) function defined on the boolean of the carrier of

T . Among various approaches to topological spaces the two

are especially important: the first one deals with the family of

subsets of a given universe possessing certain properties; the

other deals with closure operators in sense of Kuratowski.

definition

let T be TopStruct,
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P be Subset of T;

attr P is open means

:: PRE_TOPC:def 2

P in the topology of T;

end;

Closed sets are precisely those, of which complements are

open; similarly the closure of given subset A can be defined

just as the minimal closed set containing A.

definition

let GX be TopStruct, A be Subset of GX;

func Cl A -> Subset of GX means

:: PRE_TOPC:def 7

for p being set st p in the carrier of GX

holds

p in it iff for G being Subset of GX st

G is open holds p in G

implies A meets G;

end;

Of course, the above is definitely not the only possible

definition – we can define the closure as the intersection

of all closed supersets of A, but the obvious and important

connection between the closures and closed sets is that closed

subsets are fixed points with respect to the closure operators.

theorem :: PRE_TOPC:22

for A being Subset of T holds

(A is closed implies Cl A = A) &

(T is TopSpace-like & Cl A = A implies

A is closed);

As a consequence, the above theorem can be considered

as an equivalent definition of a closed set as the fixed point

under closure operator; this will be explained from another

viewpoint (and reused) later.

We can mention here the outline of the formalization of

the common generalization of topological groups and metric

spaces. Uniform spaces, which are credited to Weil [33] and

more systematic formal approach – to the group of Bourbakists

(which is quite nice coincidence as the Mizar project imple-

ments main postulates of formalization of mathematics which

were fundamental to Bourbaki group), appeared to be a useful

framework explaining the concept of rough sets in terms of

both equivalence and tolerance relations. Formally, uniform

spaces are based on Mizar structures

definition

struct (1-sorted)

UniformSpaceStr

(# carrier -> set,

entourages -> Subset-Family of

[:the carrier,the carrier:] #);

end;

where French entourages means surroundings. The real topo-

logical flavour of these pretty general constructions is given

by defining an open subset O of X if and only if for every

x ∈ O there exists an entourage V such that V [x] is a subset

of O. For more details of fundamental systems of entourages

treated formally, we refer to [4] and [5] containing thorough

encoding of the theory – almost 7 thousand lines of code, i.e.

about 90 pages of formal definitons, theorems, and proofs.

The essential notion is the uniformity induced by the general

binary relation

definition

let X be set,

R be Relation of X;

func uniformity_induced_by(R) ->

upper cap-closed strict UniformSpaceStr

equals

:: UNIFORM3:def 21

UniformSpaceStr (# X,rho(R) #);

end;

where rho is just ρ as described in Section III. Adding

underlying properties to a binary relation, it turns out that we

obtain axioms defining basic classes of (semi-)uniform spaces.

The full connection between theory of uniform spaces and

rough sets is expressed in two important corollaries:

definition

let X be set,

R be Tolerance of X;

redefine func uniformity_induced_by(R)

-> strict Semi-UniformSpace;

end;

theorem :: UNIFORM3:51

for X being set,

R being Equivalence_Relation of X

holds

uniformity_induced_by(R) is UniformSpace;

Even if usually uniform spaces are meant to be topological

spaces with additional structure, this extension is absent in the

above definition, as this time we presented purely topological

properties in terms of Mizar adjectives (instead of fixed

topology we use appropriate notions in terms of entourages,

which is not very strange, as we can use the notion of a

neighbourhood).

VI. THE ISSUE OF EQUIVALENT CHARACTERIZATIONS

In mathematics we often experience the situation when we

have equivalent sets of axioms for the same mathematical

object. The motivation of using them both in the same time

can be manyfold: either the approaches were developed in as

sense independently, without knowing each other, and after

that they were proved to be equivalent definitions of the

same notion, or just the newly proposed set is preferred

because of its simplicity or usefulness. Such considerations

are especially often in lattice theory, where we deal with

the fixed set of operations (as the supremum, the infimum

and the complementation). The situation gets slightly more

complicated if the collections of operations are distinct. Of

course, the canonical example here is delivered again in the

world of lattices, where we have, among the ordinary binary

operations ⊔ and ⊓ (or, to be more precise, instead of them

at first) the ordering relation ≤. In this case, the original idea

to show the correspondence was to define two Mizar functors

transforming posets into lattices [12], [18], and vice versa.

