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Abstract—The stochastic simplex bisection (SSB) algorithm
is evaluated against particle swarm optimization (PSO) on a
prominent test set. The original SSB algorithm performs on
par with the PSO algorithm and a revised version of the SSB
algorithm outperforms both of them. Detailed analysis of the
performance on select objective functions brings to light key
properties of the three algorithms. The core SSB algorithm is
here viewed as a sampling tool for an outer loop that employs
statistical pattern recognition. This opens the door for a host of
other schemes.

I. INTRODUCTION

S
TOCHASTIC optimization [1] involves introducing some

degree of randomness, when searching for optima. Partic-

ularly successful approaches include genetic algorithms [2],

particle swarm optimization [3], and ant-colony optimization

[4]. Such schemes are often applied to continuous optimization

problems, especially when the gradient and Hessian of the

objective functions are not readily available. In addition to this

they have proven effective when optimizing highly multimodal

functions, i.e., function with a large number of optima.

We here compare the performance of the stochastic simplex

bisection (SSB) algorithm—first proposed in [5] and first

evaluated against other optimization algorithms in [6]—with

a particle swarm optimizer (PSO). The former employs a

common stochastic optimization scheme, but unlike other

stochastic approaches, it applies the scheme to search space

regions, rather than to individual points. The latter is a well-

known global optimization scheme, which has spawned a

number of related schemes, such as firefly optimization [7] and

fish school search [8]. This is the first time the SSB algorithm

is tested against another state-of-the-art global optimizer.

Two versions of the SSB algorithm were tested: the original

one from [5], [6] and a new one, which uses the same core SSB

algorithm and a modified outer loop that clusters a shrinking

set of arguments with relatively low function values.

The rest of the article is organized as follows. Section II

describes the new and old SSB algorithms. Section III details

the PSO optimizer used. Section IV discusses the experimental

setup, and reports and analyses the findings.

II. THE STOCHASTIC SIMPLEX BISECTION ALGORITHM

Consider the simple problem where we wish to minimize

f(x), which is strictly convex on R. Assume further that we

have found x1 < x3 < x5, where f(x1) ≥ f(x3) ≤ f(x5),

i.e., that we have found an interval that has an interior point

x3 with a smaller function value than its end points. 1

Algorithm for Convex Functions

Given x1 < x3 < x5 with f(x1) ≥ f(x3) and

f(x3) ≤ f(x5)
1: Select x2 ∈]x1, x3[ and x4 ∈]x3, x5[
2: if f(x2) ≤ f(x3) then

3: Recurse on x1, x2, x3

4: else if f(x4) ≤ f(x3) then

5: Recurse on x3, x4, x5

6: else

7: Recurse on x2, x3, x4

8: end if

We thus recurse on the subinterval that has an interior point

with a smaller function value than its end points. 2

A. The Core SSB Algorithm

The SSB algorithm generalizes this to non-convex functions

in n dimensions. An interval is generalized to a simplex, rather

than to a hyperbox, The latter has 2n corners, and bisecting

it requires computing the function value in 2n−1 new corners.

The former has only n + 1 corners, and bisecting it only

requires calculating the function value in one new point.

Core SSB Step

Given a set {Tk′} of non-overlapping simplexes,

1: Select the next simplex Tk to bisect at random

with probability
sk

∑

k′ sk′

.

2: Select a bisection point at random roughly in

the middle of the longest edge of Tk.

3: Bisect Tk, yielding two new simplexes.

4: Replace Tk in {Tk′} with its two offspring.

The simplex score sk, which is defined in Section II-A1 below,

requires the function value in the simplex midpoint. Thus

only three new function values need be calculated for each

bisection: that of the bisection point and those of the midpoints

of the two new simplexes, see Section II-A2.

The core SSB algorithm starts with a simplex T0 and main-

tains a partition of it by repeatedly performing the core SSB

1By strict convexity, one of the two end point values must be strictly larger,
i.e., either f(x1) > f(x3) or f(x3) < f(x5), or both.

2If f(x2) = f(x3), the algorithm could be clever and instead recurse on
x2, x23, x3, with x23 ∈ ]x2, x3[, where, by necessity f(x2) > f(x23) <
f(x3), due to strict convexity. Similarly for f(x4) = f(x3).
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step, until some termination criterion is met. It then returns

the best point found thus far. The algorithm is complete in the

sense that no portion of the search space is ever discarded,

and it avoids redundancy by using non-overlapping simplexes.

These are two common pitfalls of stochastic optimization.

The algorithm still reaps the benefits of stochastic search in

exploring more promising regions earlier, in average, while

granting also less promising regions a non-zero chance of

being explored.

1) The Simplex Score: We define the simplex scores sk as

follows. Let {Tk = 〈x(1)
k , . . . ,x

(n+1)
k 〉} be a collection of n-

dimensional simplexes with (dropping the index k for clarity),

x̄ =
1

n+ 1

n+1
∑

i=1

x
(i) ; f̄ =

f(x̄) +
∑n+1

i=1 f
(

x
(i)
)

n+ 2

where x̄ is the midpoint and f̄ is the average function value

over the corners and the midpoint. We then set

f− = min
(

f(x̄),min
i

f
(

x
(i)
))

; δ =
f̄ − f−

4

and introduce

f⋆ = f− − δ

which is a combined measure of the lowest function value f−

and an estimate δ of how much it might potentially decrease,

judging by the average function value f̄ and this lowest value.

We next make f⋆ offset- and scale-invariant through min-

max normalization, using the lowest function value fvb in the

very best point found this far, and some relatively high, fixed

function value fw found early in the search. 3

f⋆ ← f⋆ − fvb
fw − fvb

Thus, all simplexes must be rescored whenever a new very

best point is found. As this happens rather seldom, it incurs

very little overhead in practice.

The simplex score s is then defined as

s = l · exp (−λ0f
⋆)

where l is the length of its longest edge:

l = max
ij

∣

∣

∣
x
(i) − x

(j)
∣

∣

∣

The parameter λ0, which defaults to one, controls the trade-

off between exploration and exploitation. A small λ0 will

make the simplexes with different f⋆ more equiprobable, thus

promoting exploration, a large one will do the opposite.

3In practice, we require that the f⋆ be non-negative and that the denomi-
nator fw − fvb be at least 0.1 and at most one, yielding the expression:

f⋆
←

max
(

0, f⋆
− fvb

)

max
(

0.1,min
(

1, fw − fvb

))

2) Simplex Bisection: Each round only creates two new

simplexes: the longest edge of the selected simplex is bisected.

All corners remain the same, save one of the two connected

by this edge. Let these corners be x
(i) and x

(j). The edge

bisection point x̄
′—the new corner—is also randomized to

counter-act any symmetries of the objective function f(x) in

its argument x:

x̄
′ = (0.5 + θ)x(i) + (0.5− θ)x(j) for θ ∼ U(−α, α)

An empirically good choice is α = 0.05 (max 10% random-

ness). x̄′ replaces x
(i) in one offspring simplex and x

(j) in

the other one. Thus only three new function values need be

calculated for each bisection: f(x̄′) and the function values of

the midpoints of the two new simplexes.

B. Outer Loop: Maintaining a Hyperbox

It is often desirable to start from a hyperbox. For example,

constraints often take the form of bounds on the individual

variables of each dimension. The tested SSB algorithms re-

peatedly restart an SSB algorithm from a hyperbox created

in a previous iteration. They use an outer loop over epochs

that maintains the hyperbox, and an inner loop over rounds,

each of which performs the core SSB step. Note that although

partitioning a hyperbox into a set of simplexes is trivial in

two dimensions, it is a challenging and time-consuming task

in higher ones, see [9] and [10].