When we consider things informally, it is enough to have

such construction; but then, we cannot be in these two uni-

verses in the same time and we have to choose only a single

5
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framework to work with (and redefine construction really

supports such approach). Some time ago, as a part of the

formalization of Jordan curve theory, we did similar work:

essentially we have shown that the notion of an open set

defined for subset of the set of real numbers coincides with

that of an open set in the natural topology of the real line.

Of course, having basic properties proven in both settings is

important, but soon we should face the problem of how much

theory to be developed in parallel.

As an interesting direction of research in the area of

topology [8] we can point out the beginnings of the so-called

theory of finite topological spaces as defined by Imura and

Eguchi in [22]. Based on relational structures, the authors

define new operator which is just the set of all elements of

the universe which are in the internal relation with the given

point.

definition

let FT be RelStr;

let x be Element of FT;

func U_FT x -> Subset of FT equals

:: FIN_TOPO:def 1

Class (the InternalRel of FT,x);

end;

The Mizar functor Class meant originally the class of

abstraction w.r.t. the given equivalence relation. In the process

of generalizing notions all underlying attributes were removed

from the assumptions of this definition, but the name remains

the same. One of the basic properties of neighbourhoods states

that any point should be a member of its neighbourhood.

Although the above definition does not need any additional

assumptions, now we have to add a variant of reflexivity of the

relational structure, with the new synonimical name, filled.

Of course, having just a new name for the old notion does not

bring too much additional information; but now we can express

the reflexivity in terms of neighbourhoods.

definition

let IT be non empty RelStr;

redefine attr IT is filled means

:: FIN_TOPO:def 4

for x being Element of IT holds x in U_FT x;

end;

The series started with [22] is not really exhaustive; but the

connections with other areas of mathematics are obvious.

VII. THE NEW APPROACH

The first step in our proposed approach was to have the new

naming scheme. We decided to use again a postfix -like to

suggest that if a family of subsets satisfies the conjunction of

properties, it can be treated as the family of open sets (i.e. it

is a topology).

definition

let X be set;

let F be Subset-Family of X;

attr F is topology-like means

{} in F & X in F &

F is union-closed cap-closed;

end;

Later, such adjectives were meant to be replaced by

more selfexplaining names. But in fact, the first con-

junct is just the negation of already present in MML

with_non-empty_elements, and the second one can be

named as with_universe or something similar. Observe

that there are two main differences between the definition from

Section V (TopSpace-like) and the current one. The first

one is that the latter is on the concrete level, i.e. it does not

use the notion of the structure. Of course, it is easy to lift

such definition to the abstract (i.e. structural) level: one can

define appropriate field to have such properties. The second

difference is that the old one is the conjunction of three instead

of four adjectives, as one of them can be deduced from the

combination of remaining ones and in this sense the approach

proposed here is similar to the one developed in the case

of σ-fields of subsets. In such a manner, we deal with Čech

preclosure and Kuratowski closure operators, respectively.

definition

let X be set,

O be Function of bool X, bool X;

attr O is preclosure means

O is extensive \/-preserving

empty-preserving;

attr O is closure means

O is extensive idempotent

\/-preserving empty-preserving;

end;

The crucial issue here is about the structure on which we

can establish the connection between closed sets and fixed

points w.r.t. maps. We decided not to use concrete relational

structures, but we introduced new structures, 1TopStruct

which are ancestors of topological structures enriched by maps

on X , i.e. functions from the set 2X into itself.

theorem :: ROUGHS_4:2

for T being with_properly_defined_topology

1TopStruct,

A being Subset of T holds

A is op-closed iff A is closed;

Under such defined attributes, showing that if the operator

satisfies the properties of preclosure, it generates an abstract

topological space.

registration

cluster with_preclosure -> TopSpace-like for

with_properly_defined_topology 1TopStruct;

end;