The SSB algorithms thus consist of two nested loops. The

outer loop over epochs maintains a hyperbox. Each epoch runs

the inner loop over rounds, where each round contains one

simplex bisection, which replaces one simplex with two new

ones. Each epoch is divided into two phases, see below. In the

first phase, the simplexes are processed as a first-in-first-out

(FIFO) queue to create an initial grid. In the second phase, the

next simplex to bisect is selected as in the core SSB step: at

random, with probabilities proportional to the simplex scores.

Inner Loop

Given A hyperbox H .

1: Partition H into a set {Tk′} of simplexes.

2: Initialize other variables as described below.

3: Convert {Tk′} into FIFO queue.

4: while not End-of-epoch do

5: if Phase 1 then

6: Run Core SSB step, but select as Tk the

first simplex of the FIFO queue and add its

offspring to the end of the queue.

7: else

8: Run Core SSB step. {Phase 2}

9: end if

{This yields three new objective function val-

ues f(xa), f(xc), f(xc).}
10: if f(xa/b/c) < fvb then

11: fvb ← f(xa/b/c) ; xvb ← xa/b/c

12: Rescore all simplexes.

13: end if

14: Update other variables as described below.

15: end while

104 COMMUNICATION PAPERS OF THE FEDCSIS. PRAGUE, 2017



For fw, we use the highest function value in a corner of the

bounding box. The manner in which the hyperbox is modified

after each epoch depends on the sequence of points sampled.

1) Old Scheme: The sequence order matters in the old

scheme, and a single hyperbox is created. To this end, we

need some terminology. A best point is any point found during

the second phase of an epoch that is the best this far in that

epoch. The best points thus start over each epoch. The very

best point, on the other hand, is the globally best point found

in any round of any epoch. Its objective function value is fvb.

The first phase of each epoch consists of the first quarter of

its rounds. The rest of its rounds constitute the second phase.

Other choices than one quarter have been tested and found

effective in other settings, see [5], [6].

Initializing other variables

1: Let fb be the best function value found when

scoring the simplexes partitioning the hyperbox.

2: BestPoints ← ∅ ;

Updating other variables

1: if f(xa/b/c) < fb then

2: fb ← f(xa/b/c) ;

3: if Phase 2 then

4: Add xa/b/c to BestPoints.

5: end if

6: end if

If the elapsed epoch had enough best points, the next

hyperbox is one that contains all best points and the very best

point as interior points. It turns out that the simple scheme of

updating the lower and higher bounds of the hyperbox in each

dimension, for each new best point, works well in practice.

Otherwise, the previous hyperbox is increased in size and re-

centered around the current very best point. In the tested SSB

algorithm, the box is padded by 100 percent of the interval

length in each dimension, when there are enough best points,

and the old interval length is quadrupled, when there aren’t.

Creating a new hyperbox

1: Let H be the smallest hyperbox that contains

BestPoints ∪ {xvb}.
2: Retain the new midpoint of H .

3: if the set BestPoints is large enough then

4: Multiply the length of each side of H by some

fixed margin factor (e.g., 1.1).

5: else

6: Set the length of each side of H to a fixed

factor (e.g., 2) times that the old hyperbox.

7: end if

8: for all sides of the new hyperbox H do

9: if the side length is zero then

10: Set that side length of H to a fixed factor

(e.g., 2) times that of the old hyperbox.

11: end if

12: end for

The old scheme loop may seem somewhat ad hoc. It

captures the idea, that if there has been non-trivial local

improvements, search should focus on these improvements,

yet also consider the globally best point found. We note that

any new best point must be a bisection point, or the midpoint

of a simplex, with a lower function value than its corner

points. In one dimension, these cases coincide. For convex

functions, such an interval must contain the minimum, which

our introductory algorithm exploits. For non-convex functions,

or in several dimensions, the region surrounding such a point

merits further investigation.