The question of defining the family of open sets (i.e. the

most usual definition of topology) might arise; the answer is

immediate – as the family of fixed points under the closure

operator. So the topology is collected from these objects which

are subsets of the considered universe which are f-closed,

where f stands for the map under consideration (an abstract

closure operator).

definition

let X be set,

f be Function of bool X, bool X;

func GenTop f -> Subset-Family of X means

6
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:: ROUGHS_4:def 25

for x being object holds

x in it iff ex S being Subset of X st

S = x & S is f-closed;

end;

In fact, this is another formulation of the property expressed

by the attribute with_properly_defined_topology.

theorem :: ROUGHS_4:5

for X being set,

f being Function of bool X, bool X st

f is preinterior holds

GenTop f is topology-like;

registration

let C be set, I be (Relation of C),

f be topology-like Subset-Family of C;

cluster TopRelStr (#C,I,f#) -> TopSpace-like;

end;

Finally, composing the above theorem and functor registra-

tion, we deduce that if the map which is the field in the merged

structure had the properties of preclosure, generated space has

all the properties of topological spaces.

VIII. MERGING TOPOLOGIES AND ROUGH SETS

The notion of a rough set was defined by Pawlak [28] to

reflect the situation of an incomplete knowledge about the

universe of objects. We formalized the notion in Mizar [11]

and pretty recently observed that this is almost identical to

the approach described in Section VI. Any element of the

universe can be viewed through a binary relation which can

unify potentially distinct objects if the available information

about their properties is the same. Such relation, called inde-

scernibility relation, can possess basic mathematical properties

of relations: if we assume R to be reflexive, symmetric, and

transitive (so it is an equivalence relation), we have the original

approach of Pawlak.

definition let T be non empty TopRelStr;

attr T is naturally_generated means

:: ROUGHS_4:def 28

the topology of T = GenTop LAp T;

end;

theorem :: ROUGHS_4:10

for T being naturally_generated

non empty with_equivalence TopRelStr,

A being Subset of T holds

A is closed iff UAp A = A;

As both notions coincide (the upper approximation operator

in rough sets and closure operator in underlying topological

spaces and similarly in the dual case), reusing these areas

of mathematics we have obtained concrete results: the char-

acterization of rough sets in terms of Isomichi classification

of domains, and the view for rough sets from the viewpoint

of Kuratowski closure-complement problem (known also as

fourteen sets of Kuratowski) [9].

As always, we can be skeptical about defining the mathe-

matical object as one of the fields in the structure: it could be

well illustrated based on the notion of the complementation

operator in the lattice structure. On the one hand, it is really

natural to have it as a separate field, as it was in case of

ortholattices. When it is just a part of the language’s signature,

it reflects the ordinary mathematical definition [16].

registration

let T be naturally_generated

non empty with_equivalence TopRelStr,

A be Subset of T;

cluster UAp A -> closed;

end;

registration

let T be with_equivalence

naturally_generated non empty TopRelStr;

let A be Subset of T;

identify Cl A with UAp A;

end;

The latter registration would allow for mixed use of the

lower approximation instead of interior operator and vice

versa. The only drawback of this approach is that to obtain

pure context of uniform space (i.e. strict topological space

or strict tolerance approximation space), we have to use

Mizar forgetful functor the.

The above unification of the world of topological spaces

and of rough sets allowed us to fully benefit from the results

placed in the area of general topology, previously obtained:

we can easily observe the connection of approximation spaces

with the classification of domains proposed by Isomichi or

the problems of Kuratowski sets, giving the combination of

closure, interior, and complementation operators [11], without

explicit reference to those theories.

IX. CONCLUSION AND FUTURE WORK

In the paper we tried to show how theoretically straight-

forward examples can lead to difficult problems during their

translation from informal presentation in natural human lan-

guage into formalism of the Mizar language, a variant of

mathematical vernacular. Based on the example of topological

spaces we could observe that even if the approach is given in a

not satisfactory way, it can be corrected in a process of the so-

called revision [19]. The part of the work could be less painful

– the splitting of the original definition as we proposed and

automatic replacement of the references into new ones. The

level of generality is obviously higher in our approach, so we

hope to open some new paths in the formalization of general

topology, especially in more abstract form.