2) New Scheme: The next hyperbox is in the new scheme

created by drawing inferences from the set of sample points

using statistical pattern recognition techniques. In its current

incarnation, it selects all sample points with a function value

below a certain threshold. We call these low points. To

generate more low points, they are clustered using k-means

clustering, see, e.g., [11], pp. 424–430. Points far away from

the cluster means are pruned from the clusters. A hyperbox

is then created for each cluster and the core SSB algorithm

is run on this hyperbox. This will add new sample points and

thus presumably additional low points, and is done to search a

region containing this cluster for an optimum. In addition, the

midpoints between clusters are evaluated and added as sample

points. This is done to encourage merging clusters that in fact

belong to the same optimum. Since sample points are retained

between epochs, their number increases steadily.

The number of rounds in each epoch, where each round

requires three function evaluations, is constant and distributed

between running the core SSB algorithm on a hyperbox

derived from the entire set of low points and on the hyperboxes

derived from individual clusters. We found that using half

of the rounds for each purpose, and thus one half divided

by the number of viable clusters for each of the latter, was

appropriate. Thus, compared to the old scheme, fewer rounds

are used for global exploration.

The final hyperbox used in the next epoch contains the set

of low points. To gradually reduce it in size, the threshold is

reduced from epoch to epoch to shrink the relative number

of low points. In the first epoch, ni points, say all points,

are included; in the last one, only nf , say three points, are.

For intermediate epochs we calculate the rank of the highest

function value to be included as

r(x) =
ni

1 + c · x4
with c =

ni

nf
− 1 and x =

epoch

maxEpoch

It is clear that r(0) = ni and that r(1) = nf , independent

of the power that x is raised to; four was found empirically

to be a good choice. This successively reduces the number of

low points, and hopefully forces the algorithm to eventually

commit to one cluster containing the global optimum. Thus,

the algorithm initially performs global exploration, but grad-

ually resorts to searching a shrinking number of low points

and clusters, and eventually focuses on exploiting a small

number of low points and very few—if not a single—clusters,

to converge on a potential global optimum.

This is an example of using a level curve—aka a contour

curve, called a level (hyper-)surface in higher dimensions—of

the function. In this case, we select all points inside it. Current
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work includes applying statistical recognition of level surfaces

to identify regions that warrant further investigation, as well

as the use of more sophisticated clustering techniques.

C. Related Work

The SSB algorithm uses a typical stochastic optimization

scheme. It maintains a set of elements, each with a positive

score; randomly selects some elements based on the scores;

uses these elements to explore the search space, often creating

new elements in the process; and updates the set of elements

and their scores according to the findings. The scheme is

however here applied to regions of the search space, not to

points in it, as in, e.g., PSO [12], shuffled complex evolution

[13], covariance matrix adaptation evolution strategy [14],

controlled random search [15], differential evolution [16], and

firefly optimization [7].

Convergent optimization via most-promising-area stochastic

search (COMPASS) [17] sounds similar, but it is a technique

for discrete optimization via simulation, where “there is no ex-

plicit form of the objective function, and function evaluations

are stochastic and computationally expensive.” Predictably, it

always samples the most promising area next, rather than

select it probabilistically using scores, and stochastic search

refers to uniform sampling within that area.

The simplex method [18], Chapter 9, doesn’t actually use

simplexes. To create new points, controlled random search

[15] generates random simplexes. These may overlap and

are not guaranteed to cover the search space. Nor are they

subdivided. DIRECT [19] uses hyperboxes that partition the

search space. It avoids the 2n complexity by directional search

from their midpoints, ignoring their corners. Each hyperbox

potentially containing the global minimum is trisected, rather

than bisected, along each dimension in turn. There is no

randomized selection.

Whereas [20] uses stochastic optimization to improve k-

means clustering by avoiding local optima, the new SSB

scheme applies k-means clustering to data generated by the

core SSB algorithm to distinguish different optima and coor-

dinate disparate data points corresponding to the same one.

III. THE PARTICLE SWARM OPTIMIZER

The employed PSO optimizer follows [1], p 121, with a few

modifications.

The swarm consists of a number, typically 20–40, of

boids—a word play on bots, birds, and droids—each pos-

sessing a position x and a velocity v. The objective function

value f(x) is also recorded. In each iteration, the position and

velocity of each boid are updated as follows.

v ← θv + c1u1 ◦ (xb
1 − x) + c2u2 ◦ (xb

2 − x)

x ← x+ v

Here x
b
1 is the best point historically of the boid in question,

while x
b
2 is the best current point of all boids. 4 Thus, xb

i −x

is the vector from the current point x to the best point x
b
i .

4Best here means “with the lowest objective function value.”

The idea is that the velocity v is attracted to both these two

best points, with acceleration, or attraction coefficients, ciui.

The first of these two terms of the velocity update is called

the cognitive component, depending only on the history of

the individual boid, and the second one is called the social

component, depending on the swarm as a whole.

In [1], p 121, ui is in fact a random scalar ui, drawn

uniformly from [0, 1], and the multiplication is scalar mul-

tiplication of the difference vector. This guarantees that this

acceleration term is along the line connecting x and x
b
i . We

instead use the Hadamard product, i.e., the component-wise

product, denoted ◦, and let u1 and u2 be vectors where each

element is independently uniform on [0, 1]. This is the method

used in [21], p 219. The acceleration term is then in a cone or

pyramid centered around x
b
i − x. We set both the two scalars

c1 and c2 to 2, which is standard practice and which means

that each component of ciui has expectation 1.

The first term, θv, where θ is called the inertia weight, is

simply the previous velocity for θ = 1. With θ > 1, this term

accelerates the boid in the direction it is currently travelling,

preferring exploration over exploitation. With θ < 1, it

instead dampens the velocity, making it pay more heed to the

cognitive and social acceleration components, thus preferring

exploitation over exploration. It thus makes sense to start with

an inertia weight above one, and then successively reduce

it, ending the search with an inertia weight below one. To

this end, we use dynamic inertia weighting to bring down θ

geometrically from 1.4 in the first iteration to 0.3 in the last,

cf. [1], pp 127–128.

As the velocities are initially self-accelerating, it is impor-

tant to restrain them. Each velocity component is capped to

have an absolute value that does not exceed a given maximum

vmax. This is another key parameter for balancing exploration

and exploitation. The boids must stay within the feasibility

domain, which is here a bounding hyperbox. Any boid that

attempts to leave it has the offending x coordinate set to the

boundary point. The corresponding v coordinate is set to the

negative of its value. This leads to hard (elastic) reflection in

the boundary, much like billiard balls.

IV. EXPERIMENTS

A. Experimental Setup

We tested all two-dimensional objective functions of Fig-

ure 1 (penultimate page), most of which are from [22].

Function 0 comes from [5], Function 20 from [23], and

Functions 21, 22, 24, and 25 are of our own design. All

functions have unique global minima, except Function 0, due

to symmetry in x and x + y, and Functions 12, 14, and 17,

which have four global minima, due to symmetry in ±x,±y.

Functions 16 and 17 were corrected using [24].

We tested the optimizers on the three domains:

1) [−80, 120]× [−80, 120],
2) [−800, 1200]× [−800, 1200], and

3) [−8000, 12000]× [−8000, 12000].
These are larger than those of the test set, which are typically

[−10, 10]× [−10, 10] or even [−5, 5]× [−5, 5]. The domains
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were made asymmetric in x and y, since many test functions

have their global minimum in x = 0. In each trial, each

optimizer was allowed 50 000 function evaluations. Success

was defined as finding any argument with a function value

within 10−13 of the known global minimal value.