The second part, which could be done gradually and with

the possible use of automatic tools, is that this proposed new

version should be consumed in the MML – the theorems and

definitions which can be formalized in the more general way,

should be formulated so. This would also enable reusing purely

topological constructions in another areas of mathematics –

for example, fourteen Kuratowski sets can be expressed in the

language of group theory and abstract maps with accompany-

ing properties. This also opened the way for explaining rough

sets in topological terms and will not be restricted for the

Mizar library only, as the translation from the Mizar formalism
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into other formal languages are available [21]. Additionally

we hope to unify the existing approach with newly developed

theory of uniform spaces.

In the informal form of a mathematical publication writ-

ten by people in natural language, such process could (and

eventually led in real life, as it was in the world of rough

sets) to the sequence of papers generalizing the approach

gradually. Hence it is also a kind of a problem for repository

storing the knowledge. In our case, the Mizar Mathematical

Library allows for some automatic enhancements. We removed

repetition, compressed the files, and cleared the path to im-

prove the overall algebraic framework available in the Mizar

Mathematical Library. Although natural language is rather

flexible, we believe that formal counterpart benefits from the

relative coherence of the existing approaches.
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sets. In Dunin-Kȩplicz, B., Jankowski, A., Skowron, A., and Szczuka,
M., editors, International Workshop on Monitoring, Security, and Rescue

Techniques in Multiagent Systems Location, volume 28 of Advances in

Soft Computing, pages 215–226, Berlin, Heidelberg. Springer-Verlag.
doi: 10.1007/3-540-32370-8_15

[10] Grabowski, A. (2013). Automated discovery of properties of rough sets.
Fundamenta Informaticae, 128(1-2):65–79. doi:10.3233/FI-2013-933

[11] Grabowski, A. (2014). Efficient rough set theory merging. Fundamenta

Informaticae, 135(4):371–385. doi:10.3233/FI-2014-1129
[12] Grabowski, A. (2015). Mechanizing complemented lattices within

Mizar type system. Journal of Automated Reasoning, 55(3):211–221.
doi:10.1007/s10817-015-9333-5

[13] Grabowski, A. (2016). Lattice theory for rough sets – a case study with
Mizar, Fundamenta Informaticae, 147(2–3):223-240. doi:10.3233/FI-
2016-1406

[14] Grabowski, A. (2017). Computer certification of generalized rough sets
based on relations. Accepted to International Joint Conference on Rough
Sets, IJCRS 2017. doi:10.1007/978-3-319-60837-2_7

[15] Grabowski, A., Korniłowicz, A., and Naumowicz, A. (2015). Four
decades of Mizar. Journal of Automated Reasoning, 55(3):191–198.
doi:10.1007/s10817-015-9345-1

[16] Grabowski, A., Korniłowicz, A., and Schwarzweller, C. (2015). Equality
in computer proof-assistants. In Ganzha, M., Maciaszek, L. A., and
Paprzycki, M., editors, Proceedings of the 2015 Federated Conference

on Computer Science and Information Systems, volume 5 of Annals

of Computer Science and Information Systems, pages 45–54. IEEE.
doi:10.15439/2015F229

[17] Grabowski, A., Korniłowicz, A., Schwarzweller, C. (2016). On algebraic
hierarchies in mathematical repository of Mizar. In: M. Ganzha, L.A.
Maciaszek, M. Paprzycki, editors, Proceedings of the 2016 Federated

Conference on Computer Science and Information Systems, volume 8 of
Annals of Computer Science and Information Systems, pages 363–371.
IEEE. doi:10.15439/2016F520

[18] Grabowski, A. and Moschner, M. (2004). Managing heterogeneous
theories within a mathematical knowledge repository. In Asperti,
A., Bancerek, G., and Trybulec, A., editors, Mathematical Knowledge

Management, Third International Conference, MKM 2004, Bialowieza,

Poland, September 19–21, 2004, Proceedings, volume 3119 of Lecture

Notes in Computer Science, pages 116–129. Springer. doi:10.1007/978-
3-540-27818-4_9