The optimal value of vmax was determined for the PSO

in each test domain. It used 20 boids and 2500 iterations

to achieve the limit of 50 000 function evaluations. Fewer

iterations result in failure to converge to within 10−13 of the

minimum, whereas fewer boids fail to explore the search space

effectively. Both SSB schemes used 40 epochs of 415 rounds

each (40 × 415 × 3 = 49 800), which deviates from the 60

epochs and 276 rounds (60 × 276 × 3 = 49 680) used in

[5]. This was done to accommodate the revised SSB scheme,

where each epoch requires running the core SSB algorithm on

a set of hyperboxes, one for each cluster, in addition to the

hyperbox of the current epoch, see Section II-B, New Scheme.

B. Experimental Results

Table I shows their respective success rates in 1000 trials.

We first and foremost note that the original SSB algorithm

holds its own against the PSO algorithm and that the revised

SSB scheme performs significantly better.

Ignoring ties, the revised SSB scheme is better than the

PSO algorithm in 10 cases of 13 in the smallest domain and

10 of 14 cases in the other two domains. The pairwise sign

test [25], which is not a very powerful test, yields p-values

of 0.046 in the smallest domain, and 0.09 in the other two

domains. Similarily, the revised SSB scheme is better than the

original SSB scheme 18 times of 20 in the smallest domain

and 15 times of 20 in two larger domains, yielding yields p-

values of 0.0002 and 0.021, respectively. We used the sign test,

rather than, say, the Wilcoxon signed-rank test [26], which is

more powerful, since the objective functions vary greatly in

difficulty. Thus, the difference pairs cannot be seen as drawn

from the same distribution.

To further analyze these results, we need to consider the

nature of each test objective function. These can be classified

into:

• unimodal quadratic forms, Fcns 2, 6, 8;

• oligo-modal 5 polynomials, Fcns 3, 4, 5, 10, 18;

• multimodal damped trigonometrics, Fcns 0, 1, 12–17, 25;

• mixed trigonometrics and quadratics, Fcns 9, 11, 20, 24;

• other (unimodal) functions, Fcns 7, 21, 22.

The first group is simple there to see that the optimizers are

sane; any deviation from a perfect score signals a fundamental

problem. Functions 9, 10, 16, and 21 behave similarly. For

these functions, the PSO and the new SSB perform flawlessly,

whereas the old SSB fails in a small number of the trials.

Inspection reveals that the reason for this is that the old SSB

prematurely commits to a hyperbox that does not contain the

global optimum. Subsequent epochs tend to repair this by

increasing the hyperbox size, but this does not happen fast

5Oligo-modal means “with a few modes.” (Apologies for mixing Greek and
Latin roots. . .)

enough to allow convergence to within 10−13 of the optimum

value. Conversely, this behavior pays dividends in the largest

domain and for the hardest functions—0,11,and 14—where

the old SSB algorithm prevails.

Function 7 is very hard, and defeats all optimizers. It has a

concave valley, kinks, and a very anisotropic variable coupling.

The gradient is ill-defined and unbounded in the valley bottom,

and especially ill-behaved in the optimum. It is included as a

reminder that our successes are relative. Memento mori.

Functions 1,11,14 are essentially constant at some distance

to the optimum. This makes it harder for the exploration aspect

of the algorithms to locate the target optimum. As the domain

size increases, performance drops from full score, for at least

some optimizer, to essentially total failure for all of them.

Functions 12, 14, and 17 have multiple global optima due

to symmetries. This profits the old SSB scheme and leaves the

PSO scheme in the dust. In conjunction with the very localized

variation of function 14, this defeats the new SSB scheme, as

it does not have enough rounds for exploration.

The only functions for which the old SSB scheme does

better than the new one are Functions 0, 4, 12, 14, and 17.

We have just discussed the latter three, which have multiple

global optima due to symmetries. Function 0 has very many

local optima and the only real remedy is exploration. Function

4 is interesting in that it is a case where the clustering fails to

some extent. Better clustering methods raise the success rate

from 0.435 to 0.864. This is however beyond the scope of the

current article.

V. SUMMARY AND CONCLUSIONS

We evaluated the stochastic simplex bisection (SSB) algo-

rithm against a particle swarm optimizer (PSO) on a prominent

test set. The former employs a common stochastic optimization

scheme, but unlike other stochastic approaches, it applies the

scheme to search space regions, rather than to individual

points. The latter is a well-known workhorse for stochastic

optimization. This is the first evaluation of the SSB algorithm

against a state-of-the-art global optimizer.

The original SSB scheme holds its own against the PSO.

The revised SSB scheme is better at exploitation than the old

one, allowing it to significantly outperform both the PSO and

old SSB schemes in all three domains.

The key difference between the new and original SSB

schemes is that the new one applies statistical pattern recogni-

tion to the data points sampled using the core SSB algorithm.

This opens the door for a host of other schemes that view

stochastic optimization not as a random walk, but as statistical

inference. Current work includes using more sophisticated

statistical pattern recognition techniques to identify regions

that warrant further investigation.

The PSO algorithm has been in extensive use since 1995,

and it comes with a large body of experience and know-

how. The SSB algorithm was first published in 2015 and it

is still very much evolving. It already outperforms the PSO

algorithm. There is every reason to expect rapid progress in

its performance.

CHRISTER SAMUELSSON: THE REVISED STOCHASTIC SIMPLEX BISECTION ALGORITHM AND PARTICLE SWARM OPTIMIZATION 107



TABLE I
SUCCESS RATE IN 1000 TRIALS OF THE PSO THE SSB ALGORITHMS.

Domain [−80, 120]2 [−800, 1200]2 [−8000, 12000]2
Fcn PSO Old SSB New SSB PSO Old SSB New SSB PSO Old SSB New SSB

0 0.025 0.124 0.066 0.002 0.107 0.036 0.000 0.086 0.023

1 0.999 0.925 1.000 0.567 0.331 0.827 0.044 0.002 0.004

2 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.999 1.000

3 0.007 0.832 0.999 0.001 0.693 0.992 0.002 0.507 0.963

4 0.997 0.986 1.000 0.971 0.978 0.939 0.852 0.905 0.435

5 0.994 0.763 1.000 0.865 0.787 1.000 0.681 0.758 0.988

6 1.000 0.998 1.000 1.000 0.987 1.000 1.000 0.929 1.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 1.000 1.000 1.000 1.000 0.993 1.000 1.000 0.954 1.000

9 1.000 0.979 1.000 1.000 0.939 1.000 1.000 0.923 0.999

10 1.000 0.930 1.000 1.000 0.877 1.000 1.000 0.897 1.000

11 0.173 0.984 0.999 0.001 0.060 0.006 0.000 0.000 0.000

12 0.953 0.975 0.997 0.255 0.966 0.981 0.003 0.861 0.593

14 0.064 0.977 0.951 0.000 0.922 0.670 0.000 0.103 0.004

16 1.000 0.920 1.000 1.000 0.874 1.000 0.998 0.860 1.000

17 0.999 0.928 0.934 0.793 0.870 0.863 0.194 0.819 0.817

18 0.917 0.999 1.000 0.992 1.000 1.000 1.000 0.994 1.000

20 1.000 0.667 1.000 1.000 0.715 1.000 0.858 0.669 0.976

21 1.000 0.848 1.000 1.000 0.813 0.999 1.000 0.749 1.000

22 1.000 0.082 0.667 1.000 0.073 0.692 1.000 0.067 0.620

24 0.998 0.365 0.966 0.960 0.337 0.854 0.169 0.312 0.752

25 0.948 0.995 1.000 0.658 0.954 1.000 0.348 0.956 0.982

Ave 0.776 0.785 0.890 0.685 0.694 0.812 0.552 0.607 0.689
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Objective Functions

Fcns 21, 22, 24, 25 are novel; Fcn 0 from [5]; Fcn 20 from [23]; remainder from [22]. Fcns 16 and 17 corrected using [24].
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n
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f0
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Fig. 1. Fig. 1 List of objective functions
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