[19] Grabowski, A. and Schwarzweller, C. (2007). Revisions as an essential
tool to maintain mathematical repositories. In Proceedings of the

14th Symposium on Towards Mechanized Mathematical Assistants: 6th

International Conference, Calculemus ’07 / MKM ’07, pages 235–249,
Berlin, Heidelberg. Springer-Verlag. doi:10.1007/978-3-540-73086-6_20

[20] Hammer, P.C. (1963). Extended topology: the continuity concept. Math-

ematics Magazine, 36(2):101–105.
[21] Iancu, M., Kohlhase, M., Rabe, F., and Urban, J. (2013). The Mizar

Mathematical Library in OMDoc: Translation and applications. Journal

of Automated Reasoning, 50(2):191–202. doi:10.1007/s10817-012-9271-
4

[22] Imura, H. and Eguchi, M. (1992). Finite topological spaces. Formalized

Mathematics, 3(2):189–193.
[23] Järvinen, J. (2007). Lattice theory for rough sets, Transactions on Rough

Sets VI, Lecture Notes in Computer Science (LNAI) 4374:400–498.
doi:10.1007/978-3-540-71200-8_22

[24] Korniłowicz, A. (2015). Definitional expansions in Mizar. Journal of

Automated Reasoning, 55(3):257–268. doi:10.1007/s10817-015-9331-7
[25] Korniłowicz, A. (2015). Flexary connectives in Mizar. Computer Lan-

guages, Systems & Structures, 44:238–250. doi:10.1016/j.cl.2015.07.002
[26] Naumowicz, A. (2015). Automating Boolean set operations in Mizar

proof checking with the aid of an external SAT solver. Journal of

Automated Reasoning, 55(3):285–294. doi:10.1007/s10817-015-9332-6
[27] Naumowicz, A. (2015). Tools for MML environment analysis. In Kerber,

M., Carette, J., Kaliszyk, C., Rabe, F., and Sorge, V., editors (2015).
Intelligent Computer Mathematics – International Conference, CICM

2015, Washington, DC, USA, July 13–17, 2015, Proceedings, volume
9150 of Lecture Notes in Computer Science. Springer, pages 348–352.
doi:10.1007/978-3-319-20615-8_26

[28] Pawlak, Z. (1982). Rough sets. International Journal of Parallel

Programming, 11:341–356.
[29] Pa̧k, K. (2015). Improving legibility of formal proofs based on the

close reference principle is NP-hard. Journal of Automated Reasoning,
55(3):295–306. doi:10.1007/s10817-015-9337-1

[30] Trybulec, A., Korniłowicz, A., Naumowicz, A., and Kuperberg, K.
(2013). Formal mathematics for mathematicians. Journal of Automated

Reasoning, 50(2):119–121. doi:10.1007/s10817-012-9268-z
[31] Urban, J., Rudnicki, P., and Sutcliffe, G. (2013). ATP and presentation

service for Mizar formalizations. Journal of Automated Reasoning,
50(2):229–241. doi:10.1007/s10817-012-9269-y

[32] Vlach, M. (2008). Topologies of approximation spaces of rough set
theory, In Interval/Probabilistic Uncertainty and Non-Classical Log-

ics, pp. 176–186, Advances in Soft Computing, 46, Springer. doi:
10.1007/978-3-540-77664-2_14

[33] Weil, A. (1937). Sur les espaces a structure uniforme et sur la topologie
generale. Act. Sci. Ind., 551, Paris.

[34] Yao, Y., Yao, B. (2012). Covering based rough set approximations,
Information Sciences, 200:91–107. doi:10.1016/j.ins.2012.02.065

[35] Zhu, W. (2007). Generalized rough sets based on relations, Information

Sciences, 177(22):4997–5011. doi:10.1016/j.ins.2007.05.037
[36] Zhu, W. (2007). Topological approaches to covering rough sets, Infor-

mation Sciences, 177(6):1499–1508. doi:10.1016/j.ins.2006.06.009

8

18 POSITION PAPERS OF THE FEDCSIS. PRAGUE, 2017


